Outline for today

- Histogram of Oriented Gradient (HOG) features
- Pictorial structures (PS) / deformable parts models (DPM)
- Mixtures of deformable models
- Parameter learning with latent SVM
- Possibly more...
 - Cascade detection with DPMs
 - Context rescoring

(Review?) Template matching

- Consider matching with image patches
 - What could go wrong?

image

match quality e.g., cross correlation

What is a feature map?

- Any transformation of an image into a new representation
- Example: transform an image into a binary edge map

Image source: wikipedia

Feature map goals

- Introduce invariance
 - Bias, gain, nonlinear transformations
 - Small deformations

Figure 1.3: Variation in appearance due to a change in illumination

• Preserve larger scale spatial structure

Image: [Fergus05]

Histograms of Oriented Gradients (HOG)

- Introduce invariance
 - Bias / gain / nonlinear transformations
 - bias: gradients / gain: local normalization
 - nonlinearity: clamping magnitude, orientations
 - Small deformations
 - spatial subsampling
 - local "bag" models

• References

- "Histograms of oriented gradients for human detection." N. Dalal and B. Triggs, CVPR 2005.
- "Finding people in images and videos." N. Dalal, Ph.D. Thesis, Institut National Polytechnique de Grenoble, 2006.

HOG feature computation

HOG terminology

- Many methods
 - (1, 0, -1) centered filter works best
 - Alternatives: uncentered, cubic corrected, Sobel, etc.
- Discrete approx. to partial derivatives
 - $I_x = I[x+1, y] I[x-1, y]$
 - $I_y = I[x, y+1] I[x, y-1]$

- At each pixel compute
 - Gradient magnitude: $m = || (I_x, I_y) ||$
 - Gradient orientation: $o = tan^{-1}(I_y / I_x)$
 - Quantize orientation; vote into bin (weighted)

Local contrast normalization and clipping

 $h^1 = max[0.2, h/||(h; h_1; h_2; h_4)||]$

 $h^2 = max[0.2, h/||(h; h_2; h_3; h_5)||]$

 $h^3 = max[0.2, h/||(h; h_4; h_6; h_7)||]$

 $h^4 = max[0.2, h/||(h; h_5; h_7; h_8)||]$

 $f = (h^1; h^2; h^3; h^4)$

Final dimensionality per cell: 36

• Sliding window feature vector

-
$$\Phi(x, p) = (f_1; f_2; f_3; f_4; f_5; f_6)$$

Questions?

Image pyramid

- "Dalal & Triggs detector"
 - HOG feature pyramid
 - Linear filter / sliding-window detector
 - SVM training to learn parameters w

HOG reformulation

• PCA of HOG features

- Eigenvectors have a strong structure
- Dim. reduction to top 12 with no loss in performance

HOG PCA eigenvectors

• Eigenvector structure

- All rows or columns are (approximately) constant in the top 12 eigenvectors
- Suggests a different basis

V, a sparse basis for HOG

New basis $V = \{u_1, \dots, u_9\} \cup \{v_1, v_2, v_3, v_4\}$

Interpretation of V

Original HOG

 $f = (h^1; h^2; h^3; h^4)$

Final dimensionality per cell: 36

 $\label{eq:f} \begin{array}{l} Analytic \ projection \\ f = (h^1 + h^2 + h^3 + h^4; 1 \cdot h^1; 1 \cdot h^2; 1 \cdot h^3; 1 \cdot h^4) \\ \\ Final \ dimensionality \\ \ per \ cell: \ 13 \end{array}$

HOG summary

- There's no one true HOG feature
 - Large number of parameters and design choices (see Dalal's thesis)
 - Typical settings
 - cells: 6-8 pixels wide
 - cell blocks: 2x2 or 3x3 rectangular
- The original formulation contains redundant information
 - Efficient and intuitive dimensionality reduction by analytic projection

Pictorial structure models

- Parts many appearance templates
- "Springs" spatial connections between parts

Image: [Felzenszwalb and Huttenlocher 05]

PS formulation

 $\mathbf{G} = (\mathbf{V}, \mathbf{E})$

$$V = (v_1, \ldots, v_n) \quad E \subseteq V \times V$$

 $(\mathbf{p}_1,\ldots,\mathbf{p}_n)\in \mathbf{P}^n$

PS score function for matching

$$\operatorname{score}(p_1,\ldots,p_n) = \sum_{i=1}^n m_i(p_i) + \sum_{(i,j)\in E} d_{ij}(p_i,p_j)$$

PS score function for matching

$$\operatorname{score}(p_1,\ldots,p_n) = \sum_{i=1}^n m_i(p_i) + \sum_{(i,j)\in E} d_{ij}(p_i,p_j)$$

- Objective: maximize score over p₁,...,p_n
- h^n configurations! (h = |P|)
- If G = (V,E) is a tree, $O(nh^2)$ algorithm
 - O(nh) with some restrictions on d_{ij}

Dynamic programming on a tree

Dynamic programming on a tree

- \bullet Compute B_j in depth-first order
- When done

$$B_r = \max_{p_1, \dots, p_n} \operatorname{score}(p_1, \dots, p_n)$$

Dynamic programming on a tree

$$B_j(p_i) = \max_{p_j} \left[m_j(p_j) + d_{ij}(p_i, p_j) \right]$$

- In general, O(nh²)
- If d_{ij}(p_i,p_j) = g(p_i p_j), g is convex, can use generalized distance transforms
 - practical O(nh) algorithm [Felzenszwalb and Huttenlocher]
- If d_{ij}(p_i,p_j) is finite over a small, bounded region
 - O(nh) brute force with a small constant

Where do m_i and d_{ij} come from?

- The machine learning approach
 - the computer learns them from training examples
- We'll talk about discriminative training later today

• Questions?

Recall the Dalal & Triggs detector

Image pyramid

- "Dalal & Triggs detector"
 - HOG feature pyramid
 - Linear filter / sliding-window detector
 - SVM training to learn parameters w

PS + HOG + discriminative training

multi-resolution deformable parts model

image pyramid

HOG feature pyramid x

- Combine PS with D&T approach
 - HOG features
 - Linear filters / sliding-window detector
 - Discriminative max-margin (SVM) training

Detection with DPM

Mixtures of deformable parts models

- Captures viewpoint variation and occlusion
- Aspect ratio clustering and discriminative training

Mixture models: [Weber00, Schneiderman00, Bernstein05] [Felzenszwalb,Girshick,McAllester,Ramanan in PAMI 10]

Mixtures with latent orientation

car

horse

Learning without latent orientation

Learning with latent orientation

[Girshick,Felzenszwalb,McAllester voc-release4]

Questions about model structure?

Training models

From images annotated with bounding boxes...

- 1. learn model structure
- 2. learn model parameters

(not) Learning model structure

What's the model class?

Number of components?

Root filter sizes?

Root filter shapes?

Number of parts?

Anchor positions?

Part shapes and sizes?

Heuristics, cross validation, insight (from humans)

Learning model parameters

- Dalal & Triggs successful combination of
 - HOG features
 - Linear SVM training
- This training problem is different
 - Training data is weakly/partially labeled
 - Several latent (unobserved) variables
 - Filter placement
 - Mixture component
 - Orientation

Linear parameterization

Learning parameters for detection

$$\operatorname{score}_w(x,z) = w \cdot \Phi(x,z)$$

Intuitive objectives:some z should scorehigh near the object

all z not near should score low

Training example (x,y) x is an image y is a label: +1 for foreground; -1 for background Z(x) is a set of valid instantiations z

Recall the SVM objective

$$\min_w \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \max[0, 1-y_i w \cdot \Phi(x_i)]$$

- Fully supervised
- Goal: extend to handle latent variables
 - Latent SVM

Latent SVM (MI–SVM)

$$\begin{split} \min_w \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \max[0, 1-y_i F_w(x_i)] \\ F_w(x) = \max_{z \in Z(x)} w \cdot \Phi(x, z) \end{split}$$

- No longer convex
 - Why?
- "Semi-convexity" property
 - Non-convexity comes only from positive examples

[Andrews03, Felzenszwalb08]

Latent SVM (MI–SVM)

$$\begin{split} \min_w \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \max[0, 1-y_i F_w(x_i)] \\ F_w(x) = \max_{z \in Z(x)} w \cdot \Phi(x, z) \end{split}$$

- Optimization (to a local minimum)
 - Coordinate descent
 - Convex-concave procedure CCCP