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Summary

Past two weeks
@ Exact inference via VE

@ Exact inference via message-passing

This week
@ Exact inference via optimization

@ Approximate inference via optimization
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Exact i ence

@ The computational complexity and memory requirements of exact inference
are exponential with the tree-width.

@ This is prohibitive for a large set of applications.

@ In this week we will see approximations that construct an approx. of Pg that
is simple to do inference over.

@ The general principle exploited is locality.
@ The target class (i.e., approximation) is called Q.

@ We seek a Q that best approximates Pg.

Queries will be done over Q.
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nce as Optimization

There are three types of approx. methods:

@ Methods that use clique tree message passing on structures other than
cliques, e.g., loopy BP. They optimize approximate versions of the energy
functional.

© Methods that use message passing on clique trees with approximate
messages, e.g., expectation propagation (EP).

© Generalizations of mean field methods. They use the exact energy functional,
but restrict attention to a class Q that have a particular simple factorization.
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Exact inference as optimization

@ Assume we have a factorized distribution
1
Po(X) = 5 [ &(Uy)
ped
with Uy = Scope(¢) C X.

@ The result of Sum-Product BP is a calibrated tree, with calibrated set of
beliefs.

@ In exact inference we find beliefs that match the distribution defined by an
initial set of factors.

@ We can interpret exact inference as searching over the set of distributions Q
that are representable by the cluster tree to find a distribution Q@* that
matches Pg.

@ Thus we search for a calibrated distribution that is "as close as possible” to
Pg.

@ Many possible ways: L,, Ly, relative entropy, etc.
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Relative Entropy

@ The relative entropy or KL divergence between P; and P; is

D(Py||P>) = Exnp, {m ggﬂ
@ D(Py||P,) > 0 and is 0 iff Pi(X) = Pa(X).

@ The relative entropy is not symmetric (remember lecture on M-projection
D(Ps||Q) and I-projection D(Q||Ps)).

@ M-projection is more adequate, as is the number of bits lost when coding Pg
using Q.

@ However, the M-projection requires marginals over Py to compute

Q= argcr)nin D(Ps||Q)

and the Il-projection does not to compute

Q= arg(gnin D(Q||Ps)
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Representation |

@ We want to search over @ that minimizes D(Q||Ps).

@ Suppose we are given a cluster tree T for Pg: 7T satisfies running
intersection and family preserving properties.

@ Suppose we are given a set of beliefs
Q={Bi:ieVriu{u,:(i—Jj)eér}
with j3; the beliefs over C; and p;; the beliefs over S; ;.
@ The set of beliefs satisfy the clique tree invariant
[Ticy, Bi(C))
[i—jpee, 1ii(Siy)

Q(x) =

@ The set of beliefs Q satisfy the marginal consistency constraints if

vieVr, fBi(e)=Q(c),  V(i-Jj)e&r, nij(sij)=Qlsi))

@ The beliefs correspond to the marginals of Q.
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Representation |l

@ We are searching over a set of distributions @ that are representable by a set
of beliefs Q over the cliques and sepsets in a particular clique tree structure.

@ We have make two decisions on Q:

@ Space of distributions we are considering, i.e., all distributions such as
T is an I-map.

@ Representation of the distributions, i.e., a set of calibrated clique
beliefs.

@ We can now do exact inference by maximizing —D(Q||Ps)
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Optimization Program

CTree-Optimize-KL

Find Q={B i cVr}U{uy: G i) ér)
that maximize —D(Q||Pg)

piglsig) = Y. Bile] Vi j) € Er.Ysi; € Val(Si;)
subject to Ci -8

S pile] = 1 Vi e Vr.

@ When solving this we look at different configurations that satisfies the
marginal consistency constraints, and select the configuration that is closer
to Pg.

If T is an I-map of Pg then there is a unique solution of this optimization.
It can be found by the exact inference algorithms we have already seen.

We can search for Q that minimizes D(Q||Po).

However we have to sum over all possible instantiations of X.
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Energy Functional

Theorem: D(Q||Ps) = InZ — F(Ps, Q), where F(Ps, Q) is the energy functional

F(Ps,Q) = Exg {ln /AD(X)] +Ho(X) =) Ex~q[ing] + Ho(X)
ped

Proof: Let's write
D(Q[|Po) = Ex~q [In Q(X)] — Ex~q [In Po(X)]
using product form of Py
InPo(X)=> Inp(Us) —InZ
pED

Since Hg(X) = —Ex~q [In Q(X)] then

PpEP

D(Q|[Ps) = —Ho(X) — Ex~o [Z In ¢(U¢)] +Ex~q[InZ]

Z does not depend on Q.
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Helmholtz Free Energy

D(Q||Ps) = —Hg(X) —Ex~g | > _Ind(Uy)| +InZ
PeD

@ As Z does not depend on @, minimizing the relative entropy is equivalent to
maximizing the energy functional F(Ps, Q).

This is called the (Helmholtz) Free Energy.

F(Po,Q) = Z Ex~q[in¢] + Ho(X)

PeP

@ It contains two terms, the energy term and the entropy term.

Choice of @ important so that we can evaluate both terms.
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Optimizing the Energy Functional

@ We pose the problem of finding a good approx. @ as the one of maximizing
the energy functional (minimizing the relative entropy).

@ By choosing appropriate @ we can evaluate the energy functional and also
maximize it.

o As D(Q||Ps) > 0, then InZ > F(Ps, Q).

@ The energy functional is a lower bound on the logarithm of the partition
function.

@ Computing the partition function is one of the hardest queries of inference.
This gives us a lower bound.

@ We now look into variational methods, which are inference methods that
optimize this energy functional.

@ We introduce additional degrees of freedom over which we optimize to get
the best approximation.
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Exact inference as optimization

@ Reformulate the optimization problem in terms of the energy functional.

@ For the case of calibrated trees, we can simplify the objective function.

Def: Given a cluster tree 7 with a set of beliefs Q and an assignment « that
maps factors ¢ to clusters in 7, we define

F(Ps,Q) = > Ecp [Inti]+ > Hp(C)— D Hy (Si))
IS%s IS%s (i—j)e&r
where ); is the set of initial potentials

II ¢

é,0(P)=i

@ Let's examine these expectations.

@ Importantly all the terms are local.
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Equivalence of energy functionals

Prop: If Q is a set of calibrated beliefs for 7 and Q is defined as

HIEVT ﬂ"

Q) = e
H(i—j)EST i

then f:_(ﬁ)q;, Q) = F(:E)¢, Q)
Proof: Since Inthi = 3_, (4= In¢ and Bi(c;) = Q(c;) we have

Z EC;Nﬂi [ln 1/’:] = Z EC,‘NQ [ln (b]
i ¢

Moreover

Ho(X) = Y Hg(C)— > Huy(Sij)

ieVvr (i-))e&r
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Exact inference as optimization

o If Q factorizes according to 7, we can represent it with a set of calibrated
beliefs.

@ We impose marginal consistency constraint so that neighboring beliefs agree
on the marginal distribution, i.e., the beliefs are calibrated.

@ We can now derive a new optimization
CTree-Optimize

Find Q={Bi:ieVryufu: (i j)eér
that maximize F[Ps,Q]

piglsig] = Y Biled]

Ci—S.,
subject to V(i 7) € &1,Vsi 5 € Val(S; ;)
ZSE[CJ = 1 Vi€V
Ci
Biles] = 0 Vi € Vr, e € Val(Cy)
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Lagrange multipliers

The method of Lagrange multipliers provides a strategy for finding the
maxima and minima of a function subject to constraints

max f(x,y)
x,y

subject to g(x,y) =c¢

We introduce a new variable A called the Lagrange multiplier and write the
Lagrange function

L(X7y7>‘) = f(Xv)/) + )‘(g(xay) - C)
A can be added or subtracted.

If f(x,y) is maximum for the original constrained problem, then there exists
a A such that (x, y, \) is a stationary point for the Lagrange function.

Stationary points are those points where the partial derivatives of L are zero.
Not all stationary points yield a solution of the original problem.

Thus, the method of Lagrange multipliers yields a necessary condition for
optimality in constrained problems
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Contours and conditions |

Consider a 2D example

max f(x,y)
X,y

subject to g(x,y) =c¢

X

@ We can visualize the contours f(x,y) = d for values of d and the contour of
g given by g(x,y) = c.
@ While moving along the contour line for g = ¢ the value of f can vary.

@ Only when the contour line for g = ¢ meets contour lines of f tangentially,
we do not increase or decrease the value of f.
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Contours and conditions Il

The contour lines of f and g touch when the tangent vectors of the contour
lines are parallel.

This is the same as saying that the gradients of f and g are parallel.
Thus we want points (x, y) where g(x,y) = ¢ and
Viyf = =AViy8

where of Of g Og
VX f= A | v)< = a0 .,
Y (E)x 8y> vE <8X 8y>
A is required as the two gradients might not have the same magnitude.

To incorporate these conditions into one equation, we introduce an auxiliary
function

L(X7y7>‘) = f(va) —|—)\(g(X,y) - C)
and solve V, , zL(x,y,A) = 0.
This is the method of Lagrange multipliers.

Note that V, , \L(x,y,A) = 0 implies g(x,y) = c.
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Handling multiple constraints

level sets
T N \

W \“\l‘ R

AR

R
R
TR SR
A
R
NS

N
AR
IR

@ If we consider only the points that satisfy the constraints then a point
(p, f (p)) is a stationary point of f iff the constraints at that point do not
allow movement in a direction where f changes value.

@ Once we have located the stationary points, we need to test if its a
minimum, a maximum or just a stationary point that is neither.
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Handling multiple constraints |l

@ Consider the level set of f at (p, f (p)).

@ Let {v,} be the set of vectors containing the directions in which we can
move and still remain in the same level set.

@ Thus, for every vector v in {v.} we have

df df
Afzix -
dX1V1+ +dXN

N

with v, the xx-th component of v.

df ., dfgT
dxy ? ) dxy )

@ Thus we can write Vf - v =0, with Vf = |

@ All directions from this point that do not change the value of f must be
perpendicular to V£ (p).

@ We can also write Vg - v =0.
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Single constraint revisited

@ At stationary points the direction that changes f is in the same direction
that violates the constraint so

Vi(p)=AVg(p) =  Vf(p)—AVg(p) =0

@ We only do this test when the point g(p) = 0, we have 2 eq. that when
solved, identify all constrained stationary points:

g(p)=0 means point satisfies constraint
Vi(p) —AVg(p) =0 means point is a stationary point
@ Fully expanded, there are N + 1 simultaneous equations that need to be
solved for the N + 1 variables which are A and x1, xo,...,xpn:
g(x1,x2,...,xny) =0
df dg B
dx (X1,X2,. . 7X/\/) - AT)Q (X1,X27. . ,XN) =0
df d
dXN (X1,X2, .. .XN) - )\Kg;\, (X17X27 e ,XN) =0
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Multiple constraints

@ If there is more than one constraint active together, each constraint
contributes a direction that will violate it.

@ Together, these violation directions form a violation space.

@ The direction that changes f at p is in the violation space defined by the
constraints g1, &, ..., &wv if and only if:

M M
> MVe(p) = Vf(p) = VF(p)—Y MVak(p) =0
k=1 k=1

@ Add equations to guarantee that we only perform this test when we are at a
point that satisfies every constraint:

gi(p)=0

gu(p) =0
M

VE(p) =D A Vei(p) =0
k=1
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@ Every equation equal to zero is exactly what one would have to do to solve
for the unconstrained stationary points of the Lagrangian

M
L(Xla"'aXN7)‘la"'7)\M): f(le"'7XN)_ZAkgk(Xlw"vXN)
k=1

@ Solving the equation above for its unconstrained stationary points generates
exactly the same stationary points as solving for the constrained stationary
points of  under the constraints g1, g, ..., &u.

@ The function above is called a Lagrangian.
@ The scalars A1, Az, ..., Ay are called Lagrange Multipliers.

@ This optimization method itself is called The Method of Lagrange
Multipliers.

@ This method is generalized by the Karush-Kuhn-Tucker conditions, which
can also take into account inequality constraints of the form h(x) < c.
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KKT Conditions

@ Let's consider the following optimization problem
min f(x)
X

subject to gi(x) <0, hj(x)=0

@ Suppose that the objective function, i.e., the function to be minimized, is
f :R" — R and the constraint functions are g; : R” — R and h; : R" — R.

@ Suppose they are continuously differentiable at a point x* .

@ If x* is a local minimum that satisfies some regularity conditions, then there
exist constants p; (i =1,...,m)and \; (j =1,...,/), called KKT
multipliers, such that the following properties are satisfied.
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KKT Conditions

Stationarity
)+Zu,Vg, )+Z/\ Vhi(x*) =0,
Primal feasibility

gi(x*) <0, foralli=1,....,m
hi(x*) =0, forall j=1,...,1

Dual feasibility
pi >0, foralli=1,....m

Complementary slackness

pigi(x*)=0,foralli=1,....,m
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Our optimization problem

@ Assume that the potentials are strictly positive.

@ We can look for stationary points of the optimization problem

CTree-Optimize

Find Q?{ﬁi:iEVT}U{;LM:(i 1) €&}
that maximize F|[Py, Q)]

niglsig] = Y Bileil

Ci—S:;

subject to V(i j) € &1, Vsij € Val(Siy)

> Bile] = 1 Vi € Vr

Ci

6@[6,‘] > 0 Vi € VT,C;‘ S Val(Cz)

@ In this case there is a single maximum.

@ We use the method of Lagrange multipliers to characterize the stationary
points.
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Formal statement

Theorem: A set of beliefs Q is a stationary point of the C-Tree-Optimize
algorithm iff there exist a set of factors {6;—;(S;i ;) : (i —j) € E7} such that

(5,'%','0( Z wi H 6k%i

Ci—Si, keNb;—{j}
and moreover we have
Bi o< H Ojsi
JENb;
Wij = Ojsi0is

Proof: In the next set of slides by means of the method of Lagrange multipliers.
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@ We don't need to impose the constraint that the beliefs are positive when
the factors are positive, as this will already be satisfied.

@ We write the Lagrangian as
L=F(Ps,Q)— Z A (Z Bi(ei) — 1) *Z Z Z)\j—»i(si,j) < Z Bi(ei) — ui,j(S;,j))
ieVr c; i JENDb; s;j Ci—Sj j
where Nb; is the number of neighbors of C; in the clique tree.

@ Two types of Lagrange multipliers: marginalization constrains and for sum
to one.

@ The Lagrangian L is a function of {3;}, {1} and the Lagrange multipliers
{Aih {Ais)

@ To find the maximum of the Lagrangian, we take its partial derivatives with
respect to 3i(c;), 1 j(sij) and the Lagrange multipliers.
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Stationary points

@ The derivatives are

oL
= Inwc,-—lnﬁ,-c,-—l—)\,-— A i\Si,j
0pi(c)) (ci) (ci) jgl:b’_ ji(8i)
oL
_— m;;&'+1+Ai'&'+A';&'
au’_7j(si7j) :U’J( J) *U( J) J*>( J)

@ At the stationary point these derivatives are zero, so we get
Biler) = exp{—1—A}i(ci) [] exp(=Ajilsi))
JEND;
pij(sij) = exp{=1}exp{=Aij(si;)exp{—Xj-i(sij)}

@ The beliefs are functions of the form exp{Ai_j(si;)}, and p; (s ;) is the
product of two such terms.

@ These play the role of messages, we define

1
8isj(sij) = exp{—Aisj(sij) — 5}
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Deriving message passing

@ We can now write
1
Bilei) = exp{=Ai =1+ S|Nbi[}¢i(c) 1T di-i(siy)
JENDb;
wij(sij) = dinj(sij)dj—i(sij)

@ Combining this with the marginalization over the sepset we have

bi(sry) = A )
TR Si(siy) Sj—i(sij)
1
= eXp{f)\;fl+§|Nb;|} Z QZJ(C,') H 5k_>,-(s,-,k)

Ci—Si, keNb;—{j}

® The messages ;_,; depend on other messages, and exp{—X\; — 1 + 3|Nb;|}
is a constant.

@ Combining this with > _ fi(c;) = 1, we can solve for the ); to ensure that
this constant normalizes the ;.
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Formal statement and algorithm

Theorem: A set of beliefs Q is a stationary point of the C-Tree-Optimize
algorithm iff there exist a set of factors {6;;(S;i ;) : (i —j) € E7} such that

(5,'HJ'OC Z 1/),' H 5k~>l’

C,‘*S,',j kENb,—{j}
and moreover we have
Biooc i | ] 6
JENb;
Bij = Oji-0imj

@ The fix point equations define the relationship that must hold when we find
the optimal Q.

@ We can apply the equation as assignments and define an algorithm (init
messages to 1).

@ We can guarantee that this converges to a solution satisfying all equations.
@ A particular order reconstructs the sum-product algorithm.
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