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Example of grouping techniques

K-means style clustering, e.g., SLIC superpixels

Normalized cuts

Graph-based superpixels

Mean-shift

Watershed transform
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Simple K-means

Find three clusters in this data

Figure: From M. Tappen
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K-means style algorithms

We would like to encode

Super-pixels have regular shape

Pixels in super-pixels have similar appearance

Let S = {s1, · · · , sm) be the set of superpixel assignments

We define µ = {µ1, · · · , µm} as the mean location of each superpixel, and
c = {c1, · · · , cm} as the mean appearance descriptor.

We can define the total energy of a pixel as

E (p) = Ecol(p, csp ) + λposEpos(p, µsp )

The problem becomes

min
S,µ,c

∑
p

E (p, sp, µsp , csp ).
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K-means style algorithms

We can define the total energy of a pixel as

E (p) = Ecol(p, csp ) + λposEpos(p, µsp )

The problem becomes

min
S,µ,c

∑
p

E (p, sp, µsp , csp ).

Simple iterative algorithm:

Solve for the assignments S
Solve in parallel for the positions µ and appearances c

Is this easy to do?
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Results

[R. Achanta and A. Shaji and K. Smith and A. Lucchi and P. Fua and S. Susstrunk, PAMI12]
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Joint Segmentation and Depth Estimation

Let S = {s1, · · · , sm) be the set of superpixel assignments

Let Θ = {θ1, · · · , θm} be the set of plane parameters

We define µ = {µ1, · · · , µm} as the mean location of each superpixel, and
c = {c1, · · · , cm} as the mean appearance descriptor.

We can define the total energy of a pixel as

E (p) = E l,r
col(p, csp , θsp ) + λposEpos(p, µsp ) + λdispE

l,r
disp(p, θsp ),

We can use:

Epos(p, µsp ) = ||p− µsp ||22/g Ecol(p, csp = (It(p)− csp )2

and

Edisp(p, θsp ) =

{
(d(p, θsp )− d̂(p))2 if p ∈ F
λ otherwise
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Joint Segmentation and Depth Estimation

We can define the total energy of a pixel as

E (p) = E l,r
col(p, csp , θsp ) + λposEpos(p, µsp ) + λdispE

l,r
disp(p, θsp ),

The problem of joint unsupervised segmentation and flow estimation
becomes

min
Θ,S,µ,c

∑
p

E (p, sp, θsp , µsp , csp ).

Simple iterative algorithm

Solve for the assignments S
Solve in parallel for the planes Θ, positions µ and appearances c

How do we do this?
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[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR13]
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[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR13]

Raquel Urtasun (TTI-C) Computer Vision March 12, 2013 11 / 58



Example of grouping techniques

K-means style clustering, e.g., SLIC superpixels

Normalized cuts

Graph-based superpixels

Mean-shift

Watershed transform
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Segmentation as a mincut problem

Examines the affinities (similarities) between nearby pixels and tries to
separate groups that are connected with weak affinities.

The cut separate the nodes into two groups
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Minimun Cuts

The cut between two groups A and B is defined as the sum of all the
weights being cut

cut(A,B) =
∑

i∈A,j∈B

wi,j

Problem: Results in small cuts that isolates single pixels

We need to normalize somehow
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Normalized Cuts

[J. Shi and J. Malik, PAMI00]

Better measure is the normalized cuts

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B,V )

with assoc(A,A) =
∑

i∈A,j∈A wij is the association term within a cluster and
Assoc(A,V ) = assoc(A,A) + cut(A,B) is the sum of all the weights
associated with nodes in A.

We want minimize the disassociation between the groups and maximize the
association within the groups
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Normalized Cuts

Computing the optimal normalized cut is NP-Complete.

Instead, relax by computing a real value assignment

Let d = W1 be the row sums of the symmetric matrix W, and D = diag(d)
be the corresponding diagonal matrix.

Shi and Malik, compute the cut by solving

min
y

yT (D−W)y

yTDy

relaxing y to be real-value

D−W is the Laplacian
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Solving for the cut

Minimizing this Rayleigh quotient is equivalent to solving the generalized
eigenvalue system

(D−W)y = λDy

This is a normal eigenvalue problem

(I−N)z = λz

with N = D−1/2WD−1/2 is the normalized affinity matrix, and z = D1/2y.

This is an example of a spectral method for segmentation, solution is the
second smallest eigenvector/eigenvalue

This process can be applied in a hierarchical manner to have more clusters

Shi and Malik employ the following affinity

wi,j = exp

(
−||Fi − Fj ||22

σ2
f

− ||pi − pj ||22
σ2
s

)
for pixels within a radius ||pi − pj ||2 < r , and F is a feature vector with
color, intensities, histograms, gradients, etc.
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Algorithm

[J. Shi and J. Malik, PAMI00]
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Examples

Figure: Shi and Malik N-Cuts
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Example of grouping techniques

K-means style clustering, e.g., SLIC superpixels

Normalized cuts

Graph-based superpixels

Mean-shift

Watershed transform
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Graph-based Superpixels

Construct a graph that has as many nodes as pixels

Define edges between neighboring pixels, with whatever definition of
neighboring

Define the weight between neighbors to be the dissimilarity between them (a
non-negative measure)

Let G (V ,E ) be the graph, we want to segment V into components
(C1, · · · ,Cr )

Felzenswald and Hutterlocker defined a simple greedy algorithm which can
be shown to have some interesting global properties
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Algorithm

1 Sort E into π = (o1, · · · , om) by non-decreasing weights

2 Start with segmentation S0, where each vertex is its own component (i.e.,
as many superpixels as pixels)

3 Repeat step 4 for q = 1, · · · , q = m

4 Construct Sq given Sq−1 as follows. Let oq = (vi , vj). If vi and vj are
disjoint components of Sq−1 and w(oq) is small compared to the internal
difference of both components of Sq−1, then merge the two components.
Otherwise do nothing Sq = Sq−1

The internal difference is defined as the largest weight in the minimum spanning
tree of the component.

Int(C ) = max
e∈MST (C ,E)

w(e)
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Results

[P. Felzenszwald and D. Huttenlocher, IJCV04]
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Example of grouping techniques

K-means style clustering, e.g., SLIC superpixels

Normalized cuts

Graph-based superpixels

Mean-shift

Watershed transform
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Basics of Kernel Density Estimation

We have a bunch of points drawn from some distribution

What’s the distribution that generated these points?

[Source: M. Tappen]
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Parametric vs Non-Parametric

We can fit a parametric distribution, e.g., mixture of Gaussians

KDE idea: Use the data to define the distribution

If I were to draw more samples from the same probability distribution,
then those points would probably be close to the points that I have
already drawn
Build distribution by putting a little mass of probability around each
data-point

[Source: M. Tappen]
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Example

[Source: M. Tappen]
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KDE

We approximate the density by

f̂ (x) =
1

n

n∑
i=1

KH(x− xi )

with xi the points, and KH(x− xi ) the kernel

Gaussian kernel is typically used

Alternative way to think about this, put 1 wherever you have a sample and
convolve with a Gaussian
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[Source: M. Tappen]
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What is mean-shift

The density will have peaks (also called modes)

If we started at point and did gradient-ascent, we would end up at one of
the modes

Cluster based on which mode each point belongs to

[Source: M. Tappen]
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No need for gradient ascent

A set of iterative steps can be taken that will monotonically converge to a
mode

No worries about step sizes

This is an adaptive gradient ascent, for each iteration

yj+1 =

∑n
i=1 xig(|| yj−xi

h ||
2
2)∑n

i=1 g(|| yj−xi
h ||

2
2)

with g = d
du k(u), and k(x) = C

∑n
i=1 k(|| yj−xi

h ||
2
2)

Why is this the update?

This procedure gives you one mode, how to get all?

Start from each point, and record the clusters

For segmentation use whatever feature representation you want for xi

[Source: M. Tappen]
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Results

[Source: M. Tappen]
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Let’s look at Structure from Motion
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Structure from motion

We saw in class how 2D and 3D point sets could be aligned

We also saw how this alignment could be used to estimate camera pose and
internal parameters

We now look at the converse problem

Estimating the location of 3D points from multiple images given a sparse set
of correspondences between image features.

This process typically involves simultaneous estimation of 3D geometry
(structure) and camera pose (motion)

This problem is called structure from motion
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Triangulation

It is the problem of determining a point’s 3D position from a set of
corresponding image locations and known camera positions

This problem is the converse of the pose estimation problem

Simplest solution: find 3D point p that lies closest to all the 3D rays
corresponding to the 2D feature locations {xj} observed by cameras
Pj = Kj [Rj |tj ], with tj = −Rjcj .
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Triangulation

The rays originate at cj in a direction v̂j = N (R−1
j K−1

j xj)

The nearest point to p is the point qj = cj + dj v̂j such that

min
dj
||cj + dj v̂j − p||22

This has a minimimun at dj = v̂j · (p− cj), thus

qj = cj + (v̂j v̂
T
j )(p− cj) = cj + (p− cj)||
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Alternative formulation

Can produce significantly better estimates if some cameras are closer to the
3D point than others is to minimize the residual in the measurement
equations

xj =
pj00X + pj01Y + pj02Z + pj03W

pj20X + pj21Y + pj22Z + pj23W

yj =
pj10X + pj11Y + pj12Z + pj13W

pj20X + pj21Y + pj22Z + pj23W

where (xj , yj) are the measured 2D feature locations, and {pj00, · · · , p
j
23} are

the known entries in the camera matrix P, and p = (X ,Y ,Z ,W ) in
homogeneous coordinates

Why is this better?

How do we solve this now?
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Two frame structure from motion

Figure: Images from N. Snavely

Simultaneous recovery of 3D structure and pose from image correspondences

Why is this not the stereo problem?

What can we do?

We can estimate the fundamental matrix given enough correspondences!

x′TFx = 0

Raquel Urtasun (TTI-C) Computer Vision March 12, 2013 39 / 58



Two frame structure from motion

Figure: Images from N. Snavely

Simultaneous recovery of 3D structure and pose from image correspondences

Why is this not the stereo problem?

What can we do?

We can estimate the fundamental matrix given enough correspondences!

x′TFx = 0

Raquel Urtasun (TTI-C) Computer Vision March 12, 2013 39 / 58



Two frame structure from motion

Figure: Images from N. Snavely

Simultaneous recovery of 3D structure and pose from image correspondences

Why is this not the stereo problem?

What can we do?

We can estimate the fundamental matrix given enough correspondences!

x′TFx = 0

Raquel Urtasun (TTI-C) Computer Vision March 12, 2013 39 / 58



Two frame structure from motion

Figure: Images from N. Snavely

Simultaneous recovery of 3D structure and pose from image correspondences

Why is this not the stereo problem?

What can we do?

We can estimate the fundamental matrix given enough correspondences!

x′TFx = 0

Raquel Urtasun (TTI-C) Computer Vision March 12, 2013 39 / 58



8 Point Algorithm

We can write a system of equations

u1u
′
1 v1u

′
1 u′1 u1v

′
1 v1v

′
1 v ′1 u1 v1 1

...
...

...
...

...
...

...
...

unu
′
n vnu

′
n u′n unv

′
n vnv

′
n v ′n un vn 1



f11

f12

...
f33

 = 0

How to solve this?

Shouldn’t F have rank 2?
min

F′
||F− F′||22

Solve by SVD (take 2 biggest singular values / singular vectors)

What happens in the presence of noise?

Normalize the points to have mean 0 and unit variance (Hartley 99)

This works better in practice
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Results

[Source: N. Snavely]
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Now what?

Given the fundamental matrix, we can calibrate the cameras

Given this calibration we can triangulate

This is a chicken and egg problem so we can re-iterate this process.
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Pure Translational Motion (known rotation)

If we know the rotation, we can pre-rotate all the points in the second image
to match the viewing direction of the first.

The resulting set of 3D points move towards (or away from) the focus of
expansion (FOE)

See exercise about this ...

What if its a purely rotational motion?

What happens in the general case if we know K?
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More views...

The geometry of three views is described by a 3 x 3 x 3 tensor called the
trifocal tensor

The geometry of four views is described by a 3 x 3 x 3 x 3 tensor called the
quadrifocal tensor

After this it starts to get complicated ...

We will not see this in class
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Structure from motion

Given many images, how can we

figure out where they were all taken from?

build a 3D model of the scene?

[Source: N. Snavely]
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Structure from Motion

Input: images with points in correspondence pi,j = (ui,j , vi,j)

Output:

structure: 3D location xi for each point pi

motion: camera parameters Rj , tj possibly Kj

Objective function: minimize reprojection error

!"#$%&'()#*$%+,&-."/+ ,'$0/+

[Source: N. Snavely]
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Reconstructions from Video

[Source: N. Snavely]
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How do we get correspondences?

Feature detection and matching

We can construct a graph of matches

Use RANSAC to estimate fundamental matrices between each pair

[Source: N. Snavely]
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Structure from Motion Problem

!"#$%"&'&

!"#$%"&(&

!"#$%"&)&

R1,t1 
R2,t2 

R3,t3 

X1 

X4 

X3 

X2 

X5 

X6 

X7 

minimize 
g(R, T, X) 

!'*'&
!'*(&

!'*)&

"#"$%&"'()*%'(+,*+-.()'+*

[Source: N. Snavely]
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Problem Size

What are the variables?

How many variables per camera?

How many variables per point?

E.g., Trevi Fountain collection, 466 input photos, > 100, 000 3D points

[Source: N. Snavely]
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Bundle Adjustment

Minimize sum of squared reprojection errors:

g(X,R,T) =
m∑
i=1

n∑
j=1

wij ||P(xi ,Rj , tj)−
[
ui,j
vi,j

]
||22

with wij indicator whether they are visible or not, P(xi ,Rj , tj) the predicted
image location, and (ui,j , vi,j) the observed image location

Minimizing this is called bundle adjustment

We saw some other versions in class

Optimized using non-linear least squares, e.g. Levenberg-Marquardt

Initialization is very important
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Failure cases

Necker reversal

[Source: N. Snavely]
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Failure cases

Repetitive Patterns

[Source: N. Snavely]
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Incremental Structure From Motion

[Source: N. Snavely]
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Incremental Structure From Motion

What’s the problem with this approach?

Raquel Urtasun (TTI-C) Computer Vision March 12, 2013 56 / 58



More Results

[Source: N. Snavely]
Raquel Urtasun (TTI-C) Computer Vision March 12, 2013 57 / 58



Applications: 3D Reconstruction from Photo Collections

[N. Snavely et al. Siggraph 2006]
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