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A different view on tracking
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Tracking as a graph minimization

Goal: Given a set of detections in video, link the detections into tracks

Discover which detections are of the same object, and how many objects
there are
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Notation and Problem Definition

Let X = {xi} be a set of object observations

Each xi is detection response xi = (xi , si , ai , ti ) , where xi is the position, si
is the scale, ai is the appearance and ti is the time step (frame index)

A single trajectory hypothesis is defined as an ordered list of object
observations, Tk = {xk1 , · · · , xklk }, with xki ∈ X
An association hypothesis T is defined as a set of single trajectory
hypotheses, T = {Tk}
The association is given by

T ∗ = arg max
T

P(T |X )

= arg max
T

P(X|T )P(T )

= arg max
T

∏
i

P(xi |T )P(T )

We have assumed that the likelihood prob. are conditionally independent
given T .
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Optimization problem

We want to solve the following optimization

T ∗ = arg max
T

∏
i

P(xi |T )P(T )

The space T is very large, so difficult to optimize

There is one more constraint: one object can only belong to one trajectory.

Tk ∩ Tl = ∅, ∀k 6= l

If we assume that the motion of each object is independent

T ∗ = arg max
T

∏
i

P(xi |T )
∏
Tk∈T

P(Tk)

s.t. Tk ∩ Tl = ∅, ∀k 6= l

When is this assumption not good?
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Problem Formulation

T ∗ = arg max
T

∏
i

P(xi |T )
∏
Tk∈T

P(Tk)

s.t. Tk ∩ Tl = ∅, ∀k 6= l

P(xi |T ) is the likelihood of observation xi . We can use a Bernoulli
distribution for example to represent being an inlier or outlier

P(xi |T ) =

{
1− βi if ∃Tk ∈ T , xi ∈ Tk

βi otherwise.

P(Tk) can be modeled as a Markov chain, with initialization probability
Pent , termination probability Pexit , and transition probability Plink(xki+1 |xki )

P(Tk) = P({xk0 , · · · , xklk })
= Pent(xk0 )plink(xk1 |xk0 ) · · · plink(xklk |xklk )pexit(xklk )

P(xi |T ) allows for selecting observations, rather than assume all the inputs
to be true detections, without additional processing to remove false
trajectories after association.
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Useful definitions

To couple the non-overlap constraints with the objective function we define
0-1 indicator variables

fen,i =

{
1 if ∃Tk ∈ T , Tk starts from xi

0 otherwise.

fex,i =

{
1 if ∃Tk ∈ T , Tk ends at xi

0 otherwise.

fi,j =

{
1 if ∃Tk ∈ T , xj is after xi in Tk
0 otherwise.

fi =

{
1 if ∃Tk ∈ T , xi ∈ Tk
0 otherwise.

T is non-overlap if and only if

fen,i +
∑
j

fj,i = fi = fex,i +
∑
j

fi,j ∀i
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Min-cost flow problem

We have the optimization problem

min
T
−
∑
Tk∈T

logP(Tk)−
∑
i

log p(xi |T )

This can be obtained as

min
T

∑
Tk∈T

(
Cen,k0 fen,k0 +

∑
j Ckj ,kj+1 fkj ,kj+1 + Cex,klk

fex,klk

)
+

+
∑

i (− log(1− βi )fi − logβi (1− fi ))

s.t. fen,i +
∑

j fj,i = fi = fex,i +
∑

j fi,j ∀i

Which can be reformulated as

min
T

∑
i Cen,i fen,i +

∑
i,j Ci,j fi,j +

∑
i Cex,i fex,i +

∑
i Ci fi

s.t. fen,i +
∑

j fj,i = fi = fex,i +
∑

j fi,j ∀i

What are the relationships between the costs and the probabilities we had
before?
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Mapping to Min cost-flow network

This can be mapped into a cost-flow network G (X ) with source s and sink t

min
T

∑
i Cen,i fen,i +

∑
i,j Ci,j fi,j +

∑
i Cex,i fex,i +

∑
i Ci fi

s.t. fen,i +
∑

j fj,i = fi = fex,i +
∑

j fi,j ∀i

For every observation xi ∈ X create two nodes ui , vi , and an arc with cost
c(ui , vj) = Ci and flow fi .

Add arcs c(s, ui ) = Cen,i and flow fen,i , as well as c(t, ui ) = Cex,i and flow
fex,i

For every transition plink(xj |xi ) 6= 0, create an arc with cost c(vi , uj) = Ci,j

and flow fi,j .

The constraint is equivalent to the flow conservation constraint

The objective is the cost of the flow in G .

Finding optimal association hypothesis T ∗, is equivalent to sending the flow
from source to sink that minimizes the cost.
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and flow fi,j .

The constraint is equivalent to the flow conservation constraint

The objective is the cost of the flow in G .

Finding optimal association hypothesis T ∗, is equivalent to sending the flow
from source to sink that minimizes the cost.
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Mapping to Min cost-flow network

This can be mapped into a cost-flow network G (X ) with source s and sink t

min
T

∑
i Cen,i fen,i +

∑
i,j Ci,j fi,j +

∑
i Cex,i fex,i +

∑
i Ci fi

s.t. fen,i +
∑

j fj,i = fi = fex,i +
∑

j fi,j ∀i
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How is to optimize the objective

For a given f (G ), the minimal cost can be solved for in polynomial time by a
min-cost flow algorithm

The minimal cost is a convex function w.r.t f (G )

Hence the enumeration over all possible f (G ) can be replaced by a
Fibonacci search, which finds the global minimal cost by at most O(log n)
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Tracking Results

[L. Zhang, Y. Li and R. Nevatia, CVPR08]

What are the problems with this approach?
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Grouping
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Gestalt ”Theory”

There exist a variety of factors in grouping

Proximity: Tokens that are nearby tend to be grouped together

Similarity: Similar tokens tend to be grouped together
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Gestalt ”Theory”

There exist a variety of factors in grouping

Common fate: Tokens with coherent motion tend to be grouped together

Common region: Tokens that lie inside the same closed region tend to be
group together

Parallelism: Parallel curves or tokens tend to be grouped together

Closure: Tokens or curves that tend to lead to closed curves tend to be
close together

Symmetry: Curves that lead to symmetric groups are typically grouped
together

Continuity: Tokens than lead to continuous (with a relax notion of
continuity) curves tend to be grouped

Familiar Configuration: Tokens that, when grouped, lead to a familiar
object tend to be grouped together
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Gestalt ”Theory”

There exist a variety of factors in grouping

Continuity: Tokens than lead to continuous (with a relax notion of
continuity) curves tend to be grouped

Familiar Configuration: Tokens that, when grouped, lead to a familiar
object tend to be grouped together
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Effects of Grouping

Grouping makes you see hallucinate contours

Figure: Kanizsa Triangle
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When do we use grouping?

In the case of frontal/slanted plane methods, we assume that the image has
been over-segmented into a set of superpixels

This can be applied to the general problem of matching to do it in a more
robust way.

What is the model assumption then?

How are those superpixels computed?

We will see a few different approaches.

At first sight, the problem is very similar to clustering

We can draw inspiration from clustering algorithms
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Motivation of clustering

Figure: Illustration from Comanciu and Meer
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Example of grouping techniques

K-means style clustering, e.g., SLIC superpixels

Normalized cuts

Graph-based superpixels

Mean-shift

Watershed transform
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Simple K-means

Find three clusters in this data

Figure: From M. Tappen
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K-means style algorithms

We would like to encode

Super-pixels have regular shape

Pixels in super-pixels have similar appearance

Let S = {s1, · · · , sm) be the set of superpixel assignments

We define µ = {µ1, · · · , µm} as the mean location of each superpixel, and
c = {c1, · · · , cm} as the mean appearance descriptor.

We can define the total energy of a pixel as

E (p) = Ecol(p, csp ) + λposEpos(p, µsp )

The problem becomes

min
S,µ,c

∑
p

E (p, sp, µsp , csp ).
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K-means style algorithms

We can define the total energy of a pixel as

E (p) = Ecol(p, csp ) + λposEpos(p, µsp )

The problem becomes

min
S,µ,c

∑
p

E (p, sp, µsp , csp ).

Simple iterative algorithm:

Solve for the assignments S
Solve in parallel for the positions µ and appearances c

Is this easy to do?
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Results

[R. Achanta and A. Shaji and K. Smith and A. Lucchi and P. Fua and S. Susstrunk, PAMI12]

Raquel Urtasun (TTI-C) Computer Vision March 7, 2013 26 / 52



Joint Segmentation and Depth Estimation

Let S = {s1, · · · , sm) be the set of superpixel assignments

Let Θ = {θ1, · · · , θm} be the set of plane parameters

We define µ = {µ1, · · · , µm} as the mean location of each superpixel, and
c = {c1, · · · , cm} as the mean appearance descriptor.

We can define the total energy of a pixel as

E (p) = E l,r
col(p, csp , θsp ) + λposEpos(p, µsp ) + λdispE

l,r
disp(p, θsp ),

We can use:

Epos(p, µsp ) = ||p− µsp ||22/g Ecol(p, csp = (It(p)− csp )2

and

Edisp(p, θsp ) =

{
(d(p, θsp )− d̂(p))2 if p ∈ F
λ otherwise
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Joint Segmentation and Depth Estimation

We can define the total energy of a pixel as

E (p) = E l,r
col(p, csp , θsp ) + λposEpos(p, µsp ) + λdispE

l,r
disp(p, θsp ),

The problem of joint unsupervised segmentation and flow estimation
becomes

min
Θ,S,µ,c

∑
p

E (p, sp, θsp , µsp , csp ).

Simple iterative algorithm

Solve for the assignments S
Solve in parallel for the planes Θ, positions µ and appearances c

How do we do this?
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[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR13]
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[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR13]
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Example of grouping techniques

K-means style clustering, e.g., SLIC superpixels

Normalized cuts

Graph-based superpixels

Mean-shift

Watershed transform
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Segmentation as a mincut problem

Examines the affinities (similarities) between nearby pixels and tries to
separate groups that are connected with weak affinities.

The cut separate the nodes into two groups
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Minimun Cuts

The cut between two groups A and B is defined as the sum of all the
weights being cut

cut(A,B) =
∑

i∈A,j∈B

wi,j

Problem: Results in small cuts that isolates single pixels

We need to normalize somehow
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Normalized Cuts

[J. Shi and J. Malik, PAMI00]

Better measure is the normalized cuts

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B,V )

with assoc(A,A) =
∑

i∈A,j∈A wij is the association term within a cluster and
Assoc(A,V ) = assoc(A,A) + cut(A,B) is the sum of all the weights
associated with nodes in A.

We want minimize the disassociation between the groups and maximize the
association within the groups
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Normalized Cuts

Computing the optimal normalized cut is NP-Complete.

Instead, relax by computing a real value assignment

Let d = W1 be the row sums of the symmetric matrix W, and D = diag(d)
be the corresponding diagonal matrix.

Shi and Malik, compute the cut by solving

min
y

yT (D−W)y

yTDy

relaxing y to be real-value

D−W is the Laplacian
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relaxing y to be real-value

D−W is the Laplacian
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Solving for the cut

Minimizing this Rayleigh quotient is equivalent to solving the generalized
eigenvalue system

(D−W)y = λDy

This is a normal eigenvalue problem

(I−N)z = λz

with N = D−1/2WD−1/2 is the normalized affinity matrix, and z = D1/2y.

This is an example of a spectral method for segmentation, solution is the
second smallest eigenvector/eigenvalue

This process can be applied in a hierarchical manner to have more clusters

Shi and Malik employ the following affinity

wi,j = exp

(
−||Fi − Fj ||22

σ2
f

− ||pi − pj ||22
σ2
s

)
for pixels within a radius ||pi − pj ||2 < r , and F is a feature vector with
color, intensities, histograms, gradients, etc.
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Algorithm

[J. Shi and J. Malik, PAMI00]
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Examples

Figure: Shi and Malik N-Cuts
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Example of grouping techniques

K-means style clustering, e.g., SLIC superpixels

Normalized cuts

Graph-based superpixels

Mean-shift

Watershed transform
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Graph-based Superpixels

Construct a graph that has as many nodes as pixels

Define edges between neighboring pixels, with whatever definition of
neighboring

Define the weight between neighbors to be the dissimilarity between them (a
non-negative measure)

Let G (V ,E ) be the graph, we want to segment V into components
(C1, · · · ,Cr )

Felzenswald and Hutterlocker defined a simple greedy algorithm which can
be shown to have some interesting global properties
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Algorithm

1 Sort E into π = (o1, · · · , om) by non-decreasing weights

2 Start with segmentation S0, where each vertex is its own component (i.e.,
as many superpixels as pixels)

3 Repeat step 4 for q = 1, · · · , q = m

4 Construct Sq given Sq−1 as follows. Let oq = (vi , vj). If vi and vj are
disjoint components of Sq−1 and w(oq) is small compared to the internal
difference of both components of Sq−1, then merge the two components.
Otherwise do nothing Sq = Sq−1

The internal difference is defined as the largest weight in the minimum spanning
tree of the component.

Int(C ) = max
e∈MST (C ,E)

w(e)
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Results

[P. Felzenszwald and D. Huttenlocher, IJCV04]
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Example of grouping techniques

K-means style clustering, e.g., SLIC superpixels

Normalized cuts

Graph-based superpixels

Mean-shift

Watershed transform
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Basics of Kernel Density Estimation

We have a bunch of points drawn from some distribution

What’s the distribution that generated these points?

[Source: M. Tappen]
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Parametric vs Non-Parametric

We can fit a parametric distribution, e.g., mixture of Gaussians

KDE idea: Use the data to define the distribution

If I were to draw more samples from the same probability distribution,
then those points would probably be close to the points that I have
already drawn
Build distribution by putting a little mass of probability around each
data-point

[Source: M. Tappen]
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Example

[Source: M. Tappen]
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KDE

We approximate the density by

f̂ (x) =
1

n

n∑
i=1

KH(x− xi )

with xi the points, and KH(x− xi ) the kernel

Gaussian kernel is typically used

Alternative way to think about this, put 1 wherever you have a sample and
convolve with a Gaussian
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[Source: M. Tappen]
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What is mean-shift

The density will have peaks (also called modes)

If we started at point and did gradient-ascent, we would end up at one of
the modes

Cluster based on which mode each point belongs to

[Source: M. Tappen]
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No need for gradient ascent

A set of iterative steps can be taken that will monotonically converge to a
mode

No worries about step sizes

This is an adaptive gradient ascent, for each iteration

yj+1 =

∑n
i=1 xig(|| yj−xi

h ||
2
2)∑n

i=1 g(|| yj−xi
h ||

2
2)

with g = d
du k(u), and k(x) = C

∑n
i=1 k(|| yj−xi

h ||
2
2)

Why is this the update?

This procedure gives you one mode, how to get all?

Start from each point, and record the clusters

For segmentation use whatever feature representation you want for xi

[Source: M. Tappen]
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Results

[Source: M. Tappen]
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