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Let’s talk about Factorization
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Factorization from Video Sequences

When we have video sequences, we can get feature tracks

Often, we can reconstruct structure and motion from those tracks using
factorization

Figure: 3D reconstruction of a rotating ping pong ball using factorization [Tomasi
and Kanade, 92]
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Orthographic and Weak perspective

In orthographic and weak perspective, the last row is always [0, 0, 0, 1], there
is no division by the last row and thus we can write

xji = P̃j p̄i

with xji the location of the projection of the i-th point in the j-th frame, and

P̃j a 2× 4 projection matrix, and p̄i = (Xi ,Yi ,Zi , 1).

We can compute the centroid of the points

x̄j =
1

N

∑
i

xji = P̃j
1

N

∑
i

p̄i = P̃j c̄

with c̄ = (X̄ , Ȳ , Z̄ , 1) the augmented 3D centroid of the point cloud

We place the origin of the coordinates at (X̄ , Ȳ , Z̄ ) = (0, 0, 0)
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Factorization

Let x̃ji = xji − x̄j be the 2D point locations after their image centroid has
been substracted. We have

x̃ji = Mjpi

where Mj is the upper 2× 3 portion of the projection matrix Pj , and
pi = (Xi ,Yi ,Zi ).

Concatenating all measurements we have

X̂ =


x̃11 · · · x̃1i · · · x̃1N

...
...

...
x̃j1 · · · x̃ji · · · x̃jN
...

...
...

x̃M1 · · · x̃Mi · · · x̃MN

 =


M1

...
Mj

...
MN


[
p1 · · · pi · · · pN

]
= M̂Ŝ

X̂ is called the measurement matrix, and M̂ and Ŝ are the motion and
structure respectively.
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structure respectively.

Raquel Urtasun (TTI-C) Computer Vision March 14, 2013 5 / 25



More on factorization

Because M̂ is a 2M × 3 matrix and Ŝ a 3×N matrix, if we apply SVD to X̂,
we will have only 3 non-zero singular values.

Measurements are typically noisy, so return only the rank-3 factorization

We still have to obtain M̂ and Ŝ as the SVD does not return this directly

X̂ = UΣVT = [UQ][Q−1ΣVT ]

We can thus set M̂ = UQ, and Q−1ΣVT

How can we recover the 3× 3 matrix Q?

This depends on the motion model used (weak-perspective, orthographic)

See Szelisky 7.3 for an explanation

Rotation left to right or right to left of the depth reverse version, Necker
cube illusion

What if perspective? Assume orthographic, solve for it and iterate to be
perspective.
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Because M̂ is a 2M × 3 matrix and Ŝ a 3×N matrix, if we apply SVD to X̂,
we will have only 3 non-zero singular values.

Measurements are typically noisy, so return only the rank-3 factorization
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What if the motion is non-rigid?
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Non-rigid Structure from Motion

[C. Bregler, A. Hertzmann and H. Biermann, CVPR00]

Observed shapes can be represented as a linear combination of a compact
set of basis shapes

Each instantaneous structure is expressed as a point in the linear space of
shapes spanned by the shape basis

S =
K∑
l=1

liSi

with S,Si ∈ <3×P , li ∈ <

Since the space of spatial deformations is highly object specic, the shape
basis need to be estimated anew for each video sequence

The shape basis of a mouth smiling, for instance, cannot be recycled to
compactly represent a person walking
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More details

Under the scale orthographic projection[
u1 u2 · · · uP
v1 v2 · · · vP

]
= R

(
K∑
i=1

liSi

)
+ T

with

R =

[
r1 r2 r3
r4 r5 r6

]
containing the first 2 rows of the full 3d camera rotation matrix, and T is
the camera translation

As in Tomasi-Kanade, we eliminate T by substracting the mean of all 2D
points, and assuming that S is centered at the origin

Thus [
u1 · · · uP
v1 · · · vP

]
=
[
l1R · · · lKR

] S1

...
SK


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More details

[
u1 · · · uP
v1 · · · vP

]
=
[
l1R · · · lKR

] S1

...
SK


Adding a temporal index to each 2D point, and denoting the tracked points
in frame t as (uti , v

t
i ), we have

W =


u11 · · · u1P
v1
1 · · · v1

P
...

...
uN1 · · · uNP
vN
1 · · · uNP

 =

 l11R1 · · · l1KR1

...
...

lN1 RN · · · lNK RN


S1

...
SK

 = QB

Performing SVD, and taking the first 3K singular vectors / values

W2N×P = UΣVT = Q2N×3KB3K×P
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Factorizing Pose from Configuration

Performing SVD, and taking the first 3K singular vectors / values

W2N×P = UΣVT = Q2N×3KB3K×P

In the second step, we extract the camera rotations Rt and shape basis
weights lt from the matrix Q̂

Q̂ only contains N(K + 6) free variables

Consider two rows of Q̂ that correspond to one single time frame t, and
drop the index on t

q̂t =
[
l t1Rt · · · l tKRt

]
=

[
l1r1 l1r2 l1r3 · · · lK r1 lK r2 lK r3
l1r4 l1r5 l1r6 · · · lK r4 lK r5 lK r6

]
Reordering,

q̂ =

 l1r1 l1r2 l1r3 l1r4 l1r5 l1r6
...

...
lK r1 lK r2 lK r3 lK r4 lK r5 lK r6

 =

 l1...
lK

 [r1 r2 · · · r6
]
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Factorizing Pose from Configuration

Reordering,

q̂ =

 l1r1 l1r2 l1r3 l1r4 l1r5 l1r6
...

...
lK r1 lK r2 lK r3 lK r4 lK r5 lK r6
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This has rank 1, and can be obtained from SVD by applying successively
reordering and factorization to all time blocks of Q̂

In the final step, we need to enforce the orthonormality of the rotation
matrices

A linear transformation G is found by solving a least squares problem, where
G maps R̂t into a rotation matrix Rt = R̂tG

The least squares problem imposes orthogonality by[
r1 r2 r3

]
GGT

[
r1 r2 r3

]T
= 1[

r3 r4 r5
]

GGT
[
r3 r4 r5

]T
= 1[

r1 r2 r3
]

GGT
[
r4 r5 r6

]T
= 0
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Trajectory basis

Let’s look again at the shape matrix

S∗ =

X11 · · · X1P Y11 · · · Y1P Z11 · · · Z1P

...
...

...
...

...
...

XF1 · · · XFP YF1 · · · YFP ZF1 · · · ZFP


In the previous case, we assume that this matrix has rank K , with K the
number of shape basis. We took the row space

Now let’s take the column space, and we call this trajectory space

If the time varying shape of an object can be expressed by a minimum of k
shape basis, then there exist exactly k trajectory basis vectors that can
represent the same time varying shape

We consider the structure as a set of trajectories
T (i) = [Tx(i)T ,Ty (i)T ,Tz(i)T ], with Tx(i)T = [X1,i , · · · ,XF ,i ], etc.
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Shape vs Trajectory basis
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Trajectory basis

We consider the structure as a set of trajectories
T (i) = [Tx(i)T ,Ty (i)T ,Tz(i)T ], with Tx(i)T = [X1,i , · · · ,XF ,i ], etc.

We can then say

Tx(i) =
K∑
j=1

axj(i)θ
j Ty (i) =

K∑
j=1

ayj(i)θ
j Tz(i) =

K∑
j=1

azj(i)θ
j

with θj the trajectory basis vector, and axj(i), ayj(i), azj(i) the coefficients
corresponding to that basis vector.

The time varying structure matrix can then be factorized into an inverse
projection matrix and coefficient matrix

S3F×P = Θ3F×3kA3k×P

with A = [AT
x ,A

T
y ,A

T
z ]
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More on Trajectory Basis

The time varying structure matrix can then be factorized into an inverse
projection matrix and coefficient matrix

S3F×P = Θ3F×3kA3k×P

with A = [AT
x ,A

T
y ,A

T
z ]

With a particular form

Ax =

ax1(1) · · · ax1(P)
...

...
axk(1) · · · axk(P)

 Θ =



θT1
θT1

θT1
...

θTF
θTF

θTF


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Benefits

Benefit of the trajectory space representation is that a basis can be
pre-defined that can compactly approximate most real trajectories

Before, PCA based on the data, so it could not represent all possible shapes

Which basis to use?

Discrete Fourier Transform basis, Discrete Wavelet Transform, etc

They employed DCT
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Non-Rigid structure from motion with Trajectory basis

Before we had

W =


u11 · · · u1P
v1
1 · · · v1

P
...

...
uN1 · · · uNP
vN
1 · · · uNP

 =

 l11R1 · · · l1KR1

...
...

lN1 RN · · · lNK RN


S1

...
SK

 = QB

Performing SVD, and taking the first 3K singular vectors / values

W2N×P = UΣVT = Q2N×3KB3K×P

Now

W =


u11 · · · u1P
v1
1 · · · v1

P
...

...
uN1 · · · uNP
vN
1 · · · uNP

 =

R1

. . .

RF

S = RΘA = ΛA

with Λ = RΘ a 3F × 3K matrix.
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Factorization

We can use SVD to factorize into

W = Λ̂Â with Λ = Λ̂Q, A = Q−1Â

The problem of recovering the rotation and structure is reduced to
estimating the rectification matrix Q from Λ

Λ =


r11 θ

T
1 r12 θ

T
2 r13 θ

T
1

r14 θ
T
1 r15 θ

T
2 r16 θ

T
1

...
rF1 θ

T
F rF2 θ

T
F rF3 θ

T
F

rF4 θ
T
F rF5 θ

T
F rF6 θ

T
F


One can estimate Q from Λ̂ by imposing orthogonality conditions

Estimate R from it using non-linear least squares

Once R is known, we can estimate Λ = RΘ

Then the coefficients can be solved via least squares ΛÂ = W
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Let’s talk about Optical Flow
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Optical Flow

We saw how to estimate 2D motion, in the sense of a parametric
transformation from one image to another

The most general (and challenging) version of motion estimation is to
compute an independent estimate of motion at each pixel

This is called optical flow

This typically involves minimizing the brightness or color difference between
corresponding pixels summed over the image

ESSD−OF (u) =
∑
i

|I1(xi + u)− I0(x)|2

The assumption that corresponding pixel values remain the same in the two
images is often called the brightness constancy constraint

The displacement u can be fractional, so a suitable interpolation function
must be applied to image

We can make ESSD−OF more robust by applying robust estimators
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More on Optical Flow

The energy

ESSD−OF (u) =
∑
i

|I1(xi + u)− I0(x)|2

The number of variables u is twice the number of pixels, thus the problem is
under-constraint

What can we do?

The two classic approaches to this problem are to perform the summation
locally over overlapping regions

Or to formulate a MRF and do energy minimization

Think about how you will formulate this
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Metrics and Benchmarks

Same two datasets as for stereo: Middlebury and KITTI

Have a look at their status

What’s a good metric?

Mean-end point distance

Percentage of pixels with distance bigger than some number of pixels

What is the advantage of disadvantage of each?

Raquel Urtasun (TTI-C) Computer Vision March 14, 2013 23 / 25



Examples and Visualizations
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Good luck with the exam!
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