Probabilistic Graphical Models

Raquel Urtasun and Tamir Hazan

TTI Chicago

April 22, 2011

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011

This week we saw...

@ Variable elimination algorithm can be used to compute P(Y), P(Y,e) and
P(Yle).

@ Finding the optimal ordering for VE is NP-hard.

@ For chordal graphs, we can construct an optimal ordering via de clique tree
or the max-cardinality algorithm.

Algorithm 9.3 Maximum Cardinality Algorithm for constructing an elimination
ordering

Procedure Max-Cardinality (
H // An undirected graph over X’
)

1 Initialize all nodes in X' as unmarked
2 for k=|X|...1
3
1

X « unmarked variable in X with largest number of marked neighbors
Mark X

[§] return T

C ne g ll aTa¥a' aTalda nan Al a) a) | | | A- a) A‘ll
Raquel Urtasun and Tamir Hazan (TTI-C Graphical Models April 22, 2011

Conditioning Algorithm

@ It uses the fact that observing certain variables can simplify the elimination
process.

@ If the variable was not observed, we can

o Use a case analysis to enumerate all the possibilities.
e Perform the VE on the simplified graphs.
o Aggregate the results for the different values.

@ This offers no advantage with respect to the VE algorithm in terms of
operations.

@ But it does in terms of memory.

@ Time-Space tradeoff.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011

More formally...

@ Let's consider the case of a Markov network.

@ Let ® be the set of factors over X' and Py the associated distribution.
@ All the observations already assimilated in .

@ The goal is to compute Py(Y) for some query Y.

@ Let U C X be a set of variables, then

ﬁ’q;(Y): Z /A:’¢(Y7u)

y€ Val(U)

@ Each term I5¢(Y, u) can be computed by marginalizing out X — U — Y in
the unnormalized measure Pg|u].

@ The reduce measure is obtained by reducing the factors to the context u.

@ The reduced process has smaller cost in general.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 4 /22

Conditioning Algorithm

@ We construct a network He[u] for each assignment u.
@ Note that these networks have the same structure, but different parameters.
@ Run sum-product VE for each of the networks.

@ Sum the results to obtain Py (Y).

Algorithm 9.5 Conditioning algorithm
Procedure Sum-Product-Conditioning (

&, // Set of factors, possibly reduced by evidence
Y, // Set of query variables
U // Set of variables on which to condition
)
1 for each uw € Val(U)
2 Py {YU=1] : ¢ cd}
3 Construct He,,
1 (ttw, du(Y)) — Cond-Prob-VE(He, .Y ,0)
)

(V) - ZpteX)
6 Return ¢* (V')

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011

Sum-product VE for conditional distributions

Algorithm 9.2 Using Sum-Product-Variable-Elimination for computing conditional
probabilities.
Procedure Cond-Prob-VE (
Ko/

! A network over A’

" Set of query variables
E=e // Evidence

1 $ — Factors parameterizing K
2 Replace each ¢ € @ hy ¢[E = €]
: Select an elimination ordering <

3
4 Z— =X-Y -FE

5 ¢* — Sum-Product-Variable-Elimination(®, <, Z)
G @ = P yevay) ?(Y)
T return a, ¢*

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011

Conditioning Algorithm

@ We construct a network He[u] for each assignment u.
@ Note that these networks have the same structure, but different parameters.
@ Run sum-product VE for each of the networks.

@ Sum the results to obtain Py (Y).

Algorithm 9.5 Conditioning algorithm
Procedure Sum-Product-Conditioning (

&, // Set of factors, possibly reduced by evidence
Y, // Set of query variables
U // Set of variables on which to condition
)
1 for each uw € Val(U)
2 Py {YU=1] : ¢ cd}
3 Construct He,,
1 (ttw, du(Y)) — Cond-Prob-VE(He, .Y ,0)
)

(V) - ZpteX)
6 Return ¢* (V')

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011

Normalization and an Example

@ To get Py(Y) we have to normalize.

@ The partition function is the sum of partition functions

Zo = Z Zou)

@ We want to obtain P(J) with evidence G = g!.

@ Apply the conditioning algorithm to S.

Coherence

b

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 8 /22

Complexity of conditioning

@ It seems more efficient than VE, i.e., smaller network.

@ However, we need to compute multiple VE, one for each u € Val(U).

Coherence

o We know that P(J) = Y ¢ s.6..4 P(C.D,1,S, G, L, H. J).
o Reorder P(J) = 3, [Sc.ps.n P(C.D,1,S, g, L, H,J)}.

@ The inside of the parenthesis is the P(J) in the network Ho._, .

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 9 /22

Conditioning vs Variable elimination

@ Conditioning algorithm executes parts of the summation, enumerating all
possible values of the conditioning variables.

@ The VE algorithm does the same summation from the inside out using
dynamic programming to reuse computation.

@ Theorem: Let ® be a set of factors, Y a query, and U a set of conditioning
variables with Z = X — Y — U. Let < be an elimination ordering over Z
used by the VE over the network Hg, in the conditioning algorithm. Let <%
be an ordering consistent with < over the variables Z, and where for each
U € U we have Z <+ U. Then the number of operations performed by the
conditioning is no less than the number of operations performed by VE with
ordering <*.

@ Conditioning never performs less operations than VE, as it uses sums and
products but it does not reuse the computation for the conditioning
variables.

@ If < and <™ are not consistent, we cannot say anything.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 10 / 22

Example

Step | Varlable Factors Variables New
eliminated used involved factor
1 c $&(C,G), 65(D,C,G) C.D.G | m(D,G)
2 D ¢E(G,1,D), 71(D,G) G,I,D 79(G, 1)
3 I 631, G), 01(S.1,G), (G, 1) | G,S,1 (G, S)
4 H &5 (H,G,J) H,G,J | n(G,J)
5 s (G, S), ¢7(J, L, 5,G) J,L,5,G | m5(J,L,G)
6 L 75(J, L, G), ¢ (L, G) J.L 76(J)
7 Te(J),74(G, J) G, J (G, J)

@ Elimination ordering is {C, D, I, H,S, L} and conditioning on G

Step | Variable [Factors Variables New
eliminated used involved factor
1 & #c(C), én(D,C) c.D (D)
2 D dc(G, 1, D), 1 (D) G, I,D T2(G, T)
3 I or(I), o5(8,1), (G, I) | G, ST 73(G, S)
4 H ¢ (H,G,J) H,G,J | m(G,J)
5 S 3(G,S), 6 (J, L, S) JL,S,G | m5(J, L,G)
6 L 75(J, L, G),¢L(L,G) J.L T6(J)
7 G T6(J), 71(G, J) G,J T7(J)

@ Run of P(J) with G eliminated last.

@ We have defined ¢ the augmented factor that contains G in the scope.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 1/

More examples

@ If we conditioned on Ay in order to cut the loop, we will perform he entire
elimination of the chain A; — --- — Ai_1 one time for each value of A.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 12/

More examples

@ We want to cut every other A;, e.g., Ay, Ay, - -.
@ The cost of conditioning is exponential in k.

@ The induced width (i.e., number of nodes in the largest clique -1) of the
network is 2.

@ The cost of VE is linear in k.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 13 / 22

Conditioning is still useful

When is conditioning still useful?

© VE can have very large factors that are too memory consuming in large
networks. Conditioning gives a continuous time-space tradeoff.

@ Conditioning is the basis for useful approximate inference algorithms where
for example we only enumerate a small set of possible u € Val/(U).

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models

April 22, 2011 14 / 22

Effects in the graph

@ Conditioning on U introduces U on every factor in the graph.
@ We should connect U to every node in the graph.
@ When eliminating U we remove it from the graph.

@ We can defined an induced graph for the conditioning algorithm, which has
two type of filled edges.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 15 / 22

Induced Graph for Conditioning

Def: Let ® be a set of factors over X = {Xy,---, X,} with U C X conditional
variables, and < an elimination ordering over the set X C X — U. The induced
graph Ze - u is an undirected graph over X’ with edges.

@ A conditioning edge between every U € U and every other variable.

@ A factor edge between every pair of variables X;, X; € X that both appear

in some intermediate factor ¢ generated by the VE using < as elimination
ordering.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models

April 22, 2011 16 / 22

(BN) (Induced Graph)

@ Query: P(J), we conditioned on L, and eliminate {C,D, I, H, G,S}.

@ Conditioning edges shown in dashed and factor edges as regular edges.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011

Complexity Analysis |

Theorem: Consider conditioning algorithm to a set of factors ®, with
conditioning variables U C &', and elimination ordering <. Then the running time
of the algorithm is O(nv™), where v is a bound on the domain size of any
variable and m is the size of the largest clique in the induced graph.

@ Conditioning adds edges between the conditioning variables and all other
variables in the graph.

@ VE only does between those that are neighbors of the variable to eliminate.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models

April 22, 2011 18 / 22

Complexity Analysis Il

Theorem: Consider conditioning algorithm to a set of factors ®, with
conditioning variables U C X, and elimination ordering < to eliminate

X C X — U. The space complexity of the algorithm is O(nv™), where v is a
bound on the domain size of any variable and m is the size of the largest clique in
the graph using only factor edges.

@ For VE the space and time complexity are exponential in the size of the
largest clique of the induced graph.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 19 / 22

Improving conditioning: alternating VE and cond.

@ In terms of operations, conditioning is always equal or worst than VE.

@ The main problem is that computations are repeated for all values, and
sometimes we do the computations multiple times, even if they are the same.

Y @ We are interested in P(D).

(‘I\f/ @ Better to eliminate first Ay, --- , Ax_1 before
: conditioning on Ayg.

@ Then only a network involving Ax, B, C, D.

@ We can then condition on any of these variables,
> e.g., Ak, and eliminate the others B, C.

@ We first did elimination, then condition, then elimination.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 20 / 22

Improving conditioning: network decomposition

o Efficient when conditioning splits the graph into
9‘0 independent pieces.

@ If we conditioned on A this splits the network.

@ If we conditioned on Ags, there is no need to take
0 into account the top part of the network, i.e.,

@‘@ {A1, By, C1}, as we will repeat the same

computation

@ Since we partitioned the network into individual pieces, we can now perform
the computation on each of them separately, and then combine the results.

@ The conditioning variables used in one part will not be used in the other.

@ Build an algorithm that checks wether after conditioning the graph is
disconnected or not.

@ If it has, then splits computation into the disjoint sets recursively.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 21 /22

Summary of this week

@ Variable elimination algorithm can be used to compute P(Y), P(Y,e) and
P(Yle).

@ Finding the optimal ordering for VE is NP-hard.

@ For chordal graphs, we can construct an optimal ordering via de clique tree
or the max-cardinality algorithm.

@ If the graph is non-chordal, then we can use heuristics (i.e., width, weight)
in a deterministic or stochastic fashion.

@ Today we saw the conditioning algorithm.

@ Improving conditioning via alternating VE and conditioning and via network
decomposition.

@ Next week we will see clique trees and message passing.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 22 /22

	Introduction

