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This week we saw...

Variable elimination algorithm can be used to compute P(Y), P(Y, e) and
P(Y|e).

Finding the optimal ordering for VE is NP-hard.

For chordal graphs, we can construct an optimal ordering via de clique tree
or the max-cardinality algorithm.

If the graph is non-chordal, then we can use heuristics (i.e., width, weight)
in a deterministic or stochastic fashion.

Today we are going to look into the conditioning algorithm.
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Conditioning Algorithm

It uses the fact that observing certain variables can simplify the elimination
process.

If the variable was not observed, we can

Use a case analysis to enumerate all the possibilities.
Perform the VE on the simplified graphs.
Aggregate the results for the different values.

This offers no advantage with respect to the VE algorithm in terms of
operations.

But it does in terms of memory.

Time-Space tradeoff.
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More formally...

Let’s consider the case of a Markov network.

Let Φ be the set of factors over X and Pφ the associated distribution.

All the observations already assimilated in Φ.

The goal is to compute PΦ(Y) for some query Y.

Let U ⊆ X be a set of variables, then

P̂Φ(Y) =
∑

y∈Val(U)

P̂Φ(Y,u)

Each term P̂Φ(Y,u) can be computed by marginalizing out X −U− Y in
the unnormalized measure P̂Φ[u].

The reduce measure is obtained by reducing the factors to the context u.

The reduced process has smaller cost in general.
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Conditioning Algorithm

We construct a network HΦ[u] for each assignment u.

Note that these networks have the same structure, but different parameters.

Run sum-product VE for each of the networks.

Sum the results to obtain P̂Φ(Y).
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Sum-product VE for conditional distributions
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Conditioning Algorithm
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Normalization and an Example

To get PΦ(Y) we have to normalize.

The partition function is the sum of partition functions

ZΦ =
∑

u

ZΦ[u]

We want to obtain P(J) with evidence G = g1.

Apply the conditioning algorithm to S .
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Complexity of conditioning

It seems more efficient than VE, i.e., smaller network.

However, we need to compute multiple VE, one for each u ∈ Val(U).

We know that P(J) =
∑

C ,D,I ,S,G ,L,H P(C ,D, I ,S ,G , L,H, J).

Reorder P(J) =
∑

g

[∑
C ,D,I ,S,L,H P(C ,D, I ,S , g , L,H, J)

]
.

The inside of the parenthesis is the P(J) in the network HΦG=g
.
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Conditioning vs Variable elimination

Conditioning algorithm executes parts of the summation, enumerating all
possible values of the conditioning variables.

The VE algorithm does the same summation from the inside out using
dynamic programming to reuse computation.

Theorem: Let Φ be a set of factors, Y a query, and U a set of conditioning
variables with Z = X − Y −U. Let ≺ be an elimination ordering over Z
used by the VE over the network HΦu in the conditioning algorithm. Let ≺+

be an ordering consistent with ≺ over the variables Z, and where for each
U ∈ U we have Z ≺+ U. Then the number of operations performed by the
conditioning is no less than the number of operations performed by VE with
ordering ≺+.

Conditioning never performs less operations than VE, as it uses sums and
products but it does not reuse the computation for the conditioning
variables.

If ≺ and ≺+ are not consistent, we cannot say anything.
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Example

Elimination ordering is {C ,D, I ,H,S , L} and conditioning on G

Run of P(J) with G eliminated last.

We have defined φ+ the augmented factor that contains G in the scope.
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More examples

If we conditioned on Ak in order to cut the loop, we will perform he entire
elimination of the chain A1 → · · · → Ak−1 one time for each value of Ak .
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More examples

We want to cut every other Ai , e.g., A2,A4, · · · .
The cost of conditioning is exponential in k .

The induced width (i.e., number of nodes in the largest clique -1) of the
network is 2.

The cost of VE is linear in k .
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Conditioning is still useful

When is conditioning still useful?

1 VE can have very large factors that are too memory consuming in large
networks. Conditioning gives a continuous time-space tradeoff.

2 Conditioning is the basis for useful approximate inference algorithms where
for example we only enumerate a small set of possible u ∈ Val(U).
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Effects in the graph

Conditioning on U introduces U on every factor in the graph.

We should connect U to every node in the graph.

When eliminating U we remove it from the graph.

We can defined an induced graph for the conditioning algorithm, which has
two type of filled edges.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 15 / 22



Induced Graph for Conditioning

Def: Let Φ be a set of factors over X = {X1, · · · ,Xn} with U ⊆ X conditional
variables, and ≺ an elimination ordering over the set X ⊆ X −U. The induced
graph IΦ,≺,U is an undirected graph over X with edges.

1 A conditioning edge between every U ∈ U and every other variable.

2 A factor edge between every pair of variables Xi ,Xj ∈ X that both appear
in some intermediate factor ψ generated by the VE using ≺ as elimination
ordering.

Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 16 / 22



Example

(BN) (Induced Graph)

Query: P(J), we conditioned on L, and eliminate {C ,D, I ,H,G ,S}.

Conditioning edges shown in dashed and factor edges as regular edges.
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Complexity Analysis I

Theorem: Consider conditioning algorithm to a set of factors Φ, with
conditioning variables U ⊂ X , and elimination ordering ≺. Then the running time
of the algorithm is O(nvm), where v is a bound on the domain size of any
variable and m is the size of the largest clique in the induced graph.

Conditioning adds edges between the conditioning variables and all other
variables in the graph.

VE only does between those that are neighbors of the variable to eliminate.
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Complexity Analysis II

Theorem: Consider conditioning algorithm to a set of factors Φ, with
conditioning variables U ⊂ X , and elimination ordering ≺ to eliminate
X ⊆ X −U. The space complexity of the algorithm is O(nvmf ), where v is a
bound on the domain size of any variable and m is the size of the largest clique in
the graph using only factor edges.

For VE the space and time complexity are exponential in the size of the
largest clique of the induced graph.
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Improving conditioning: alternating VE and cond.

In terms of operations, conditioning is always equal or worst than VE.

The main problem is that computations are repeated for all values, and
sometimes we do the computations multiple times, even if they are the same.

We are interested in P(D).

Better to eliminate first A1, · · · ,Ak−1 before
conditioning on Ak .

Then only a network involving Ak ,B,C ,D.

We can then condition on any of these variables,
e.g., Ak , and eliminate the others B,C .

We first did elimination, then condition, then elimination.
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Improving conditioning: network decomposition

Efficient when conditioning splits the graph into
independent pieces.

If we conditioned on A2 this splits the network.

If we conditioned on A3, there is no need to take
into account the top part of the network, i.e.,
{A1,B1,C1}, as we will repeat the same
computation

Since we partitioned the network into individual pieces, we can now perform
the computation on each of them separately, and then combine the results.

The conditioning variables used in one part will not be used in the other.

Build an algorithm that checks wether after conditioning the graph is
disconnected or not.

If it has, then splits computation into the disjoint sets recursively.
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Summary of this week

Variable elimination algorithm can be used to compute P(Y), P(Y, e) and
P(Y|e).

Finding the optimal ordering for VE is NP-hard.

For chordal graphs, we can construct an optimal ordering via de clique tree
or the max-cardinality algorithm.

If the graph is non-chordal, then we can use heuristics (i.e., width, weight)
in a deterministic or stochastic fashion.

Today we saw the conditioning algorithm.

Improving conditioning via alternating VE and conditioning and via network
decomposition.

Next week we will see clique trees and message passing.
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