
Outline for today

•Histogram  of  Oriented  Gradient  (HOG)  
features

• Pictorial  structures  (PS)  /  deformable  
parts  models  (DPM)

•Mixtures  of  deformable  models
• Parameter  learning  with  latent  SVM
•Possibly  more...
-‐ Cascade  detection  with  DPMs
-‐ Context  rescoring



(Review?) Template matching

•Consider  matching  with  image  patches
-‐ What  could  go  wrong?

template

image match  quality
e.g.,  cross  correlation



What is a feature map?

•Any  transformation  of  an  image  into  a  
new  representation

•Example:  transform  an  image  into  a  
binary  edge  map

Image  source:  wikipedia



Feature map goals

• Introduce  invariance
-‐ Bias,  gain,  nonlinear  transformations
-‐ Small  deformations

• Preserve  larger  scale  spatial  structure
Image:  [Fergus05]



Histograms of Oriented Gradients (HOG)

• Introduce  invariance
-‐ Bias  /  gain  /  nonlinear  transformations
‣ bias:  gradients  /  gain:  local  normalization
‣ nonlinearity:  clamping  magnitude,  orientations

-‐ Small  deformations
‣ spatial  subsampling
‣ local  “bag”  models

• References
-‐ “Histograms  of  oriented  gradients  for  human  detection.”  N.  Dalal  and  
B.  Triggs,  CVPR  2005.

-‐ “Finding  people  in  images  and  videos.”  N.  Dalal,  Ph.D.  Thesis,  Institut  
National  Polytechnique  de  Grenoble,  2006.



HOG feature computation

Image:  [Dalal06]



HOG terminology

f

image  pixels
cell

(e.g,  4x4  pixels)

block
(e.g,  2x2  cells)

•Original  image:  H  x  W  x  3
• Feature  map:  H’  x  W’  x  D
-‐ For  example
‣ H’  =  Uloor(H/b)  -‐  2

‣ W’  =  Uloor(W/b)  -‐  2

‣ D  =  36

� � R͵

HOG  feature  vector

b



•Many  methods
-‐ (1,  0,  -‐1)  centered  Xilter  works  best
-‐ Alternatives:  uncentered,  cubic  corrected,  
Sobel,  etc.

• Discrete  approx.  to  partial  derivatives
-‐ Ix  =  I[x+1,  y]  -‐  I[x-‐1,  y]
-‐ Iy  =  I[x,  y+1]  -‐  I[x,  y-‐1]



•At  each  pixel  compute
-‐ Gradient  magnitude:  m  =  ||  (Ix,  Iy)  ||
-‐ Gradient  orientation:  o  =  tan-‐1(Iy  /  Ix)
-‐ Quantize  orientation;  vote  into  bin  (weighted)

h  =  (    ,    ,    ,    ,    ,    ,    ,    )
9  contrast  insensitive
orientation  bins

h



•Local  contrast  normalization  and  clipping

h h

h h

h1 h2
h4

h2 h3
h5

h4
h6

h5

h7 h7 h8

h1  =  max[  0.2,  h/||(h;  h1;  h2;  h4)||  ]

h2  =  max[  0.2,  h/||(h;  h2;  h3;  h5)||  ]

h3  =  max[  0.2,  h/||(h;  h4;  h6;  h7)||  ]

h4  =  max[  0.2,  h/||(h;  h5;  h7;  h8)||  ]

f  =  (h1;  h2;  h3;  h4)

Final  dimensionality
per  cell:  36



• Sliding  window  feature  vector
-‐                                   =  (f1;  f2;  f3;  f4;  f5;  f6)

f1 f2
f3 f4
f5 f6

Ȱ(�, �)

p

x



(a) (b) (c) (d) (e) (f) (g)
Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

would help to improve the detection results in more general
situations.
Acknowledgments. This work was supported by the Euro-
pean Union research projects ACEMEDIA and PASCAL. We
thanks Cordelia Schmid for many useful comments. SVM-
Light [10] provided reliable training of large-scale SVM’s.

References
[1] S. Belongie, J. Malik, and J. Puzicha. Matching shapes. The
8th ICCV, Vancouver, Canada, pages 454–461, 2001.

[2] V. de Poortere, J. Cant, B. Van den Bosch, J. de
Prins, F. Fransens, and L. Van Gool. Efficient pedes-
trian detection: a test case for svm based categorization.
Workshop on Cognitive Vision, 2002. Available online:
http://www.vision.ethz.ch/cogvis02/.

[3] P. Felzenszwalb and D. Huttenlocher. Efficient matching of
pictorial structures. CVPR, Hilton Head Island, South Car-
olina, USA, pages 66–75, 2000.

[4] W. T. Freeman and M. Roth. Orientation histograms for
hand gesture recognition. Intl. Workshop on Automatic Face-
and Gesture- Recognition, IEEE Computer Society, Zurich,
Switzerland, pages 296–301, June 1995.

[5] W. T. Freeman, K. Tanaka, J. Ohta, and K. Kyuma. Com-
puter vision for computer games. 2nd International Confer-
ence on Automatic Face and Gesture Recognition, Killington,
VT, USA, pages 100–105, October 1996.

[6] D. M. Gavrila. The visual analysis of human movement: A
survey. CVIU, 73(1):82–98, 1999.

[7] D. M. Gavrila, J. Giebel, and S. Munder. Vision-based pedes-
trian detection: the protector+ system. Proc. of the IEEE In-
telligent Vehicles Symposium, Parma, Italy, 2004.

[8] D. M. Gavrila and V. Philomin. Real-time object detection for
smart vehicles. CVPR, Fort Collins, Colorado, USA, pages
87–93, 1999.

[9] S. Ioffe and D. A. Forsyth. Probabilistic methods for finding
people. IJCV, 43(1):45–68, 2001.

[10] T. Joachims. Making large-scale svm learning practical. In
B. Schlkopf, C. Burges, and A. Smola, editors, Advances in
Kernel Methods - Support Vector Learning. The MIT Press,
Cambridge, MA, USA, 1999.

[11] Y. Ke and R. Sukthankar. Pca-sift: A more distinctive rep-
resentation for local image descriptors. CVPR, Washington,
DC, USA, pages 66–75, 2004.

[12] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004.

[13] R. K. McConnell. Method of and apparatus for pattern recog-
nition, January 1986. U.S. Patent No. 4,567,610.

[14] K. Mikolajczyk and C. Schmid. A performance evaluation of
local descriptors. PAMI, 2004. Accepted.

[15] K. Mikolajczyk and C. Schmid. Scale and affine invariant
interest point detectors. IJCV, 60(1):63–86, 2004.

[16] K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detec-
tion based on a probabilistic assembly of robust part detectors.
The 8th ECCV, Prague, Czech Republic, volume I, pages 69–
81, 2004.

[17] A. Mohan, C. Papageorgiou, and T. Poggio. Example-based
object detection in images by components. PAMI, 23(4):349–
361, April 2001.

[18] C. Papageorgiou and T. Poggio. A trainable system for object
detection. IJCV, 38(1):15–33, 2000.

[19] R. Ronfard, C. Schmid, and B. Triggs. Learning to parse pic-
tures of people. The 7th ECCV, Copenhagen, Denmark, vol-
ume IV, pages 700–714, 2002.

[20] Henry Schneiderman and Takeo Kanade. Object detection
using the statistics of parts. IJCV, 56(3):151–177, 2004.

[21] Eric L. Schwartz. Spatial mapping in the primate sensory pro-
jection: analytic structure and relevance to perception. Bio-
logical Cybernetics, 25(4):181–194, 1977.

[22] P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians
using patterns of motion and appearance. The 9th ICCV, Nice,
France, volume 1, pages 734–741, 2003.

Image  pyramid HOG  feature  pyramid  x

[Dalal05]

Questions?

scorew(�,�) = w ·Ȱ(�, �)
p

• “Dalal  &  Triggs  detector”
-‐ HOG  feature  pyramid
-‐ Linear  Xilter  /  sliding-‐window  detector
-‐ SVM  training  to  learn  parameters  w



HOG reformulation

•PCA  of  HOG  features
-‐ Eigenvectors  have  a  strong  structure
-‐ Dim.  reduction  to  top  12  with  no  loss  in  
performance



HOG PCA eigenvectors

•Eigenvector  structure
-‐ All  rows  or  columns  are  (approximately)  
constant  in  the  top  12  eigenvectors

-‐ Suggests  a  different  basis



V, a sparse basis for HOG

1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1

...

u1 u2 u9
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1

...

v1 v4

New  basis � = {�ͳ, . . . , �ͻ} � {�ͳ, �ʹ, �͵, �Ͷ}



Interpretation of  V

Original  HOG

f  =  (h1;  h2;  h3;  h4)

Final  dimensionality
per  cell:  36

Analytic  projection

Final  dimensionality  
per  cell:  13

� = (�ͳ + �ʹ + �͵ + �Ͷ; ͳ · �ͳ; ͳ · �ʹ; ͳ · �͵; ͳ · �Ͷ)



HOG summary

•There’s  no  one  true  HOG  feature
-‐ Large  number  of  parameters  and  design  
choices  (see  Dalal’s  thesis)  

-‐ Typical  settings
‣ cells:  6-‐8  pixels  wide
‣ cell  blocks:  2x2  or  3x3  rectangular

•The  original  formulation  contains  
redundant  information

-‐ EfXicient  and  intuitive  dimensionality  
reduction  by  analytic  projection



Pictorial structure models

•Parts  —  many  appearance  templates

• “Springs”  —  spatial  connections  between  
parts

Image:  [Felzenszwalb  and  Huttenlocher  05]



PS formulation


 = (�,�)

� = (�ͳ, . . . , ��) � � �� �

(�ͳ, . . . , ��) � ��
v1

v2
v3

p



PS score function for matching

v1

v2
v3

p

score(�ͳ, . . . , ��) =
��

�=ͳ
��(��) +

�

(�,�)��
���(��, ��)



PS score function for matching

score(�ͳ, . . . , ��) =
��

�=ͳ
��(��) +

�

(�,�)��
���(��, ��)

•Objective:  maximize  score  over  p1,...,pn
• hn  conXigurations!  (h  =  |P|)
• If  G  =  (V,E)  is  a  tree,  O(nh2)  algorithm
-‐ O(nh)  with  some  restrictions  on  dij



Dynamic programming on a tree

v1
v2

v3
v4

v5
v6

v7
v8

v9
v10

if  j  is  a  leaf

��(��) = max
��

�

���(��) + ���(��, ��) +
�

����
��(��)

�

�

��(��) = max
��

���(��) + ���(��, ��)
�

�� = max
��

�
��(��) +

�

����
��(��)

�

root  part  r

score(�ͳ, . . . , ��) =
��

�=ͳ
��(��) +

�

(�,�)��
���(��, ��)

maximize:



•Compute  Bj  in  depth-‐Xirst  order
•When  done

Dynamic programming on a tree

�� = max
�ͳ,...,��

score(�ͳ, . . . , ��)



Dynamic programming on a tree

• In  general,  O(nh2)
• If  dij(pi,pj)  =  g(pi  –  pj),  g  is  convex,  can  use  
generalized  distance  transforms

-‐ practical  O(nh)  algorithm  [Felzenszwalb  and  
Huttenlocher]

• If  dij(pi,pj)  is  Xinite  over  a  small,  bounded  
region

-‐ O(nh)  brute  force  with  a  small  constant

��(��) = max
��

���(��) + ���(��, ��)
�



Where do mi and dij come from?

•The  machine  learning  approach
-‐ the  computer  learns  them  from  training  
examples

•We’ll  talk  about  discriminative  training  
later  today



PS summary

•Questions?



(a) (b) (c) (d) (e) (f) (g)
Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

would help to improve the detection results in more general
situations.
Acknowledgments. This work was supported by the Euro-
pean Union research projects ACEMEDIA and PASCAL. We
thanks Cordelia Schmid for many useful comments. SVM-
Light [10] provided reliable training of large-scale SVM’s.
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Recall  the  Dalal  &  Triggs  detector

scorew(�,�) = w ·Ȱ(�, �)
p

• “Dalal  &  Triggs  detector”
-‐ HOG  feature  pyramid
-‐ Linear  Xilter  /  sliding-‐window  detector
-‐ SVM  training  to  learn  parameters  w
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Abstract

This paper describes a discriminatively trained, multi-
scale, deformable part model for object detection. Our sys-
tem achieves a two-fold improvement in average precision
over the best performance in the 2006 PASCAL person de-
tection challenge. It also outperforms the best results in the
2007 challenge in ten out of twenty categories. The system
relies heavily on deformable parts. While deformable part
models have become quite popular, their value had not been
demonstrated on difficult benchmarks such as the PASCAL
challenge. Our system also relies heavily on new methods
for discriminative training. We combine a margin-sensitive
approach for data mining hard negative examples with a
formalism we call latent SVM. A latent SVM, like a hid-
den CRF, leads to a non-convex training problem. How-
ever, a latent SVM is semi-convex and the training prob-
lem becomes convex once latent information is specified for
the positive examples. We believe that our training meth-
ods will eventually make possible the effective use of more
latent information such as hierarchical (grammar) models
and models involving latent three dimensional pose.

1. Introduction
We consider the problem of detecting and localizing ob-

jects of a generic category, such as people or cars, in static
images. We have developed a new multiscale deformable
part model for solving this problem. The models are trained
using a discriminative procedure that only requires bound-
ing box labels for the positive examples. Using these mod-
els we implemented a detection system that is both highly
efficient and accurate, processing an image in about 2 sec-
onds and achieving recognition rates that are significantly
better than previous systems.

Our system achieves a two-fold improvement in average
precision over the winning system [5] in the 2006 PASCAL
person detection challenge. The system also outperforms
the best results in the 2007 challenge in ten out of twenty

This material is based upon work supported by the National Science
Foundation under Grant No. 0534820 and 0535174.

Figure 1. Example detection obtained with the person model. The
model is defined by a coarse template, several higher resolution
part templates and a spatial model for the location of each part.

object categories. Figure 1 shows an example detection ob-
tained with our person model.

The notion that objects can be modeled by parts in a de-
formable configuration provides an elegant framework for
representing object categories [1–3, 6,10, 12, 13,15, 16, 22].
While these models are appealing from a conceptual point
of view, it has been difficult to establish their value in prac-
tice. On difficult datasets, deformable models are often out-
performed by “conceptually weaker” models such as rigid
templates [5] or bag-of-features [23]. One of our main goals
is to address this performance gap.

Our models include both a coarse global template cov-
ering an entire object and higher resolution part templates.
The templates represent histogram of gradient features [5].
As in [14, 19, 21], we train models discriminatively. How-
ever, our system is semi-supervised, trained with a max-
margin framework, and does not rely on feature detection.
We also describe a simple and effective strategy for learn-
ing parts from weakly-labeled data. In contrast to computa-
tionally demanding approaches such as [4], we can learn a
model in 3 hours on a single CPU.

Another contribution of our work is a new methodology
for discriminative training. We generalize SVMs for han-
dling latent variables such as part positions, and introduce a
new method for data mining “hard negative” examples dur-
ing training. We believe that handling partially labeled data
is a significant issue in machine learning for computer vi-
sion. For example, the PASCAL dataset only specifies a

1

multi-‐resolution
deformable  parts  model

image  pyramid HOG  feature  pyramid  x

• Combine  PS  with  D&T  approach
-‐ HOG  features
-‐ Linear  Xilters  /  sliding-‐window  detector
-‐ Discriminative  max-‐margin  (SVM)  training



Detection with DPM
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Mixtures of deformable parts models

• Captures  viewpoint  variation  and  occlusion

• Aspect  ratio  clustering  and  discriminative  training
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Abstract

This paper describes a discriminatively trained, multi-
scale, deformable part model for object detection. Our sys-
tem achieves a two-fold improvement in average precision
over the best performance in the 2006 PASCAL person de-
tection challenge. It also outperforms the best results in the
2007 challenge in ten out of twenty categories. The system
relies heavily on deformable parts. While deformable part
models have become quite popular, their value had not been
demonstrated on difficult benchmarks such as the PASCAL
challenge. Our system also relies heavily on new methods
for discriminative training. We combine a margin-sensitive
approach for data mining hard negative examples with a
formalism we call latent SVM. A latent SVM, like a hid-
den CRF, leads to a non-convex training problem. How-
ever, a latent SVM is semi-convex and the training prob-
lem becomes convex once latent information is specified for
the positive examples. We believe that our training meth-
ods will eventually make possible the effective use of more
latent information such as hierarchical (grammar) models
and models involving latent three dimensional pose.

1. Introduction
We consider the problem of detecting and localizing ob-

jects of a generic category, such as people or cars, in static
images. We have developed a new multiscale deformable
part model for solving this problem. The models are trained
using a discriminative procedure that only requires bound-
ing box labels for the positive examples. Using these mod-
els we implemented a detection system that is both highly
efficient and accurate, processing an image in about 2 sec-
onds and achieving recognition rates that are significantly
better than previous systems.

Our system achieves a two-fold improvement in average
precision over the winning system [5] in the 2006 PASCAL
person detection challenge. The system also outperforms
the best results in the 2007 challenge in ten out of twenty

This material is based upon work supported by the National Science
Foundation under Grant No. 0534820 and 0535174.

Figure 1. Example detection obtained with the person model. The
model is defined by a coarse template, several higher resolution
part templates and a spatial model for the location of each part.

object categories. Figure 1 shows an example detection ob-
tained with our person model.

The notion that objects can be modeled by parts in a de-
formable configuration provides an elegant framework for
representing object categories [1–3, 6, 10, 12, 13, 15, 16, 22].
While these models are appealing from a conceptual point
of view, it has been difficult to establish their value in prac-
tice. On difficult datasets, deformable models are often out-
performed by “conceptually weaker” models such as rigid
templates [5] or bag-of-features [23]. One of our main goals
is to address this performance gap.

Our models include both a coarse global template cov-
ering an entire object and higher resolution part templates.
The templates represent histogram of gradient features [5].
As in [14, 19, 21], we train models discriminatively. How-
ever, our system is semi-supervised, trained with a max-
margin framework, and does not rely on feature detection.
We also describe a simple and effective strategy for learn-
ing parts from weakly-labeled data. In contrast to computa-
tionally demanding approaches such as [4], we can learn a
model in 3 hours on a single CPU.

Another contribution of our work is a new methodology
for discriminative training. We generalize SVMs for han-
dling latent variables such as part positions, and introduce a
new method for data mining “hard negative” examples dur-
ing training. We believe that handling partially labeled data
is a significant issue in machine learning for computer vi-
sion. For example, the PASCAL dataset only specifies a
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Table 1. PASCAL VOC 2007 results. Average precision scores of our system and other systems that entered the competition [7]. Empty
boxes indicate that a method was not tested in the corresponding class. The best score in each class is shown in bold. Our current system
ranks first in 10 out of 20 classes. A preliminary version of our system ranked first in 6 classes in the official competition.
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Figure 4. Some models learned from the PASCAL VOC 2007 dataset. We show the total energy in each orientation of the HOG cells in
the root and part filters, with the part filters placed at the center of the allowable displacements. We also show the spatial model for each
part, where bright values represent “cheap” placements, and dark values represent “expensive” placements.

in the PASCAL competition was .16, obtained using a rigid
template model of HOG features [5]. The best previous re-
sult of .19 adds a segmentation-based verification step [20].
Figure 6 summarizes the performance of several models we
trained. Our root-only model is equivalent to the model
from [5] and it scores slightly higher at .18. Performance
jumps to .24 when the model is trained with a LSVM that
selects a latent position and scale for each positive example.
This suggests LSVMs are useful even for rigid templates
because they allow for self-adjustment of the detection win-
dow in the training examples. Adding deformable parts in-
creases performance to .34 AP — a factor of two above the
best previous score. Finally, we trained a model with parts

but no root filter and obtained .29 AP. This illustrates the
advantage of using a multiscale representation.

We also investigated the effect of the spatial model and
allowable deformations on the 2006 person dataset. Recall
that si is the allowable displacement of a part, measured in
HOG cells. We trained a rigid model with high-resolution
parts by setting si to 0. This model outperforms the root-
only system by .27 to .24. If we increase the amount of
allowable displacements without using a deformation cost,
we start to approach a bag-of-features. Performance peaks
at si = 1, suggesting it is useful to constrain the part dis-
placements. The optimal strategy allows for larger displace-
ments while using an explicit deformation cost. The follow-
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in the PASCAL competition was .16, obtained using a rigid
template model of HOG features [5]. The best previous re-
sult of .19 adds a segmentation-based verification step [20].
Figure 6 summarizes the performance of several models we
trained. Our root-only model is equivalent to the model
from [5] and it scores slightly higher at .18. Performance
jumps to .24 when the model is trained with a LSVM that
selects a latent position and scale for each positive example.
This suggests LSVMs are useful even for rigid templates
because they allow for self-adjustment of the detection win-
dow in the training examples. Adding deformable parts in-
creases performance to .34 AP — a factor of two above the
best previous score. Finally, we trained a model with parts

but no root filter and obtained .29 AP. This illustrates the
advantage of using a multiscale representation.

We also investigated the effect of the spatial model and
allowable deformations on the 2006 person dataset. Recall
that si is the allowable displacement of a part, measured in
HOG cells. We trained a rigid model with high-resolution
parts by setting si to 0. This model outperforms the root-
only system by .27 to .24. If we increase the amount of
allowable displacements without using a deformation cost,
we start to approach a bag-of-features. Performance peaks
at si = 1, suggesting it is useful to constrain the part dis-
placements. The optimal strategy allows for larger displace-
ments while using an explicit deformation cost. The follow-

6[Felzenszwalb,Girshick,McAllester,Ramanan  in  PAMI  10]

person car

Mixture  models:  [Weber00,  Schneiderman00,  Bernstein05]



Mixtures with latent orientation

Learning  without  latent  orientation

Learning  with  latent  orientation

[Girshick,Felzenszwalb,McAllester  voc-‐release4]

bicycle car horse



Questions about model structure?
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in the PASCAL competition was .16, obtained using a rigid
template model of HOG features [5]. The best previous re-
sult of .19 adds a segmentation-based verification step [20].
Figure 6 summarizes the performance of several models we
trained. Our root-only model is equivalent to the model
from [5] and it scores slightly higher at .18. Performance
jumps to .24 when the model is trained with a LSVM that
selects a latent position and scale for each positive example.
This suggests LSVMs are useful even for rigid templates
because they allow for self-adjustment of the detection win-
dow in the training examples. Adding deformable parts in-
creases performance to .34 AP — a factor of two above the
best previous score. Finally, we trained a model with parts

but no root filter and obtained .29 AP. This illustrates the
advantage of using a multiscale representation.

We also investigated the effect of the spatial model and
allowable deformations on the 2006 person dataset. Recall
that si is the allowable displacement of a part, measured in
HOG cells. We trained a rigid model with high-resolution
parts by setting si to 0. This model outperforms the root-
only system by .27 to .24. If we increase the amount of
allowable displacements without using a deformation cost,
we start to approach a bag-of-features. Performance peaks
at si = 1, suggesting it is useful to constrain the part dis-
placements. The optimal strategy allows for larger displace-
ments while using an explicit deformation cost. The follow-
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From  images  annotated  with  bounding  boxes...

1. learn  model  structure

2. learn  model  parameters

training

Training models



Number  of  components?

Root  Uilter  sizes?

Root  Uilter  shapes?

Number  of  parts?

Anchor  positions?

Part  shapes  and  sizes?

What’s  the  model  class?

Heuristics,  cross  validation,  insight  (from  humans)

(not) Learning model structure



•Dalal  &  Triggs  successful  combination  of
-‐ HOG  features
-‐ Linear  SVM  training

•This  training  problem  is  different
-‐ Training  data  is  weakly/partially  labeled
-‐ Several  latent  (unobserved)  variables
‣ Filter  placement
‣ Mixture  component
‣ Orientation

Learning model parameters



Linear parameterization
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Abstract

This paper describes a discriminatively trained, multi-
scale, deformable part model for object detection. Our sys-
tem achieves a two-fold improvement in average precision
over the best performance in the 2006 PASCAL person de-
tection challenge. It also outperforms the best results in the
2007 challenge in ten out of twenty categories. The system
relies heavily on deformable parts. While deformable part
models have become quite popular, their value had not been
demonstrated on difficult benchmarks such as the PASCAL
challenge. Our system also relies heavily on new methods
for discriminative training. We combine a margin-sensitive
approach for data mining hard negative examples with a
formalism we call latent SVM. A latent SVM, like a hid-
den CRF, leads to a non-convex training problem. How-
ever, a latent SVM is semi-convex and the training prob-
lem becomes convex once latent information is specified for
the positive examples. We believe that our training meth-
ods will eventually make possible the effective use of more
latent information such as hierarchical (grammar) models
and models involving latent three dimensional pose.

1. Introduction
We consider the problem of detecting and localizing ob-

jects of a generic category, such as people or cars, in static
images. We have developed a new multiscale deformable
part model for solving this problem. The models are trained
using a discriminative procedure that only requires bound-
ing box labels for the positive examples. Using these mod-
els we implemented a detection system that is both highly
efficient and accurate, processing an image in about 2 sec-
onds and achieving recognition rates that are significantly
better than previous systems.

Our system achieves a two-fold improvement in average
precision over the winning system [5] in the 2006 PASCAL
person detection challenge. The system also outperforms
the best results in the 2007 challenge in ten out of twenty

This material is based upon work supported by the National Science
Foundation under Grant No. 0534820 and 0535174.

Figure 1. Example detection obtained with the person model. The
model is defined by a coarse template, several higher resolution
part templates and a spatial model for the location of each part.

object categories. Figure 1 shows an example detection ob-
tained with our person model.

The notion that objects can be modeled by parts in a de-
formable configuration provides an elegant framework for
representing object categories [1–3, 6,10, 12, 13,15, 16, 22].
While these models are appealing from a conceptual point
of view, it has been difficult to establish their value in prac-
tice. On difficult datasets, deformable models are often out-
performed by “conceptually weaker” models such as rigid
templates [5] or bag-of-features [23]. One of our main goals
is to address this performance gap.

Our models include both a coarse global template cov-
ering an entire object and higher resolution part templates.
The templates represent histogram of gradient features [5].
As in [14, 19, 21], we train models discriminatively. How-
ever, our system is semi-supervised, trained with a max-
margin framework, and does not rely on feature detection.
We also describe a simple and effective strategy for learn-
ing parts from weakly-labeled data. In contrast to computa-
tionally demanding approaches such as [4], we can learn a
model in 3 hours on a single CPU.

Another contribution of our work is a new methodology
for discriminative training. We generalize SVMs for han-
dling latent variables such as part positions, and introduce a
new method for data mining “hard negative” examples dur-
ing training. We believe that handling partially labeled data
is a significant issue in machine learning for computer vi-
sion. For example, the PASCAL dataset only specifies a
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Training  example  (x,y)
    x  is  an  image
    y  is  a  label:  +1  for  foreground;  -‐1  for  background
    Z(x)  is  a  set  of  valid  instantiations  z

Intuitive  objectives:
      some  z  should  score
      high  near  the  object

      all  z  not  near  should
      score  low

background

person

Learning parameters for detection
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Recall the SVM objective

•Fully  supervised
•Goal:  extend  to  handle  latent  variables
-‐ Latent  SVM

min
�

ͳ
ʹ ||�||ʹ + �

��

�=ͳ
max[Ͳ, ͳ� ��� ·Ȱ(��)]



Latent SVM (MI–SVM)

•No  longer  convex
-‐ Why?

• “Semi-‐convexity”  property
-‐ Non-‐convexity  comes  only  from  positive  
examples
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[Andrews03,  Felzenszwalb08]



Latent SVM (MI–SVM)
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•Optimization  (to  a  local  minimum)
-‐ Coordinate  descent
-‐ Convex-‐concave  procedure  CCCP


