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Summary

Past two weeks

Exact inference via VE

Exact inference via message-passing

This week

Exact inference via optimization

Approximate inference via optimization
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Exact inference

The computational complexity and memory requirements of exact inference
are exponential with the tree-width.

This is prohibitive for a large set of applications.

In this week we will see approximations that construct an approx. of PΦ that
is simple to do inference over.

The general principle exploited is locality.

The target class (i.e., approximation) is called Q.

We seek a Q that best approximates PΦ.

Queries will be done over Q.
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Inference as Optimization

There are three types of approx. methods:

1 Methods that use clique tree message passing on structures other than
cliques, e.g., loopy BP. They optimize approximate versions of the energy
functional.

2 Methods that use message passing on clique trees with approximate
messages, e.g., expectation propagation (EP).

3 Generalizations of mean field methods. They use the exact energy functional,
but restrict attention to a class Q that have a particular simple factorization.
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Exact inference as optimization

Assume we have a factorized distribution

PΦ(X ) =
1

Z

∏
φ∈Φ

φ(Uφ)

with UΦ = Scope(φ) ⊆ X .

The result of Sum-Product BP is a calibrated tree, with calibrated set of
beliefs.

In exact inference we find beliefs that match the distribution defined by an
initial set of factors.

We can interpret exact inference as searching over the set of distributions Q
that are representable by the cluster tree to find a distribution Q∗ that
matches PΦ.

Thus we search for a calibrated distribution that is ”as close as possible” to
PΦ.

Many possible ways: L2, L1, relative entropy, etc.
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Relative Entropy

The relative entropy or KL divergence between P1 and P2 is

D(P1||P2) = EX∼P1

[
ln

P1(X )

P2(X )

]

D(P1||P2) ≥ 0 and is 0 iff P1(X ) = P2(X ).

The relative entropy is not symmetric (remember lecture on M-projection
D(PΦ||Q) and I-projection D(Q||PΦ)).

M-projection is more adequate, as is the number of bits lost when coding PΦ

using Q.

However, the M-projection requires marginals over PΦ to compute

Q = argmin
Q

D(PΦ||Q)

and the I-projection does not to compute

Q = argmin
Q

D(Q||PΦ)
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Representation I

We want to search over Q that minimizes D(Q||PΦ).

Suppose we are given a cluster tree T for PΦ: T satisfies running
intersection and family preserving properties.

Suppose we are given a set of beliefs

Q = {βi : i ∈ VT } ∪ {µi,j : (i − j) ∈ ET }

with βi the beliefs over Ci and µi,j the beliefs over Si,j .

The set of beliefs satisfy the clique tree invariant

Q(X ) =

∏
i∈VT βi (Ci )∏

(i−j)∈ET µi,j(Si,j)

The set of beliefs Q satisfy the marginal consistency constraints if

∀i ∈ VT , βi (ci ) = Q(ci ), ∀(i − j) ∈ ET , µi,j(si,j) = Q(si,j)

The beliefs correspond to the marginals of Q.
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Representation II

We are searching over a set of distributions Q that are representable by a set
of beliefs Q over the cliques and sepsets in a particular clique tree structure.

We have make two decisions on Q:

1 Space of distributions we are considering, i.e., all distributions such as
T is an I-map.

2 Representation of the distributions, i.e., a set of calibrated clique
beliefs.

We can now do exact inference by maximizing −D(Q||PΦ)
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Optimization Program

When solving this we look at different configurations that satisfies the
marginal consistency constraints, and select the configuration that is closer
to PΦ.

If T is an I-map of PΦ then there is a unique solution of this optimization.

It can be found by the exact inference algorithms we have already seen.

We can search for Q that minimizes D(Q||PΦ).

However we have to sum over all possible instantiations of X .
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Energy Functional

Theorem: D(Q||PΦ) = lnZ −F (P̂Φ,Q), where F (P̂Φ,Q) is the energy functional

F (P̂Φ,Q) = EX∼Q
[
ln P̂(X )

]
+ HQ(X ) =

∑
φ∈Φ

EX∼Q [lnφ] + HQ(X )

Proof: Let’s write

D(Q||PΦ) = EX∼Q [lnQ(X )]− EX∼Q [lnPΦ(X )]

using product form of PΦ

lnPΦ(X ) =
∑
φ∈Φ

lnφ(Uφ)− lnZ

Since HQ(X ) = −EX∼Q [lnQ(X )] then

D(Q||PΦ) = −HQ(X )− EX∼Q

∑
φ∈Φ

lnφ(Uφ)

+ EX∼Q [lnZ ]

Z does not depend on Q.
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Helmholtz Free Energy

D(Q||PΦ) = −HQ(X )− EX∼Q

∑
φ∈Φ

lnφ(Uφ)

+ lnZ

As Z does not depend on Q, minimizing the relative entropy is equivalent to
maximizing the energy functional F (P̂Φ,Q).

This is called the (Helmholtz) Free Energy.

F (P̂Φ,Q) =
∑
φ∈Φ

EX∼Q [lnφ] + HQ(X )

It contains two terms, the energy term and the entropy term.

Choice of Q important so that we can evaluate both terms.
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Optimizing the Energy Functional

We pose the problem of finding a good approx. Q as the one of maximizing
the energy functional (minimizing the relative entropy).

By choosing appropriate Q we can evaluate the energy functional and also
maximize it.

As D(Q||PΦ) ≥ 0, then lnZ ≥ F (P̂Φ,Q).

The energy functional is a lower bound on the logarithm of the partition
function.

Computing the partition function is one of the hardest queries of inference.
This gives us a lower bound.

We now look into variational methods, which are inference methods that
optimize this energy functional.

We introduce additional degrees of freedom over which we optimize to get
the best approximation.
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Exact inference as optimization

Reformulate the optimization problem in terms of the energy functional.

For the case of calibrated trees, we can simplify the objective function.

Def: Given a cluster tree T with a set of beliefs Q and an assignment α that
maps factors φ to clusters in T , we define

F̂ (P̂Φ,Q) =
∑
i∈VT

ECi∼βi [lnψi ] +
∑
i∈VT

Hβi (Ci )−
∑

(i−j)∈ET

Hµi,j (Si,j)

where ψi is the set of initial potentials

ψi =
∏

φ,α(φ)=i

φ

Let’s examine these expectations.

Importantly all the terms are local.
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Equivalence of energy functionals

Prop: If Q is a set of calibrated beliefs for T and Q is defined as

Q(X ) =

∏
i∈VT βi∏

(i−j)∈ET µi,j

then F̂ (P̂Φ,Q) = F (P̂Φ,Q).

Proof: Since lnψi =
∑
φ,α(φ)=i lnφ and βi (ci ) = Q(ci ) we have∑
i

ECi∼βi [lnψi ] =
∑
φ

ECi∼Q [lnφ]

Moreover
HQ(X ) =

∑
i∈VT

Hβi (Ci )−
∑

(i−j)∈ET

Hµi,j (Si,j)
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Exact inference as optimization

If Q factorizes according to T , we can represent it with a set of calibrated
beliefs.

We impose marginal consistency constraint so that neighboring beliefs agree
on the marginal distribution, i.e., the beliefs are calibrated.

We can now derive a new optimization

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 15 / 31



Lagrange multipliers

The method of Lagrange multipliers provides a strategy for finding the
maxima and minima of a function subject to constraints

max
x,y

f (x , y)

subject to g(x , y) = c

We introduce a new variable λ called the Lagrange multiplier and write the
Lagrange function

L(x , y , λ) = f (x , y) + λ(g(x , y)− c)

λ can be added or subtracted.

If f (x , y) is maximum for the original constrained problem, then there exists
a λ such that (x , y , λ) is a stationary point for the Lagrange function.

Stationary points are those points where the partial derivatives of L are zero.

Not all stationary points yield a solution of the original problem.

Thus, the method of Lagrange multipliers yields a necessary condition for
optimality in constrained problems
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Contours and conditions I

Consider a 2D example

max
x,y

f (x , y)

subject to g(x , y) = c

We can visualize the contours f (x , y) = d for values of d and the contour of
g given by g(x , y) = c .

While moving along the contour line for g = c the value of f can vary.

Only when the contour line for g = c meets contour lines of f tangentially,
we do not increase or decrease the value of f .
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Contours and conditions II

The contour lines of f and g touch when the tangent vectors of the contour
lines are parallel.

This is the same as saying that the gradients of f and g are parallel.

Thus we want points (x , y) where g(x , y) = c and

∇x,y f = −λ∇x,yg

where
∇x,y f =

(
∂f

∂x
,
∂f

∂y

)
, ∇x,yg =

(
∂g

∂x
,
∂g

∂y

)
λ is required as the two gradients might not have the same magnitude.

To incorporate these conditions into one equation, we introduce an auxiliary
function

L(x , y , λ) = f (x , y) + λ(g(x , y)− c)

and solve ∇x,y ,λL(x , y , λ) = 0.

This is the method of Lagrange multipliers.

Note that ∇x,y ,λL(x , y , λ) = 0 implies g(x , y) = c .
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Handling multiple constraints I

If we consider only the points that satisfy the constraints then a point
(p, f (p)) is a stationary point of f iff the constraints at that point do not
allow movement in a direction where f changes value.

Once we have located the stationary points, we need to test if its a
minimum, a maximum or just a stationary point that is neither.
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Handling multiple constraints II

Consider the level set of f at (p, f (p)).

Let {vL} be the set of vectors containing the directions in which we can
move and still remain in the same level set.

Thus, for every vector v in {vL} we have

∆f =
df

dx1
vx1 + · · ·+ df

dxN
vxN

with vxk the xk -th component of v .

Thus we can write ∇f · v = 0, with ∇f = [ df
dx1
, · · · , df

dxN
]T .

All directions from this point that do not change the value of f must be
perpendicular to ∇f (p).

We can also write ∇g · v = 0.
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Single constraint revisited

At stationary points the direction that changes f is in the same direction
that violates the constraint so

∇f (p) = λ∇g (p) ⇒ ∇f (p)− λ∇g (p) = 0

We only do this test when the point g(p) = 0, we have 2 eq. that when
solved, identify all constrained stationary points:{

g (p) = 0 means point satisfies constraint

∇f (p)− λ∇g (p) = 0 means point is a stationary point

Fully expanded, there are N + 1 simultaneous equations that need to be
solved for the N + 1 variables which are λ and x1, x2, . . . , xN :

g (x1, x2, . . . , xN) = 0

df

dx1
(x1, x2, . . . , xN)− λ

dg

dx1
(x1, x2, . . . , xN) = 0

...

df

dxN
(x1, x2, . . . xN)− λ

dg

dxN
(x1, x2, . . . , xN) = 0
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Multiple constraints

If there is more than one constraint active together, each constraint
contributes a direction that will violate it.

Together, these violation directions form a violation space.

The direction that changes f at p is in the violation space defined by the
constraints g1, g2, . . . , gM if and only if:

M∑
k=1

λk∇gk(p) = ∇f (p) ⇒ ∇f (p)−
M∑
k=1

λk∇gk(p) = 0

Add equations to guarantee that we only perform this test when we are at a
point that satisfies every constraint:

g1(p) = 0

...

gM(p) = 0

∇f (p)−
M∑
k=1

λk ∇gk(p) = 0
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Lagrangian

Every equation equal to zero is exactly what one would have to do to solve
for the unconstrained stationary points of the Lagrangian

L (x1, . . . , xN , λ1, . . . , λM) = f (x1, . . . , xN)−
M∑
k=1

λkgk (x1, . . . , xN)

Solving the equation above for its unconstrained stationary points generates
exactly the same stationary points as solving for the constrained stationary
points of f under the constraints g1, g2, . . . , gM .

The function above is called a Lagrangian.

The scalars λ1, λ2, . . . , λM are called Lagrange Multipliers.

This optimization method itself is called The Method of Lagrange
Multipliers.

This method is generalized by the Karush-Kuhn-Tucker conditions, which
can also take into account inequality constraints of the form h(x) ≤ c .
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KKT Conditions

Let’s consider the following optimization problem

min
x

f (x)

subject to gi (x) ≤ 0, hj(x) = 0

Suppose that the objective function, i.e., the function to be minimized, is
f : Rn → R and the constraint functions are gi : Rn → R and hj : Rn → R.

Suppose they are continuously differentiable at a point x∗ .

If x∗ is a local minimum that satisfies some regularity conditions, then there
exist constants µi (i = 1, . . . ,m) and λj (j = 1, . . . , l), called KKT
multipliers, such that the following properties are satisfied.
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KKT Conditions

Stationarity

∇f (x∗) +
m∑
i=1

µi∇gi (x∗) +
l∑

j=1

λj∇hj(x∗) = 0,

Primal feasibility

gi (x
∗) ≤ 0, for all i = 1, . . . ,m

hj(x
∗) = 0, for all j = 1, . . . , l

Dual feasibility
µi ≥ 0, for all i = 1, . . . ,m

Complementary slackness

µigi (x
∗) = 0, for all i = 1, . . . ,m.
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Our optimization problem

Assume that the potentials are strictly positive.

We can look for stationary points of the optimization problem

In this case there is a single maximum.

We use the method of Lagrange multipliers to characterize the stationary
points.
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Formal statement

Theorem: A set of beliefs Q is a stationary point of the C-Tree-Optimize
algorithm iff there exist a set of factors {δi→j(Si,j) : (i − j) ∈ ET } such that

δi→j ∝
∑

Ci−Si,j

ψi

 ∏
k∈Nbi−{j}

δk→i


and moreover we have

βi ∝ ψi

 ∏
j∈Nbi

δj→i


µi,j = δj→i · δi→j

Proof: In the next set of slides by means of the method of Lagrange multipliers.
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Lagrangian

We don’t need to impose the constraint that the beliefs are positive when
the factors are positive, as this will already be satisfied.

We write the Lagrangian as

L = F̂ (P̂Φ,Q)−
∑
i∈VT

λi

∑
ci

βi (ci ) − 1

−
∑
i

∑
j∈Nbi

∑
si,j

λj→i (si,j )

 ∑
ci−si,j

βi (ci ) − µi,j (si,j )


where Nbi is the number of neighbors of Ci in the clique tree.

Two types of Lagrange multipliers: marginalization constrains and for sum
to one.

The Lagrangian L is a function of {βi}, {µi,j} and the Lagrange multipliers
{λi}, {λi→j}.

To find the maximum of the Lagrangian, we take its partial derivatives with
respect to βi (ci ), µi,j(si,j) and the Lagrange multipliers.
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Stationary points

The derivatives are

∂L

∂βi (ci )
= lnψ(ci )− lnβi (ci )− 1− λi −

∑
j∈Nbi

λj→i (si,j)

∂L

∂µi,j(si,j)
= lnµi,j(si,j) + 1 + λi→j(si,j) + λj→i (si,j)

At the stationary point these derivatives are zero, so we get

βi (ci ) = exp{−1− λi}ψi (ci )
∏
j∈Nbi

exp(−λj→i (si,j)

µi,j(si,j) = exp{−1} exp{−λi→j(si,j) exp{−λj→i (si,j)}

The beliefs are functions of the form exp{λi→j(si,j)}, and µi,j(si,j) is the
product of two such terms.

These play the role of messages, we define

δi→j(si,j) , exp{−λi→j(si,j)−
1

2
}
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Deriving message passing

We can now write

βi (ci ) = exp{−λi − 1 +
1

2
|Nbi |}ψi (ci )

∏
j∈Nbi

δj→i (si,j)

µi,j(si,j) = δi→j(si,j)δj→i (si,j)

Combining this with the marginalization over the sepset we have

δi→j(si,j) =
µi,j(si,j)

δj→i (si,j)
=

∑
Ci−Si,j

βi (Ci , si,j)

δj→i (si,j)

= exp{−λi − 1 +
1

2
|Nbi |}

∑
Ci−Si,j

ψ(ci )
∏

k∈Nbi−{j}

δk→i (si,k)

The messages δi→j depend on other messages, and exp{−λi − 1 + 1
2 |Nbi |}

is a constant.

Combining this with
∑

ci
βi (ci ) = 1, we can solve for the λi to ensure that

this constant normalizes the βi .
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Formal statement and algorithm

Theorem: A set of beliefs Q is a stationary point of the C-Tree-Optimize
algorithm iff there exist a set of factors {δi→j(Si,j) : (i − j) ∈ ET } such that

δi→j ∝
∑

Ci−Si,j

ψi

 ∏
k∈Nbi−{j}

δk→i


and moreover we have

βi ∝ ψi

 ∏
j∈Nbi

δj→i


µi,j = δj→i · δi→j

The fix point equations define the relationship that must hold when we find
the optimal Q.

We can apply the equation as assignments and define an algorithm (init
messages to 1).

We can guarantee that this converges to a solution satisfying all equations.

A particular order reconstructs the sum-product algorithm.
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