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Contents of today’s lecture

How to deal with high-dimensional data.

We will talk about different dimensionality reduction techniques

Linear models: PCA, CCA, etc.
Graph based methods: Isomap, Locally linear embedding, laplacian
eigenmaps, etc.
Latent variable models: GTM and GPLVM

We will see some examples in practice.
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Materials used for this lecture

This lecture is based on two tutorials

The ICML 2009 tutorial on dimensionality reduction given by Neil
Lawrence.

The tutorial on dimensionality reduction that Carl Ek gave at Oxford
a few years back.

Thanks Neil and Carl for your slides!
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Why dimensionality reduction

USPS Data Set Handwritten Digit

3648 Dimensions

64 rows by 57 columns
Space contains more
than just this digit.

Even if we sample
every nanosecond from
now until the end of
the universe, you won’t
see the original six!
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Simple model of a digit

Rotate a ’Prototype’
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Two dimensional representation

demDigitsManifold[1 2], ’all’)
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Two dimensional representation

demDigitsManifold([1 2], ’sixnine’)
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Low Dimensional Manifolds

Pure Rotation is too Simple

In practice the data may undergo several distortions.

e.g. digits undergo ’thinning’, translation and rotation.

For data with ’structure’:

we expect fewer distortions than dimensions;
we therefore expect the data to live on a lower dimensional manifold.

Conclusion: deal with high dimensional data by looking for lower
dimensional embedding.
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Notation

q— dimension of latent/embedded space
D— dimension of data space
N— number of data points

centred data, Y = [y1,:, . . . , yN,:]
T = [y:,1, . . . , y:,D ] ∈ <N×D

latent variables, X = [x1,:, . . . , xN,:]
T = [x:,1, . . . , x:,q] ∈ <N×q

mapping matrix, W ∈ <D×q

ai ,: is a vector from the ith row of a given matrix A
a:,j is a vector from the jth row of a given matrix A
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Reading Notation

X and Y are design matrices

Data covariance given by N−1YTY

cov (Y) =
1

N

N∑
i=1

yi ,:y
T
i ,: =

1

N
YTY

Inner product matrix given by YYT

K = (ki ,j)i ,j , ki ,j = yT
i ,:yj ,:
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Types of approaches

Linear dimensionality reduction

Graph-based methods: based on preserving geodesic distances

Non linear Latent variable models
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Linear Dimensionality Reduction

Two dimensional plane projected into a three dimensional space.

(f x )y i=i

X Y

Figure: Mapping a 2D plane to a higher dimensional space in a linear way.

Linear Latent Variable Model

Represent data, Y, with a lower dimensional set of latent variables X.

Assume a linear relationship of the form

yi ,: = Wxi ,: + ηi ,:, where ηi ,: ∼ N
(
0, σ2I

)
.
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Linear Latent Variable Model

Probabilistic PCA

Linear-Gaussian
relationship between
latent variables and data.

X are ‘nuisance’ variables.

Latent variable model
approach:

Define Gaussian prior
over latent space, X.
Integrate out nuisance
latent variables.

X W

Y

p (Y|X,W) =
NY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

X W

Y

p (Y|W) =
NY

i=1

N
“

yi,:|0,WWT + σ2I
”
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Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

p (Y|W) =
DY

j=1

N
`
yi,:|0,C

´
, C = WWT + σ2I

log p (Y|W) = −
N

2
log |C| −

1

2
tr
“

C−1YTY
”

+ const.

If Uq are first q principal eigenvectors of N−1YTY and the corresponding eigenvalues are Λq ,

W = UqLRT, L =
`
Λq − σ2I

´ 1
2

where R is an arbitrary rotation matrix.
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Factor Analysis

Very similar to PCA, but with a more complex notion of noise:

y = Wx + ε

with E{εεT} = Σ.

If the noise is known, then the factors can be estimated using PCA of
a modified matrix

C− Σ

with C the covariance matrix of the data.

If the noise is not know, then there exists different algorithms in the
literature to solve this.

We will not see them in this class.
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Why Probabilistic PCA?

What is the point in probabilistic methods?

Could we not just project with regular PCA?

Integration within other models (e.g. mixtures of PCA (Tipping and
Bishop, 1999a) , temporal models).
Model selection through Bayesian treatment of parameters (Bishop
1999) .
Marginalisation of missing data (Tipping and Bishop, 1999b) .
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Why Probabilistic PCA?

What is the point in probabilistic methods?

Could we not just project with regular PCA?

Integration within other models (e.g. mixtures of PCA (Tipping and
Bishop, 1999a) , temporal models).
Model selection through Bayesian treatment of parameters (Bishop
1999) .
Marginalisation of missing data (Tipping and Bishop, 1999b) .

Note: These same advantages hold for Factor Analysis
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Summary

Distributions can behave very non-intuitively in high dimensions.

Fortunately, most data is not really high dimensional.

Probabilistic PCA exploits linear low dimensional structure in the
data.

Probabilistic interpretation brings with it many advantages:
extensibility, Bayesian approaches, missing data.

We will now motivate the need for non linear dimensionality reduction.

Raquel Urtasun (TTI-C) Human Body Representations March 8, 2010 16 / 127



Why non-linear dimensionality reduction?

Complex datasets cannot be represented linearly.
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Figure: The ‘Swiss Roll’ data set is data in three dimensions that is
inherently two dimensional.

We will see non-linear latent variable models and spectral methods.
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Non Probabilistic Existing Methods I

Spectral Approaches

Classical Multidimensional Scaling (MDS) (Mardia et al. 1979) .

Uses eigenvectors of similarity matrix.

Kernel PCA (Scholkopf et al., 1998)

Provides a representation and a mapping — representation is high
dimensional though!
Mapping is implied through the use of a kernel function as a similarity
matrix.

Isomap (Tenenbaum et al., 2000) is MDS with a particular proximity
measure.

Approximate distances measures along the manifold.
Compute neighborhood and compute shortest distance in graph.
Use classical MDS on that distance matrix.
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Non Probabilistic Existing Methods II

Locally Linear Embedding (Roweis and Saul, 2000) .

Looks to preserve locally linear relationships in a low dimensional space.
Compute neighborhood and point find reduced dimensional
relationships that preserve local linearity.

Laplacian Eigenmaps (Belkin and Niyogi, 2003) .

Uses spectral graph theory and information geometric arguments to
form embedding.
Compute neighborhood, graph Laplacian and seek 2nd lowest
eigenvector.

Maximum Variance Unfolding (Weinberger et al., 2004) .

Compute neighborhood, constrain local distances to be preserved.
Maximise the variance in latent space.
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Non Spectral Approaches

Iterative Methods

Multidimensional Scaling (MDS)
Iterative optimisation of a stress function (Kruskal, 1964) .

Sammon Mappings (Sammon, 1969) .

Strictly speaking not a mapping — similar to iterative MDS.

NeuroScale (Lowe and Tipping, 1997)

Augmentation of iterative MDS methods with a mapping.
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Distance Preservation

Local Distance Preservation

Most of the above dimensional reduction techniques preserve local
distances.

Probabilistic Approaches do not.

Probabilistic approaches map smoothly from latent to data space.

Points close in latent space are close in data space.
This does not imply points close in data space are close in latent space.

Spectral approaches map smoothly from data to latent space.

Points close in data space are close in latent space.
This does not imply points close in latent space are close in data space.
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Distance Preservation

Forward Mapping
Mapping from 1-D latent space to 2-D data space.

y1 = x2 − 0.5, y2 = −x2 + 0.5
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Distance Preservation

Backward Mapping
Mapping from 2-D data space to 1-D latent.

x = 0.5
`
y12 + y22 + 1
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Tangled String

Sometimes local distance
preservation in data space is
wrong.

The pink and blue ball
should be separated.

But the assumption makes
the problem simpler (for
spectral methods it is
convex).
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Spectral Approaches

Good

Unique optimum.

But

Non trivial for dealing with missing data.

Difficult to extend (e.g. temporal data) in a principled way.
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Spectral methods

We are going to see in more detail:

Multidimensional Scaling (MDS)

Kernel PCA

Isomap

Maximum Variance Unfolding (MVU)

Locally Linear Embedding (LLE)

Laplacian Eigenmaps
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Data Representation

Classical statistical approach: represent via proximities (Mardia, 1972).

Proximity data: similarities or dissimilarities.

Example of a dissimilarity matrix: a distance matrix.

di ,j = ‖yi ,: − yj ,:‖2 =

√
(yi ,: − yj ,:)

> (yi ,: − yj ,:)

For a data set can display as a matrix.
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Interpoint Distances for Rotated Sixes

Figure: Interpoint distances for the rotated digits data.
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Multidimensional Scaling

Find a configuration of points, X, such that each

δi ,j = ‖xi ,: − xj ,:‖2

closely matches the corresponding di ,j in the distance matrix.

Need an objective function for matching ∆ = (δi ,j)i ,j to D = (di ,j)i ,j .
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Feature Selection

An entrywise L1 norm on difference between squared distances

E (X) =
N∑

i=1

N∑
j=1

∣∣d2
ij − δ2

ij

∣∣ .
Reduce dimension by selecting features from data set.

Select for X, in turn, the column from Y that most reduces this error
until we have the desired q.

To minimise E (Y) we compose X by extracting the columns of Y
which have the largest variance.
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Reconstruction from Latent Space
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Figure:
Left: distances reconstructed with two dimensions. Right: distances reconstructed
with 10 dimensions.
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Figure:
Left: distances reconstructed with 100 dimensions. Right: distances reconstructed
with 1000 dimensions.
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Feature Selection
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Figure: demRotationDist. Feature selection via distance preservation.
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Feature Extraction
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Figure: demRotationDist. Rotation preserves interpoint distances. .
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Feature Extraction
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Figure: demRotationDist. Rotation preserves interpoint distances. Residuals are
much reduced.
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Which Rotation?

We need the rotation that will minimise residual error.

We already derived an algorithm for discarding directions.

Discard direction with maximum variance.

Error is then given by the sum of residual variances.

E (X) = 2N2
D∑

k=q+1

σ2
k .

Rotations of data matrix do not effect this analysis.

Raquel Urtasun (TTI-C) Human Body Representations March 8, 2010 34 / 127



Rotation Reconstruction from Latent Space
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Figure:
Left: distances reconstructed with two dimensions. Right: distances reconstructed
with 10 dimensions.
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Rotation Reconstruction from Latent Space
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Figure:
Left: distances reconstructed with 100 dimensions. Right: distances reconstructed
with 360 dimensions.

Raquel Urtasun (TTI-C) Human Body Representations March 8, 2010 35 / 127



Reminder: Principal Component Analysis

How do we find these directions?

Find directions in data with maximal variance.

That’s what PCA does!

PCA: rotate data to extract these directions.

PCA: work on the sample covariance matrix S = N−1Ŷ>Ŷ.
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Distance to Similarity: Gaussian Covariances

Translate between covariance and distance.

Consider a vector sampled from a zero mean Gaussian distribution,

z ∼ N (0,K) .

Expected square distance between two elements of this vector is

d2
i,j =

〈
(zi − zj)

2
〉

d2
i,j =

〈
z2
i

〉
+
〈
z2
j

〉
− 2 〈zizj〉

under a zero mean Gaussian with covariance given by K this is

d2
i,j = ki,i + kj,j − 2ki,j .

Take the distance to be square root of this,

di,j = (ki,i + kj,j − 2ki,j)
1
2 .
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Standard Transformation

This transformation is known as the standard transformation between
a similarity and a distance (Mardia et al. pg 402, 1979) .

If the covariance is of the form K = ŶŶ> then ki ,j = y>i ,:yj ,: and

di ,j =
(

y>i ,:yi ,: + y>j ,:yj ,: − 2y>i ,:yj ,:

) 1
2

= ‖yi ,: − yj ,:‖2 .

For other distance matrices this gives us an approach to covert to a
similarity matrix or kernel matrix so we can perform classical MDS.
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Example: Road Distances with Classical MDS

Classical example: redraw a map from road distances (see e.g. Mardia
et al. 1979 ).

Here we use distances across Europe.

Between each city we have road distance.
Enter these in a distance matrix.
Convert to a similarity matrix using the covariance interpretation.
Perform eigendecomposition.
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Other Distance Similarity Measures

Can use similarity/distance of your choice.

Beware though!

The similarity must be positive semi definite for the distance to be
Euclidean.
Why? Can immediately see positive definite is sufficient from the
“covariance intepretation”.
For more details see (Mardia et al. 1979, Theorem 14.2.2) .
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Kernel PCA: A Class of Similarities for Vector Data

All Mercer kernels are positive semi definite.

Example, squared exponential (also known as RBF or Gaussian)

ki ,j = exp

(
−
‖yi ,: − yj ,:‖2

2l2

)
.

This leads to a kernel eigenvalue problem.

This is known as Kernel PCA Scholkopf et al. 1998.
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Implied Distances on Rotated Sixes
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Figure: Left: similarity matrix for RBF kernel on rotated sixes. Right: implied
distance matrix for kernel on rotated sixes. Note that most of the distances are
set to

√
2 ≈ 1.41.
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Kernel PCA on Rotated Sixes

Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space
for kernel PCA. Points spread out along axes so that dissimilar points are always√

2 apart.
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MDS Conclusions

Multidimensional scaling: preserve a distance matrix.

Classical MDS

a particular objective function
for Classical MDS distance matching is equivalent to maximum variance
spectral decomposition of the similarity matrix

For Euclidean distances in Y space classical MDS is equivalent to
PCA.

known as principal coordinate analysis (PCO)

Haven’t discussed choice of distance matrix.
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Non-Linear

Non-Linear vs. Linear — Local vs. Global

MDS and PCA re-parametrise data based on global structures
(linear) in the given representation of the data

Idea: Local structure of given representation is close to the manifold
structure

Want to “unravel” local structure of data globally

Raquel Urtasun (TTI-C) Human Body Representations March 8, 2010 45 / 127



Proximity Graph

1 Identify neighbors of each data point yi ∈ N(yj)

2 Build graph P =

 Y︸︷︷︸
vertexset

, W︸︷︷︸
edgeset


Put edges between vertices’s in neighborhood
Assume P connected (and in most cases symmetric)

3 Objective: Complete P to make it fully connected
4 Different algorithms have different strategies

What are the edge weights?
How to complete P
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Isomap

Tenenbaum, de Silva, Langford - Science December 2000

Local Proximity Graph

Edge Weights Euclidean distances
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Isomap

MDS finds geometric
configuration preserving
distances

MDS applied to Manifold
distance

Geodesic Distance = Manifold
Distance

“Chicken and Egg” Cannot
compute geodesic distance
without knowing manifold
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Isomap

Geodesic Distance can be approximated by shortest path through
local proximity matrix

Compute distance matrix by completing Proximity Graph

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

R E P O R T S
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Raquel Urtasun (TTI-C) Human Body Representations March 8, 2010 49 / 127



Isomap: Algorithm

1 Compute Neighbor relations

∆ij =

{
||yi − yj ||2 (yi , yj) ∈W
∞ otherwise

2 Complete ∆ by Shortest path

∆ij =

{
Wij (yi , yj) ∈W

shortestpath(yi , yj ,W ) otherwise
3 Apply MDS to ∆
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Isomap: Example1
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Isomap: Example1
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Isomap: Example1
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Isomap: Example1
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Isomap: Example1
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Isomap: Example1
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Isomap: Example1
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Isomap: Example1
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Isomap: Example1
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Isomap: Summary

MDS on shortest path approximation of manifold distance

+ Simple

+ Intrinsic dimension from eigen spectra

- Solves a very large eigenvalue problem

- Cannot handle holes or non-convex manifold

- Sensitive to “short circuit”

- Increases rank of Gram matrix
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Maximum Variance Unfolding

Weinberg, Sha, Saul - ICML & CVPR 2004

First presented as Semi-Definite Embeddings

Formulate dimensionality reduction in terms of Gram matrix
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Maximum Variance Unfolding

Want to keep local structure (yi , yj) ∈W

||xi − xj ||22 = ||yi − yj ||22
⇒ Kii + Kjj −Kij −Kji = Gii + Gjj − Gij − Gji

Remove Translational Invariance

||
N∑

i=1

xi||22 = 0 ⇒
N∑

i=1

N∑
j=1

Kij = 0

Need to be valid Gram matrix ⇒ K < 0
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Maximum Variance Unfolding

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2321

Any “fold” of the manifold between two points will decrease the Euclidean
distance between the points while the Manifold distance remains constant
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Maximum Variance Unfolding

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

R E P O R T S
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If manifold is maximally stretched between two points the Euclidean dis-
tance will equal the Manifold distance
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Maximum Variance Unfolding

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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Maximise all pairwise distance outside local neighborhood (upper bound)

max
N∑

i=1

N∑
j=1

||xi − xj ||22

⇒ max(trace(K))
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Maximum Variance Unfolding: Algorithm

1 Compute Proximity Graph
2 Compute Local Gram Matrix G

3 Compute Global Gram Matrix K

max(trace(K))

subject to : K < 0
N∑

i=1

N∑
j=1

Kij = 0

Kii + Kjj −Kij −Kji = Gii + Gjj − Gij − Gji

Instance of Semidefinite Programming

4 Apply MDS to K

Raquel Urtasun (TTI-C) Human Body Representations March 8, 2010 56 / 127



Maximum Variance Unfolding: Example2
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Maximum Variance Unfolding: Example2
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Maximum Variance Unfolding: Example2
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Maximum Variance Unfolding: Example2
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Maximum Variance Unfolding: Example2
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Maximum Variance Unfolding: Example2
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Maximum Variance Unfolding: Example2
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Maximum Variance Unfolding: Example2
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Maximum Variance Unfolding: Summary

MDS on optimised constrained Gram Matrix

+ Dimensionality through eigen spectra

+ Convex optimisation problem

+ Handles holes and non-convex manifolds

- Expensive
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Locally Linear Embeddings

Roweis, Saul - Science December 2000 (same issue as Isomap)

Parametrise local geometry of data

Extend local geometry globally
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Locally Linear Embeddings

Parametrise each point as a linear combination of its neighbors

If each patch can be transformed by a translation,rotation and scaling
to manifold

⇒ linear combination valid on manifold
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Locally Linear Embeddings: Algorithm

1 Compute Proximity Graph
2 Compute Reconstruction Weights
3 Find low-dimensional embedding respecting weights
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Locally Linear Embeddings

Find weights in linear combination

Minimize: ε =
N∑

i=1

||
∑

yj∈{(yi ,yj )∈W }

wijyj − yi ||22

Subject to:
∑

j∈{(yi ,yj )∈W }

wij = 1

Solution

wi = (NT N)−1

(
NT y − eT (NT N)−1NT y − 1

eT (NT N)−1e

)
N = [yN(yi ,1), . . . , yN(yi ,K)]T
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Locally Linear Embeddings

Find low dimensional embedding X respecting weights

argminX =
N∑

i=1

||xi −
∑

xj∈{(yi ,yj )∈W }

wijxj ||22

Find X that minimizes:

XT (I−W)T (I−W)︸ ︷︷ ︸
M

X
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Locally Linear Embeddings

Objective function invariant to scaling and translation

N∑
i=1

xi = 0

1

N − 1
XT X = I

Choose X to be the smallest d+1 eigenvectors of M
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Locally Linear Embeddings: Example3
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Locally Linear Embeddings: Example3
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Locally Linear Embeddings: Example3
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Locally Linear Embeddings: Example3
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Locally Linear Embeddings: Example3
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Locally Linear Embeddings: Example3
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Locally Linear Embeddings: Summary

Unravel manifold by local parametrisation of each point

+ Solves a sparse eigevalue problem

+ Finds bottom eigenvalues ⇒ Faster

+ handles holes and non-convex manifolds

- Sensitive to non-uniform sampling

- No indication of dimensionality

- In practice hard to solve, (Matlabs eigensolver often fails)
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Laplacian Eigenmaps

Belkin, Niyogi - NIPS 2001

Find low dimensional embedding preserving locality

Edgeweights correspond to locality measure
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Laplacian Eigenmaps

Preserve “weighted” Locality

argminX =
N∑

i=1

N∑
j=1

||xi − xj ||22Wij

(yi , yj) ∈W

{
wij = e−

||yi−yj ||
2
2

t

wij = 1
(yj , yj) /∈W wij = 0

argminx =
N∑

i=1

N∑
j=1

||xi − xj ||22Wij =

= {L = D−W} = trace(XT LX)
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Laplacian Eigenmaps

Trivial zero dimensional solution

Remove scale invariance

xT D1 = 0

xT Dx = I

Objective

argminX traceXT LX

subject to: xT D1 = 0

xT Dx = I

Raquel Urtasun (TTI-C) Human Body Representations March 8, 2010 69 / 127



Laplacian Eigenmaps

Unconstrained solution given by the eigenvectors to L

Eigenvector corresponding to smallest eigenvalue λN = 0 corresponds
to zero dimensional solution

Constrained solution given by generalised eigenvalue problem

LX = ΛDX
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Laplacian Eigenmaps: Algorithm

1 Compute Proximity Graph
2 Complete Graph
3 Compute embedding from generalised eigenvalue problem

LX = ΛDX

4 Embedding given by bottom (d+1) generalised eigenvectors
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Laplacian Eigenmaps: Example4
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Laplacian Eigenmaps: Example4
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Laplacian Eigenmaps: Example4
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Laplacian Eigenmaps: Example4
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Laplacian Eigenmaps: Example4
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Laplacian Eigenmaps: Example4
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Laplacian Eigenmaps: Summary

Unravels manifold by preserving locality

+ Finds bottom eigenvalues ⇒ Faster

- No indication of dimensionality
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Summary

Isomap and MVU non-linear extensions to MDS

LLE preserves local parametrisation

Laplacian Eigenmaps preserves locality
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Locality
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Algorithms based on local assumption

Global noise viewed locally
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Summary

We have motivated the need for non-linear dimensionality reduction.

Spectral approaches can achieve this, but they don’t lead to
probabilistic models.

We are looking for a probabilistic approach to encoding the mapping.

Next we will se how point based representations of the latent space
can be used to achieve this.
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Non Linear Probabilistic Methods I

(f x )y
i

=
i

Figure: Mapping a two dimensional plane to a higher dimensional space in a
non-linear way.
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Non Linear Probabilistic Methods II

Difficulty for Probabilistic Approaches

Propagate a probability distribution through a non-linear mapping.

Normalisation of distribution becomes intractable.

Figure: Gaussian distribution propagated through a non-linear mapping.
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Sampling Approach

Proposed as Density Networks (MacKay, 1995)

Likelihood is a Gaussian with non-linear mapping from latent space to
data space for the mean

p (Y|X) =
N∏

i=1

D∏
j=1

N
(
yi ,j |fj (xi ,:; θ) , σ2

)
p (X) = N (xi ,:|0, I)

Take the mapping to be e.g. a multi-layer perceptron.

Key idea: share same samples for all data points X̂n = X̂ = {x̂k,:}Mk=1.

Saves computation — compute the mapping M times instead of MN
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Mapping of Points

Mapping points to higher dimensions is easy.

Figure: One dimensional Gaussian mapped to two dimensions.
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Mapping of Points

Mapping points to higher dimensions is easy.

Figure: Two dimensional Gaussian mapped to three dimensions.
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Log Likelihood

Sample approximation to log likelihood:

log p (Y|θ) =
N∑

i=1

log
1

M

M∑
k=1

p
(
yi ,:|θ, ¯̂xk,:

)
so we have

d

dθ
log p (yi,:|θ) =

MX
k=1

p (yi,:|θ, x̂k,:)PM
m=1 p (yi,:|θ, x̂m,:)

d

dθ
log p (yi,:|θ, x̂k,:)

d

dθ
log p (yi,:|θ) =

MX
k=1

π̂i,k
d

dθ
log p (yi,:|θ, x̂k,:)

Note: π̂i ,k look a bit like the posterior over component k for data point i .

Use gradient based optimisation to find the mapping.
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Generative Topographic Mapping

Generative Topographic Mapping (GTM) (Bishop et al., 1998a)

Key idea: Lay points out on a grid.

Constrained mixture of Gaussians.

Figure: One dimensional Gaussian mapped to two dimensions.

Raquel Urtasun (TTI-C) Human Body Representations March 8, 2010 82 / 127



The GTM Prior

Prior distribution is a mixture model in a latent space.

p (X) =
N∏

i=1

p (xi ,:)

p (xi ,:) =
1

M

M∑
k=1

δ (xi ,: − x̂k,:)

The x̂k,: are laid out on a regular grid.
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Mapping and E-Step

Likelihood is a Gaussian with non-linear mapping from latent space to
data space for the mean

p (Y|X,θ) =
NY

i=1

DY
j=1

N
“
yi,j |fj (xi,:; W, l) , σ2

”
In the original paper (Bishop et al., 1998b) an RBF network was
suggested,

In the E-step, posterior distribution over k is given by

π̂i ,k =

∏D
j=1N

(
yi ,j |fj (x̂k ; W, l) , σ2

)∑M
m=1

∏D
j=1N (yi ,j |fj (x̂m; W, l) , σ2)

sometimes called the “responsibility of component k for data point i”.
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Likelihood Optimisation

We then maximise the lower bound on the log likelihood,

log p (yi ,:|θ) ≥ 〈log p (yi ,:, x̂k,:|θ)〉q(k) − 〈log q (k)〉q(k) ,

Free energy part of bound

〈log p (yi ,:, x̂k,:|θ)〉 =
M∑

k=1

π̂i ,k log p (yi ,:|x̂k,:,θ) + const

When optimising parameters in EM, we ignore dependence of π̂i ,k on
parameters. So we have

d
dθ
〈log p (yi ,:, x̂k,:|θ)〉 =

M∑
k=1

π̂i ,k
d
dθ

log p (yi ,:|x̂k,:,θ)

which is very similar to density network result!

Interpretation of posterior is slightly different.
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Stick Man Data

N = 55 frames of motion capture.

xyz locations of 34 points on the
body.

D = 102 dimensional data.

“Run 1” available from http:
//accad.osu.edu/research/
mocap/mocap_data.htm.

Changing

Angle

of Run
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Stick Man Data

demStickDnet1
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Figure: Stick man data visualised with the GTM using an RBF network with
10×10 points in the grid.
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Stick Man Data

demStickDnet2
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Figure: Stick man data visualised with the GTM using an RBF network with
20× 20 points in the grid.

Raquel Urtasun (TTI-C) Human Body Representations March 8, 2010 87 / 127



Bubblewrap Effect

Figure: The manifold is more like bubblewrap than a piece of paper.
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Effect of Separated Means

−6 −4 −2 0 2 4 6
0

0.5

1

Figure: As Gaussians become further apart the posterior probability becomes
more abrupt. 1 standard deviations apart.
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Effect of Separated Means
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Figure: As Gaussians become further apart the posterior probability becomes
more abrupt. 2 standard deviations apart.
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Effect of Separated Means
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Figure: As Gaussians become further apart the posterior probability becomes
more abrupt. 4 standard deviations apart.
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Effect of Separated Means
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Figure: As Gaussians become further apart the posterior probability becomes
more abrupt. 8 standard deviations apart.
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Effect of Separated Means
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Figure: As Gaussians become further apart the posterior probability becomes
more abrupt. 16 standard deviations apart.
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Equivalence of GTM and Density Networks

GTM and Density Networks have the same origin. (Bishop et al.
1996; McKay, 1995).

In original Density Networks paper MacKay suggested Importance
Sampling (MacKay, 1995).

Early work on GTM also used importance sampling.

Main innovation in GTM was to lay points out on a grid (inspired by
Self Organizing Maps (Kohnonen, 2001).
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Summary

We have explored two point based approaches to dimensionality
reduction.

Approaches seem to generalise well even when dimensions of data is
greater than number of points.

Both approaches are difficult to extend to higher dimensional latent
spaces

number of samples/centres required increases exponentially with
dimension.

Next we will explore a different probabilistic interpretation of PCA
and extend that to non-linear models.
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Dual Probabilistic PCA

Probabilistic PCA

We have seen that PCA has a probabilistic interpretation (Tipping and

Bishop, 1999b) .

It is difficult to ‘non-linearise’ directly.

GTM and Density Networks are an attempt to do so.

Dual Probabilistic PCA

There is an alternative probabilistic interpretation of PCA (Lawrence,

2005) .

This interpretation can be made non-linear.

The result is non-linear probabilistic PCA.
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Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameters, W.
Integrate out
parameters.

W

Y

X

p (Y|X,W) =
NY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:
Define Gaussian prior
over parameters, W.
Integrate out
parameters.

W

Y

X

p (Y|X,W) =
NY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
DY

i=1

N
`
wi,:|0, I

´
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Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:
Define Gaussian prior
over parameters, W.
Integrate out
parameters.

W

Y

X

p (Y|X,W) =
NY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
DY

i=1

N
`
wi,:|0, I

´

p (Y|X) =
DY

j=1

N
“

y:,j |0,XXT + σ2I
”
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

W

Y

X

p (Y|X) =
DY

j=1

N
“

y:,j |0,XXT + σ2I
”
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

p (Y|X) =
DY

j=1

N
`
y:,j |0,K

´
, K = XXT + σ2I

log p (Y|X) = −
D

2
log |K| −

1

2
tr
“

K−1YYT
”

+ const.

If U′q are first q principal eigenvectors of D−1YYT and the corresponding eigenvalues are Λq ,

X = U′qLRT, L =
`
Λq − σ2I

´ 1
2

where R is an arbitrary rotation matrix.
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Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

p (Y|W) =
NY

i=1

N
`
yi,:|0,C

´
, C = WWT + σ2I

log p (Y|W) = −
N

2
log |C| −

1

2
tr
“

C−1YTY
”

+ const.

If Uq are first q principal eigenvectors of N−1YTY and the corresponding eigenvalues are Λq ,

W = UqLRT, L =
`
Λq − σ2I

´ 1
2

where R is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent
Solution for Probabilistic PCA (solves for the mapping)

YTYUq = UqΛq W = UqLVT

Solution for Dual Probabilistic PCA (solves for the latent positions)

YYTU′q = U′qΛq X = U′qLVT

Equivalence is from

Uq = YTU′qΛ
− 1

2
q
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Gaussian Process (GP)

Prior for Functions

Probability Distribution over Functions

Functions are infinite dimensional.

Prior distribution over instantiations of the function: finite dimensional
objects.
Can prove by induction that GP is ‘consistent’.

Mean and Covariance Functions

Instead of mean and covariance matrix, GP is defined by mean
function and covariance function.

Mean function often taken to be zero or constant.
Covariance function must be positive definite.
Class of valid covariance functions is the same as the class of Mercer
kernels.
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Gaussian Processes II

Zero mean Gaussian Process

A (zero mean) Gaussian process likelihood is of the form

p (y|X) = N (y|0,K) ,

where K is the covariance function or kernel.

The linear kernel with noise has the form

K = XXT + σ2I

Priors over non-linear functions are also possible.

To see what functions look like, we can sample from the prior process.
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Covariance Samples

demCovFuncSample
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Figure: linear kernel, K = XXT
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with γ = 10, α = 1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 1, α = 1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 0.3, α = 4
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Covariance Samples

demCovFuncSample
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Figure: MLP kernel with α = 8, w = 100 and b = 100
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Covariance Samples
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Figure: MLP kernel with α = 8, b = 0 and w = 100
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Covariance Samples
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Figure: bias kernel with α = 1 and
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Covariance Samples

demCovFuncSample
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Figure: summed combination of: RBF kernel, α = 1, l = 0.3; bias kernel, α =1;
and white noise kernel, β = 100
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Gaussian Process Regression

Posterior Distribution over Functions

Gaussian processes are often used for regression.

We are given a known inputs X and targets Y.

We assume a prior distribution over functions by selecting a kernel.

Combine the prior with data to get a posterior distribution over
functions.
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Gaussian Process Regression
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Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameteters, W.
Integrate out
parameters.

W

Y

X

p (Y|X,W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
DY

i=1

N
`
wi,:|0, I

´

p (Y|X) =
DY

j=1

N
“

y:,j |0,XXT + σ2I
”
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Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.

W

Y

X

p (Y|X) =
DY

j=1

N
`
y:,j |0,K

´

K = XXT + σ2I

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.

W

Y

X

p (Y|X) =
DY

j=1

N
`
y:,j |0,K

´
K =?

Replace linear kernel with non-linear

kernel for non-linear model.

This is called the Gaussian Process Latent Variable Model (GPLVM)
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Non-Linear Latent Variable Model

RBF Kernel

The RBF kernel has the form ki ,j = k (xi ,:, xj ,:) , where

k (xi ,:, xj ,:) = α exp

(
−

(xi ,: − xj ,:)
T (xi ,: − xj ,:)

2l2

)
.

No longer possible to optimise wrt X via an eigenvalue problem.

Instead find gradients with respect to X, α, l and σ2 and optimise
using gradient methods.
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Swiss roll: Initialisation I

‘Swiss Roll’

−10 −5 0 5 10

−10

−5

0

5

10

15

0

50

Figure: The ‘Swiss Roll’ data set is data in three dimensions that is inherently
two dimensional.
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Swiss Roll: Initialisation II

Quality of solution is Initialisation Dependent
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Figure: Left: Swiss roll solution initalised by PCA. Right: Swiss roll solution
initialised by Isomap.
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Stick Man Data

N = 55 frames of motion capture.

xyz locations of 34 points on the
body.

D = 102 dimensional data.

“Run 1” available from http:
//accad.osu.edu/research/
mocap/mocap_data.htm.

Changing

Angle

of Run
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Stick Man

demStick1
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Figure: The latent space for the stick man motion capture data.
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Non-smooth latent spaces

Non smooth latent spaces can be avoided by:

Constrain the forward-mapping: using back-constraints

Combine graph-based methods and non-linear latent variable models

Use better optimization schemes that are less prone to get stuck in
local minima

Marginalize the latent space
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NeuroScale

Multi-Dimensional Scaling with a Mapping

Lowe and Tipping (1997) made latent positions a function of the
data.

xij = fj (yi ; w)

Function was either multi-layer perceptron or a radial basis function
network.
Their motivation was different from ours:

They wanted to add the advantages of a true mapping to
multi-dimensional scaling.
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Back Constraints in the GP-LVM

Back Constraints

We can use the same idea to force the GP-LVM to respect local
distances(Lawrence and Quinonero Candela, 2006).

By constraining each xi to be a ‘smooth’ mapping from yi local
distances can be respected.

This works because in the GP-LVM we maximise wrt latent variables,
we don’t integrate out.

Can use any ‘smooth’ function:
1 Neural network.
2 RBF Network.
3 Kernel based mapping.
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Optimising BC-GPLVM

Computing Gradients

GP-LVM normally proceeds by optimising

L (X) = log p (Y|X)

with respect to X using dL
dX .

The back constraints are of the form

xij = fj (yi ,:; B)

where B are parameters.

We can compute dL
dB via chain rule and optimise parameters of

mapping.
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Motion Capture Results

demStick1 and demStick3
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Figure: The latent space for the motion capture data with (right) and without
(left) dynamics. The dynamics us a Gaussian process with an RBF kernel.
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Stick Man Results

demStickResults
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(a)
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(c)

(d)

(a) (b) (c) (d)

Projection into data space from four points in the latent space. The inclination of

the runner changes becoming more upright.
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Incorporating prior knowledge

It is useful to use prior knowledge when additional information is
available, e.g., cyclic motions, smoothness.

We design priors over the latent space that incorporate the prior
knowledge.

Our prior is based on the Locally Linear Embedding (LLE) [Roweis,
01] cost function

L =
D

2
ln |K|+ D

2
tr(K−1YYT ) + λ

N∑
i=1

d∑
q=1

||xi,q −
∑
j∈ηi

wij,qxj,q||2

with xi ,q the q-th dimension of xi .

We define the weights to reflect the prior knowledge.

This is the Locally Linear GPLVM (LL-GPLVM) (Urtasun et al., 2008)
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Generate animations by sampling

We learn style-content separation models using the following sources of prior
knowledge (Urtasun et al. 2008)

I smoothness: points close in observation space should be close in latent
space.

I cyclic structure: points with similar phase should be close.
I transitions: points where a transition could happen should be close in

the latent space.

Figure: GPLVM
Figure: Topologies Figure: Sampling
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Problems with the GPLVM

It relies on the optimization of a non-convex function

L =
D

2
ln |K|+ D

2
tr(K−1YYT ) .
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This is even worst if the dimensionality of the latent space is small.
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This is even worst if the dimensionality of the latent space is small.

As a consequence this models have only been applied to small databases of
a single activity.
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Rank priors

No distortion is introduced by an initialization step; the latent
coordinates are initialized to be the original observations

Xinit = Y

We introduce a prior over the latent space that encourages latent
spaces to be low dimensional.

Our method is able to estimate the latent space and its
dimensionality (Geiger et al., 2009).
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Continuous dimensionality reduction

We want to encourage latent space that are low-dimensional.

Dimensionality can be measure by the rank of XXT .

We would like to penalize the rank, but the rank is a discrete
function. The optimization would have to solve a complex
combinatorial problem.

We relax the rank minimization and define a prior that encourages
sparsity of the eigenvalues, such that:

L =
D

2
ln |K|+ D

2
tr(K−1YYT ) + α

D∑
i=1

φ(si )

with si the eigenvalues of X̄X̄T , X̄ the zero-mean X, and φ is a
function that encourages sparsity.
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Choice of the penalty function

Common choice for sparseness is the power family

φ(si , p) = |si |p

p = 1 is a Laplace prior (i.e., L1 norm), which is linear.

However, our objective function is non-convex. We use a penalty that
drives faster to zero the small singular values

φ(si ) = log(1 + βsi ) .

Raquel Urtasun (TTI-C) Human Body Representations March 8, 2010 119 / 127



Choice of the penalty function

Common choice for sparseness is the power family

φ(si , p) = |si |p

p = 1 is a Laplace prior (i.e., L1 norm), which is linear.

However, our objective function is non-convex. We use a penalty that
drives faster to zero the small singular values

φ(si ) = log(1 + βsi ) .

Raquel Urtasun (TTI-C) Human Body Representations March 8, 2010 119 / 127



Estimating the dimensionality

Minimizing the negative log posterior results in a reduction of the
energy of the spectrum. We prevent this by optimizing instead

minL s.t. ∀i si ≥ 0, E (Y)− E (X) = 0,

with the energy E (X) =
∑

i s2
i .

Finally, we choose the dimensionality to be

Q = argmaxi

si

si+1 + ε

where ε� 1, and s1 ≥ s2 ≥ · · · ≥ sD
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Dimensionality Estimation Results
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Results on mocap

−2 −1 0 1 2

−1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

0.5

0

0.5

1

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.

−2

1.5

−1

0.5

0

0.5

1

1.5

2

−2 −1 0 1 2

−1

0.5

0

0.5

1

(GPLVM init PCA) (Rank priors)

Figure: Running (top) and walking (bottom) models from mocap data. Different
subjects are depicted in different colors. Unlike with the GPLVM, the latent
coordinates using rank priors are very smooth.
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Hierarchical GP-LVM

Stacking Gaussian Processes

Regressive dynamics provides a simple hierarchy.

The input space of the GP is governed by another GP.

By stacking GPs we can consider more complex hierarchies.

Ideally we should marginalise latent spaces

In practice we seek MAP solutions.

Raquel Urtasun (TTI-C) Human Body Representations March 8, 2010 123 / 127



Two Correlated Subjects

demHighFive1

Figure: Hierarchical model of a ’high five’.
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Within Subject Hierarchy

Decomposition of Body

Figure: Decomposition of a subject.
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Single Subject Run/Walk

demRunWalk1

Figure: Hierarchical model of a walk and a run.
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More?

If you want to learn more, look at the additional material.

Otherwise, do the research project on this topic!

Next week we will do dynamical models.

Let’s do some exercises now!
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