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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.

@ The only difference between P and P’ is that some pixels that were labeled
in P are now labeled in P’, and vice-versa.

@ Given a label /, a move from a partition P (labeling f) to a new partition P’
(labeling ') is called an a-expansion if P, C P/, and P; C P;.

@ An a-expansion move allows any set of image pixels to change their labels
to a.
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Example

Figure: (a) Current partition (b) local move (c) oo — S-swap (d) a-expansion.
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Algorithms

L. Start with an arbitrary labeling f
Set success := 0
3. For each pair of labels {a,f} C L
3.1. Find f=argminE(f') among f' within one a-j swap of f

3.2. If E(f}(E(f), set f := f and success := 1
4. TIf success = 1 goto 2

Return f

[

o

1. Start with an arbitrary labeling f
2. Set success := 0
3. For each label e L
3.1. Find f = argmin E(f') among f' within one a-expansion of f
3.2, If E(f) < E(f), set f := f and success :

=1
4, If success = 1 goto 2
5. Return [
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Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap
of f.
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Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap
of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gog = Vag, Eap)-

@ The structure of this graph is dynamically determined by the current
partition P and by the labels «, §3.
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Graph Construction

@ The set of vertices includes the two terminals « and 3, as well as image
pixels p in the sets P, and Pj (i.e., f, € {a, 5}).

@ Each pixel p € P,g is connected to the terminals o and 3, called t-links.

@ Each set of pixels p, g € P,z which are neighbors is connected by an edge
€p.q

edge weight for
ty | Dp(e) + T aewy Ve, fy) | P € Pag
9€Pag
ti Dy(8) +% usy V(B8,1y) | p € Pas
€ Pag
Eipa} Ve, B) oy

P:q€Pag
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Computing the Cut

@ Any cut must have a single t-link not cut.

@ This defines a labeling

a if £ €C for p € Puy
fe g if tffEC for p € Pus
fp for peP, pé& Pus.

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, " fast approximate energy minimization via graph cuts’
PAMI 2001.
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@ For any cut, then

(a) If t5,ty €C then egq ¢C.
(b) If t)eC then epqy &C.
(c) If 42 eC then epqy €C.
(d) If 5.t7eC then epq €C.
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Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.
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Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph G, = (Va, a)-

@ The structure of this graph is dynamically determined by the current
partition P and by the label a.

@ Different graph than the o — 3 swap.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.
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@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.

@ Each set of pixels p, g which are neighbors and f, = f;, we connect with and
n-link.

@ For each pair of neighboring pixels such that f, # f;, we create a triplet
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.

@ Each set of pixels p, g which are neighbors and f, = f;, we connect with and
n-link.

@ For each pair of neighboring pixels such that f, # f;, we create a triplet
{ep.a: €2, t5 -

@ The set of edges is then

o= { U Ut U com |

P {pateN {pateN
" In#fy T=lq
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Graph Construction

edge | weight for
ty oo pE€ Py
tf Dp (fﬂ) P é Pa
| Dol peEP

epa} | V)
eg | Viefo) | {n, @} N, f# 1y

te | Vi fo)
epa | Vfpa) [{Dd} €N, fr=1,
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@ There is a one-to-one correspondences between a cut and a labeling.

a if tHeC
fg: VpeP

f it hec

@ The energy of the cut is the energy of the labeling.

@ See Boykov et al, " fast approximate energy minimization via graph cuts’
PAMI 2001.

Property 5.2. If {p,q} € N and f, # f,, then a minimum cut C
on G, satisfies:

(@) If t2,t3eC then CNEpy =0

(b) If tp,t7€C then CNé&pg =1t

(e) If t;’,t; €C then CNE&pg = efpa)-

(d) If f.7€C then CNEgy = ey
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Global Minimization Techniques

Ways to get an approximate solution typically
@ Dynamic programming approximations

@ Sampling

Simulated annealing

Graph-cuts: imposes restrictions on the type of pairwise cost functions

@ Message passing: iterative algorithms that pass messages between nodes in
the graph.

Now we can solve for the MAP (approximately) in general energies. We can solve
for other problems than stereo
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Let's look at data/bechmarks
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Two benchmarks with very different characteristics
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Middlebury Dataset

Middlebury Stereo Evaluation — Version 2

@ Laboratory
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Middlebury Stereo Evaluation — Version 2

Laboratory
Lambertian

Rich in texture

Medium-size label set

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 16 / 66



Middlebury Dataset

Middlebury Stereo Evaluation — Version 2

Laboratory
Lambertian
Rich in texture

Medium-size label set

Largely fronto-parallel
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Benchmarks for Stereo and m

Middlebury Stereo Evaluation — Version 2

Error Threshold = 1

Algerithm Avg. g%h gr::nlll::th gr;ruer\d truth g:uon:et:nn
CoopRegion [41 66 | 0874 1961 4613 | 0114 0213 1547 [51616 83111 13043 ) 27897 7184 8012
AdaptingBP [17] 90 (1111 1377 57919 0103 0214 1445 | 4222 706s6 11890 | 2487 792mn 73210
ADCensus [94] 73 | 107+ 14613 57397 0092 0257 1153 | 4108 6223 109s | 2425 7255 6934
SurfaceSteren [79] | 182 | 12832 16521 67837 | 0181w 028w 26132 | 3122 5101 8651 | 289~ 7851 826

GCtSegmBorder [S7] | 27.1 | 14745 18232 7865 | 01910 03112z 24426 | 425¢ 5552 1097 | 49977 5781 86637
WarpMat [55] 208 | 11620 1356 6042 | 0187 0246 24426 | 5.0213 93017 13.015| 34930 84722 9014
RDP [102 125 | 097w 139¢ 5000 | 0212 0381w 1891|4841 9941 12611 | 253 769: 7381

::u

0059 14211 498s 116 02811 1071

o

8821 11631 15427 | 2353 7616 6815

RVbased [116 1186

@ Best methods < 3% errors (for all non-occluded regions)
@ http://vision.middlebury.edu/stereo/data/

Computer Vision


http://vision.middlebury.edu/stereo/data/

Benchmarks: KITTI Data Collection

e Two stereo rigs (1392 x 512 px, 54 cm base, 90° opening)
o Velodyne laser scanner, GPS+1IMU localization

@ 6 hours at 10 frames per second!

360° Velodyne Laserscanner

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013



The KITTI Vision Benchmark Suite
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Novel Challenges

Fast guided cost-volume filtering (Rhemann et al., CVPR 2011)

Middlebury, Errors: 2.7%
B—

@ Error threshold: 1 px (Middlebury)
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Novel Challenges

Fast guided cost-volume filtering (Rhemann et al., CVPR 2011)

KITTI Errors 46. 3%

’ 2 oy —

y

@ Error threshold: 1 px (Middlebury) / 3 px (KITTI)
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Novel Challenges

So what is the difference?

Middlebury

g

@ Laboratory @ Moving vehicle
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Novel Challenges

So what is the difference?

Middlebury

Laboratory Moving vehicle

Lambertian Specularities

Rich in texture Sensor saturation

Medium-size label set Large label set
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Novel Challenges

So what is the difference?

Moving vehicle

Laboratory
Lambertian Specularities
Rich in texture Sensor saturation

Medium-size label set Large label set

Largely fronto-parallel Strong slants
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Stereo Evaluation

Rank  Method Setting Out-Noc Out-All' Avg-Noc' Avg-All Density 'Runtime: Envirenment Compare |

1 PCBP 4.13% 15.45% 0.9px | 1.2px 100.00% 5min :4cores @ 2.5 Ghz (Matlab + C/C++) m]
Koichira Yamaguchi, Tamir Hazan, David McAllester and Raqual Urtasin, Continuos Markow Randem Fields for Rabust Stera Estimation, ECCV 2011

2 iSGM 5.16% 7.19% 1.2px 21px 94.70% 8s 2 cores @ 2.5 Ghz (C/C++) O
Simon Hermann and Reirhard Kiette, lterative Semi “Global Matching for Robust Driver Assistance Systems, ACCY 2012.

3 SGM 5.83% 7.08%: 1.2px 13px 85.80%: 37s i 1 core @ 3.0 Ghz (C/C++) a
Heika Siereo Processing by Semi-Giohal Matching and Watual Information. IEEE Transactions on Patter Aralysis and Machine Intelligence 2008

4 SNCC 6.27% | 7.33% 1.4px  1.5px 100.00% 0.27s | 1 core @ 3.0 Ghz (C/C++) O
W, Einacke and 1. Eggert. A Too-Stage Carrel hod for Stereoscopic Depth Estimation. DICTA 2010,

5 TGV 6.31% | 7.40%  1.3px 1.5px100.00% 7s !1core @ 3.0Ghz (Matlab + C/Crv) m]
Rene Ranftl Stafan Gehrig, Thomas Pock and Horst Bischof, Pushing tha Limits of Stereo Using Variational Steres Estimation. IEEE Intalligant Vehicles Symposiurm 2012

6 BSSM 750% 8.89% 14px 16px 94.87% 20.7s 1 core @ 3.5 Ghz (C/C++) O
‘Ancrymous submissian

7 OCV-SGBM 7.64% 913% 1 1.8px 2.0pxi 86.50% 11s ! 1 core @ 2.5 Ghz (C/C++) a
Heiho Stereo processing by semigiobal matching and mutual information PAMI 2008,

8 ELAS 8.24% 9.95% 14px 1.6px 94.55% 035 1 core @ 2.5 Ghz (C/C++) O
Andress Geiger, Martin Raser and Raquel Urtasun, Efficient Large-Scals Steren Matching, ACCV 2010

9 MS-DsI 10.68% 12.11% 1.9px ' 2.2px 100.00% 10.3s !  >Bcores @ .5 Ghz (C/C+r) m]
Anomymous submission

10 SDM 10.98% 12.19% 2.0px  2.3px; 63.58% 1min 1 core @ 2.5 Ghz (C/C++) O
Jana Kostkova, Stratified dense matching for stereopsis in complex scenes. EMVC 2003

1 GCSF 12.06% 13.26% 1.9px 2.1px 60.77% 245 ! 1 core @ 2.5 Ghz (C/C++) a
Jam Coch, Jordi Sanchez. Riera and Radu P, Horaod . Scene Flow Estimation by Growing Seeds. CVPR 2011

12 GCs 13.37% 1454% 2.1px  2.3px; 51.06% 225 1 core @ 2.5 Ghz (C/C++) m]
Jam Cach and Radim Sara. Efficient Sampling of Disparity Space for Fast And hing. BenC0S 2007

13 CostFilter 19.96% 21.05% 5.0px ' 5.4px 100.00% 4min ! 1 core @ 2.5 Ghz (Matlab) O
‘Christoph Rhemann, Asmaa Hosni, Michal Bleyer, Carsten Rother and Margrit Gelautz. Fast Cost Volume Filtering for Visual G and Bevond. CVPR 2011

14 | OCV-BM 25.39% 26.72% 7.6px 7.9px 55.84% O0ds | 1 core @ 2.5 Ghz (C/C++) O
. Bradsii. The OpenCV Librand Br. Dobh s Journal of Software Tools 2000

15 | GC+occ 33.50% 13474% 8.6px 9.2px! 8757% 6min ! 1 core @ 2.5 Ghz (C/C++) a

‘Viadimir Kolmogorov and Ramin Zabih. Computing Visusl lusions using Graph Cuts. 1CCY 2001

Computer Vision



MRFs for stereo

Global methods: define a Markov random field over
@ Pixel-level
@ Fronto-parallel planes

@ Slanted planes
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Plane MRFs

@ First segment an image into small regions, i.e., superpixels
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Plane MRFs

@ First segment an image into small regions, i.e., superpixels
@ Assume that the 3D world is compose of small frontal/slanted planes
@ Good representation if the superpixels are small and respect boundaries
E(xy, - ,xn) = > Cxi)+ > Y Cxi,x})
i i JEN;

with x; € R for the fronto-parallel planes, and x; € R3 for the slanted planes
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@ Good representation if the superpixels are small and respect boundaries
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Plane MRFs

@ First segment an image into small regions, i.e., superpixels
@ Assume that the 3D world is compose of small frontal/slanted planes
@ Good representation if the superpixels are small and respect boundaries
E(xy, - ,xn) = > Cxi)+ > Y Cxi,x})
i i JEN;
with x; € R for the fronto-parallel planes, and x; € R3 for the slanted planes
@ This are continuous variables. Is this a problem?
@ What can | do to solve this? Discretize the problem

@ The unitary are usually agreegation of cost over the local matching on the
pixels in that superpixel

@ Pairwise is typically smoothness
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Slanted-plane MRFs
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A more sophisticated occlusion model

@ MRF on continuous variables (slanted planes) and discrete var. (boundary)
@ Combines depth ordering (segmentation) and stereo

SEgme”t Segment variable y; = (o, Bi,7:)

Slanted 3D plane of segment

Continuous variable

Boundary

3

Superpixels (UCM [Arbelaez, et al. 2011]

and SLIC [Achanta, et al. 2010])

Boundary variable 0;;
Relationship between segments

4 states
Occlusion Hinge  Coplanar

@ Takes as input disparities computed by any local algorithm

Raquel Urtasun (TTI-C)
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@ y the set of slanted 3D planes, o the set of discrete boundary variables

E(Y7 0) = Eco/or(o) + Ematch(Ya 0) + Ecompatibi/ity(Yy 0) + Ejunction(o)

Similar color |:> Likely to be coplanar

Left image

3 -
T s L AT
HA T H R TR R AR R
i HHHRT ‘ (L

t R 0, S .

X RYAvEL asTan. imilar
SR PR R U

a

aSa VATRRAVARL Svate Dissimilar
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Energy of PCBP-Stereo

@ y the set of slanted 3D planes, o the set of discrete boundary variables

E(Ya 0) = Ecolor(o) + Ematch(y: 0) + Ecompatibility(ya 0) + Ejunction(o)

Agreement with result of input disparity map

Computed by any matching method
(Modified semi-global matching)

. 2
Truncated quadratic function @7 (P, y:. K) = min (\D(p) —di(p,yi)l, K)
Disparity map Slanted plane

On boundary
“Occlusion” — Foreground segment owns boundary Q a
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Energy of PCBP-Stereo

@ y the set of slanted 3D planes, o the set of discrete boundary variables

E(Y7 0) = Ecolor(o) + Ematch(ya 0) + Ecompatibility(y~, 0) + Ejunction(o)

(1) Preference of boundary label (Coplanar > Hinge > Occlusion)

Impose penalty Agcec > Aninge > 0

(2) Boundary labels match Slanted planes

“Occlusion” e disont(P) > dback(p) Q] ﬂ j
“Hinge” &> di(p) =d;(p) on boundary

& J
“Coplanar” === d;(p) =d;(p) in both segments @ J
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Energy of PCBP-Stereo

@ y the set of slanted 3D planes, o the set of discrete boundary variables

E(y7 0) = Ecolor(o) + Ematch(yu 0) + Ecompatibility(Ya 0) + Ejunction(o)

Occlusion boundary reasoning [Malik 1987]
Penalize impossible junctions

Impossible cases
Front

—1‘— Occlusion

Back
Y YO

—f#= Coplanar

March 5, 2013
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Easy Scenarios:

@ Natural scenes, lots of texture, no objects

@ A couple of errors at thin structures (poles)

Errors: < 0.5% Errors: < 0.5%
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Easy Scenarios:
@ Shadows help the disambiguation process

@ Errors at thin structures and far away textureless regions

Errors: < 0.5% Errors: < 0.5%

i YRR -
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Hard Scenarios:
@ Textureless or saturated areas

@ Ambiguous reflections

Errors: 22.1%

Errors: 17.4%
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Stereo Evaluation

[K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun, ECCV12]

Hard Scenarios:

@ Depth discontinuities / complicated geometries

Errors: 11.2% Errors: 10.5%

E

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 34 / 66



A different view on tracking
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Tracking as a graph minimization

@ Goal: Given a set of detections in video, link the detections into tracks

@ Discover which detections are of the same object, and how many objects
there are
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Tracking as a graph minimization

@ Problem: Given a set of detections in video, link the detections into tracks

@ Discover which detections are of the same object, and how many objects
there are

@ This can be solved optimally as a network flow problem, with non-overlaping
constraints in trajectories

@ The optimal data association is found by a min-cost flow algorithm in the
network
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Notation and Problem Definition

@ Let X = {x;} be a set of object observations
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@ Let X = {x;} be a set of object observations

@ Each x; is detection response x; = (x;, 5;, a;, t;) , where x; is the position, s;
is the scale, a; is the appearance and t; is the time step (frame index)

@ A single trajectory hypothesis is defined as an ordered list of object
observations, Ty = {xy,, -, Xk }, with xx, € X

@ An association hypothesis T is defined as a set of single trajectory
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Notation and Problem Definition

@ Let X = {x;} be a set of object observations

@ Each x; is detection response x; = (x;, 5;, a;, t;) , where x; is the position, s;
is the scale, a; is the appearance and t; is the time step (frame index)

@ A single trajectory hypothesis is defined as an ordered list of object
observations, Ty = {xy,, -, Xk }, with xx, € X

@ An association hypothesis T is defined as a set of single trajectory
hypotheses, 7 = { Tk}

@ The association is given by
T = arg max P(T|X)
= arg max P(X|T)P(T)

= argmax H P(x;|T)P(T)

@ We have assumed that the likelihood prob. are conditionally independent
given T.
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Optimization problem

@ We want to solve the following optimization

T — argmﬁxHP(X;W’)P(T)
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@ The space T is very large, so difficult to optimize

@ There is one more constraint: one object can only belong to one trajectory.

TenNTi=0, Vk#I

@ If we assume that the motion of each object is independent
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Optimization problem

@ We want to solve the following optimization

T = arg m7ng P(x;|T)P(T)

@ The space T is very large, so difficult to optimize

@ There is one more constraint: one object can only belong to one trajectory.

TenNTi=0, Vk#I

@ If we assume that the motion of each object is independent

T = argmaxHPx,|T HPﬁ
TeT
s.t. 7;07,:@, Vk # I

@ When is this assumption not good?
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Problem Formulation

T = argmaxHPx,|T HPﬂ
TeeT
s.t. TmT,:@, Vk # |
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Problem Formulation

T = argmaxHPx,|T HPﬂ
TeeT
s.t. TmT,:@, Vk # |

@ P(x;|T) is the likelihood of observation x;. We can use a Bernoulli
distribution for example to represent being an inlier or outlier

PlxT) = {;—ﬂ, if 3Tk € T,x; € Tk

otherwise.
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Problem Formulation

T = argmaxHPx,|T HPﬁ
TeeT
s.t. TmT,:@, Vk # |

@ P(x;|T) is the likelihood of observation x;. We can use a Bernoulli
distribution for example to represent being an inlier or outlier

PlxT) = {1 B I ET X €Ty
Bi otherwise.

@ P(7k) can be modeled as a Markov chain, with initialization probability
Pent, termination probability Peye, and transition probability Pjink(Xx;., Xk )

P(ﬁ) = P({Xkov"' ’xk/k})

Pent (Xky ) Prink (Xkq [Xko ) * + * Prink (X, [ Xk, ) Pexit (X, )
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Problem Formulation

T = argmaxHPx,|T HPﬁ
TeeT
s.t. TmT,:@, Vk # |

@ P(x;|T) is the likelihood of observation x;. We can use a Bernoulli
distribution for example to represent being an inlier or outlier

PlxT) = {;—ﬂ, if 3Tk € T,x; € Tk

otherwise.

@ P(7k) can be modeled as a Markov chain, with initialization probability
Pent, termination probability Peye, and transition probability Pjink(Xx;., Xk )
'D(77<) = P({Xkov"' 7xk/k})
= Pent(Xky) Prink (Xi [Xko) * + * Prink (X, Xk, ) Pexit (X, )
@ P(x;|T) allows for selecting observations, rather than assume all the inputs

to be true detections, without additional processing to remove false
trajectories after association.
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Useful definitions

@ To couple the non-overlap constraints with the objective function we define
0-1 indicator variables

£ 1 if 37, € T, Tk starts from x;
e 0 otherwise.
£ 1 if AT, € T, Tk ends at x;
oo 0 otherwise.
£ 1 if 3T, € T, xjis after x; in Ty
R 0 otherwise.
PR 1 if 3T e 7—7 X; € Tx
b 0 otherwise.
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Useful definitions

@ To couple the non-overlap constraints with the objective function we define
0-1 indicator variables

£ 1 if 3T, € T, T starts from x;
e 0 otherwise.
£ 1 if AT, € T, Tk ends at x;
oo 0 otherwise.
£ 1 if 3T, € T, xjis after x; in Ty
R 0 otherwise.
fl', —

0 otherwise.

{1 if 376 € T,xi € Tx

@ 7 is non-overlap if and only if

i+ S b= =i+ S fy Vi
J J
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Min-cost flow problem

@ We have the optimization problem

min— > log P(Tx) —Zlogp(XfIT)

T
TeT
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Min-cost flow problem

@ We have the optimization problem
min— > log P(T:) — 3 log p(x,[T)
TeET i

@ This can be obtained as
min Z'TkeT (Cen,kg fen,kg + Zj ijakj+1 fkjﬁkj+1 + CGX,k/k feX,kl,{) +

+ 22 (—log(1 — B;)f; — logBi(1 — £))
S.t. fen,j + Zj f)‘,i =fi= fex,i + zj f;'J \
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Min-cost flow problem

@ We have the optimization problem

min— > log P(Tx) —Zlogp(XiIT)

i
TeT
@ This can be obtained as
min Z'TkeT (Cen,kg fen,kg + Zj ijakj+1 fkjﬁkj+1 + CGX,k/k feX,kl,{) +

+ 22 (—log(1 — B;)f; — logBi(1 — £))
S.t. fen,j + Zj f;i,i =fi= fex,i + Zj f;'J \

@ Which can be reformulated as
m7i_n Z,‘ Cen,ifen,i + Zi,j CiJﬁ',j + E,’ Cex,ifex,i + Z,‘ le;
sit. feni+ D i =i =fei+ > fij Vi
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Min-cost flow problem

@ We have the optimization problem

min— > log P(Tx) —Zlogp(XiIT)

i
TeT
@ This can be obtained as
min Z'TkeT (Cen,kg fen,kg + Zj ijakj+1 fkjﬁkj+1 + CGX,k/k feX,kl,{) +

+ 22 (—log(1 — B;)f; — logBi(1 — £))
S.t. fen,j + Zj f;i,i =fi= fex,i + Zj f;'J \

@ Which can be reformulated as
m7i_n Z,‘ Cen,ifen,i + Zi,j CiJﬁ',j + E,’ Cex,ifex,i + Z,‘ le;
sit. feni+ D i =i =fei+ > fij Vi

@ What are the relationships between the costs and the probabilities we had
before?
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Mapping to Min cost-flow network

@ This can be mapped into a cost-flow network G(X’) with source s and sink t

min > Cenifeni + 22 Cijfij+ 22 Cexifexi + 22; Cifi
s-t. feni+ Zj fii = fi = fex,i + Zj fij Vi
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March 5, 2013 43 /

Raquel Urtasun (TTI-C) Computer Vision



Mapping to Min cost-flow network

@ This can be mapped into a cost-flow network G(X’) with source s and sink t

min > Cenifeni + 22 Cijfij+ 22 Cexifexi + 22; Cifi
s-t. feni+ Zj fii = fi = fex,i + Zj fij Vi

@ For every observation x; € X create two nodes u;, v;, and an arc with cost
c(ui, vj) = C; and flow f.

@ Add arcs c(s, uj) = Cen,i and flow fo, ;, as well as c(t, u;) = Cex,; and flow
fex i

@ For every transition pjink(X;j|x;) # 0, create an arc with cost c(v;, uj) = G j
and flow f; ;.

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 43 / 66



Mapping to Min cost-flow network

@ This can be mapped into a cost-flow network G(X’) with source s and sink t

min > Cenifeni + 22 Cijfij+ 22 Cexifexi + 22; Cifi
s-t. feni+ Zj fii = fi = fex,i + Zj fij Vi

@ For every observation x; € X create two nodes u;, v;, and an arc with cost
c(ui, vj) = C; and flow f.

@ Add arcs c(s, uj) = Cen,i and flow fo, ;, as well as c(t, u;) = Cex,; and flow

fex,i

@ For every transition pjink(X;j|x;) # 0, create an arc with cost c(v;, uj) = G j
and flow f; ;.

@ The constraint is equivalent to the flow conservation constraint

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 43 / 66



Mapping to Min cost-flow network

@ This can be mapped into a cost-flow network G(X’) with source s and sink t

min > Cenifeni + 22 Cijfij+ 22 Cexifexi + 22; Cifi
s-t. feni+ Zj fii = fi = fex,i + Zj fij Vi

@ For every observation x; € X create two nodes u;, v;, and an arc with cost
c(ui, vj) = C; and flow f.
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Mapping to Min cost-flow network

@ This can be mapped into a cost-flow network G(X') with source s and sink t
min > Cenifeni + 22 Cijfij+ 22 Cexifexi + 22; Cifi
s-t. feni+ Zj fii = fi = fex,i + Ej fij Vi

@ For every observation x; € X create two nodes u;, v;, and an arc with cost
c(ui, vj) = C; and flow f.

@ Add arcs c(s, uj) = Cen,i and flow fo, ;, as well as c(t, u;) = Cex,; and flow

fex,i

@ For every transition pjink(X;j|x;) # 0, create an arc with cost c(v;, uj) = G j
and flow f; ;.

@ The constraint is equivalent to the flow conservation constraint
@ The objective is the cost of the flow in G.

@ Finding optimal association hypothesis 7™, is equivalent to sending the flow
from source to sink that minimizes the cost.
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Mapping to Min cost-flow network

@ This can be mapped into a cost-flow network G(X') with source s and sink t
m7in Zi Cen,ifen,i + Zi,j Ci,jﬁ',j + Z,’ Cex,ifex,i + Z,‘ lel
sito fenit i =fi=feit > fij Vi

(uiivi)l (-"ti-u:') > (5.247) & Vi)
Observation edges Transition edges  Enter/exit edges
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How is to optimize the objective

@ For a given f(G), the minimal cost can be solved for in polynomial time by a
min-cost flow algorithm

s Construct the graph G(V, E, C, f) from observation set X'
e Start with empty flow
e WHILE ( f(G) can be augmented )

— Augment f(G) by one.
— Find the min cost flow by the algorithm of [12].
— IF ( current min cost < global optimal cost )

Store current min-cost assignment as global optimum.

e Return the global optimal flow as the best association hypothesis
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How is to optimize the objective

@ For a given f(G), the minimal cost can be solved for in polynomial time by a
min-cost flow algorithm
s Construct the graph G(V, E, C, f) from observation set X'
e Start with empty flow
e WHILE ( f(G) can be augmented )
— Augment f(G) by one.
— Find the min cost flow by the algorithm of [12].

— IF ( current min cost < global optimal cost )

Store current min-cost assignment as global optimum.
e Return the global optimal flow as the best association hypothesis

@ The minimal cost is a convex function w.r.t f(G)

@ Hence the enumeration over all possible f(G) can be replaced by a
Fibonacci search, which finds the global minimal cost by at most O(log n)
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Tracking Results

[L. Zhang, Y. Li and R. Nevatia, CVPR08]

@ What are the problems with this approach?
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Grouping

Raquel Urtasun Computer Vision



When do we use grouping?

@ In the case of frontal/slanted plane methods, we assume that the image has
been over-segmented into a set of superpixels
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When do we use grouping?

@ In the case of frontal/slanted plane methods, we assume that the image has
been over-segmented into a set of superpixels

@ This can be applied to the general problem of matching to do it in a more
robust way.

@ What is the model assumption then?

@ How are those superpixels computed?

@ We will see a few different approaches.

@ At first sight, the problem is very similar to clustering

@ We can draw inspiration from clustering algorithms
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Techniques we will see

@ K-means style clustering, e.g., SLIC superpixels

Normalized cuts

Graph-based superpixels

Wathershed transform

@ Mean-shift
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Simple K-means

@ Find three clusters in this data

Figure: From M. Tappen
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Simple K-means

@ Find three clusters in this data

o A®

Figure: From M. Tappen
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K-means style algorithms

@ We would like to encode

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 51 / 66



K-means style algorithms

@ We would like to encode

e Super-pixels have regular shape

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 51 / 66



K-means style algorithms

@ We would like to encode

e Super-pixels have regular shape
o Pixels in super-pixels have similar appearance

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 51 / 66



K-means style algorithms

@ We would like to encode

e Super-pixels have regular shape
o Pixels in super-pixels have similar appearance

@ Let S ={s1, - ,sm) be the set of superpixel assignments

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013 51 / 66



K-means style algorithms

@ We would like to encode

e Super-pixels have regular shape
o Pixels in super-pixels have similar appearance

@ Let S ={s1, - ,sm) be the set of superpixel assignments
© We define = {p1,- -, um} as the mean location of each superpixel, and
c={c1, - ,cm} as the mean appearance descriptor.

March 5, 2013 51 / 66

Raquel Urtasun (TTI-C) Computer Vision



K-means style algorithms

@ We would like to encode

e Super-pixels have regular shape
o Pixels in super-pixels have similar appearance
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K-means style algorithms

@ We would like to encode

e Super-pixels have regular shape
o Pixels in super-pixels have similar appearance

@ Let S ={s1, - ,sm) be the set of superpixel assignments
© We define = {p1,- -, um} as the mean location of each superpixel, and
c={c1, - ,cm} as the mean appearance descriptor.

@ We can define the total energy of a pixel as
E(p) = Ecol(p7 Cs,,) + )\pOSEpOS(pv ,us,,)
@ The problem becomes

min Z E(p, Sps Hs,» Csp)-
S,p.c »
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K-means style algorithms

@ We can define the total energy of a pixel as
E(p) = ECOl(pa Csp) + )\posEpos(p7 Msp)

@ The problem becomes
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K-means style algorithms

@ We can define the total energy of a pixel as
E(p) = ECOl(pa Csp) + )\posEpos(p7 Msp)
@ The problem becomes

srrmz E(P, Sp, s, Cs,)-
p

@ Simple iterative algorithm:

e Solve for the assignments S
e Solve in parallel for the positions ;2 and appearances c

@ Is this easy to do?
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Results

. Achanta and A. Shaji and K. Smith and A. Lucchi and P. Fua and S. Susstrunk, PAMI12]
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Joint Segmentation and Depth Estimation

@ Let S = {s1, -, Sm) be the set of superpixel assignments
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Joint Segmentation and Depth Estimation

@ Let S = {s1, -, Sm) be the set of superpixel assignments

o Let © = {6y, --,0,,} be the set of plane parameters

© We define = {p1,- -, um} as the mean location of each superpixel, and
c={c1, - ,cm} as the mean appearance descriptor.

@ We can define the total energy of a pixel as

E(p) = Eclzjrl(pv Csp s 05;,) + /\pos Epos(pa ,Usp) + /\dispEéigp(pv osp)a

@ We can use:

Epos(P is,) = |Ip = 15, [13/6  Ecor(p, cs, = (ke(p) — c5,)°

and R
(d(p.0s,) —d(p))* ifpeF
E is, 705 = i .
aisp (P ”) {)\ otherwise
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Joint Segmentation and Depth Estimation

@ We can define the total energy of a pixel as

E(p) = E({,iﬂ(Py Cspa esp) + /\pos Epos(pa 'ufsp) + /\dispEé};p(pa osp)a
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Joint Segmentation and Depth Estimation

@ We can define the total energy of a pixel as

E(p) = ELN(P, €5y, 65,) + Apos Epos (P 15,) + Adisp Exiy (P4 05, ),

@ The problem of joint unsupervised segmentation and flow estimation
becomes

omin ; E(p.sp, 05, s, Cs,)-
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Joint Segmentation and Depth Estimation

@ We can define the total energy of a pixel as

E(p) = ELN(P, €5y, 65,) + Apos Epos (P 15,) + Adisp Exiy (P4 05, ),

@ The problem of joint unsupervised segmentation and flow estimation
becomes

omin ; E(p.sp, 05, s, Cs,)-

@ Simple iterative algorithm

e Solve for the assignments S
e Solve in parallel for the planes ©, positions p and appearances ¢

@ How do we do this?

Raquel Urtasun (TTI-C) Computer Vision March 5, 2013
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[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR13]
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[K. Yamaguchi, D. McAllester and R. Urtasun, CVPR13]
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Techniques we will see

@ K-means style clustering, e.g., SLIC superpixels

Normalized cuts

Graph-based superpixels

Wathershed transform

@ Mean-shift
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Segmentation as a mincut problem

01 3 w
1 0 4 o 2
Zn 3 406 7
o oo 6 0 1
w 27 1 0

Weight Matrix: W

@ Examines the affinities (similarities) between nearby pixels and tries to
separate groups that are connected with weak affinities.

@ The cut separate the nodes into two groups
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@ The cut between two groups A and B is defined as the sum of all the
weights being cut

cut(A, B) Z Wi j

i€EAjEB

@ Problem: Results in small cuts that isolates single pixels

|
1
|
e %o ™
®. Lo | ® @ Min-cut 2
o | S
oe00 0 ° 4
[ ) |
. .l .
. | .
® ......: [ ) .m Mln cut 1
] :

better cut —» |
]

@ We need to normalize somehow
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Normalized Cuts

[J. Shi and J. Malik, PAMI00]
@ Better measure is the normalized cuts
cut(A, B) cut(A, B)

Ncut(Aa B) =

assoc(A, V) = assoc(B, V)

with assoc(A, A) =3, ;ca Wi is the association term within a cluster and
Assoc(A, V) = assoc(A, A) + cut(A, B) is the sum of all the weights
associated with nodes in A.

A B sum

A | assoc(A, A) | cut(A,B) | assoc(A4,V)
B | cut(B,A) | assoc(B,B) | assoc(B,V)
sum | assoc(A, V) | assoc(B,v)

@ We want minimize the disassociation between the groups and maximize the
association within the groups
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Normalize

@ Computing the optimal normalized cut is NP-Complete.
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@ Computing the optimal normalized cut is NP-Complete.
@ Instead, relax by computing a real value assignment

@ Let x be an indicator vector, with x; = 1 if x; € A, and x; = —1 otherwise.
Let d = W1 be the row sums of the symmetric matrix W, and D = diag(d)
be the corresponding diagonal matrix.
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@ Instead, relax by computing a real value assignment

@ Let x be an indicator vector, with x; = 1 if x; € A, and x; = —1 otherwise.
Let d = W1 be the row sums of the symmetric matrix W, and D = diag(d)
be the corresponding diagonal matrix.

@ Shi and Malik, compute the cut by solving
. y"(D—W)y
min ———=

y yT Dy

with y = ((1+x) — b(1 — x))/2 is a vector with all 1's and -b’s such that
y -d =0, by relaxing y to be real value.
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Normalize Cuts

@ Computing the optimal normalized cut is NP-Complete.
@ Instead, relax by computing a real value assignment

@ Let x be an indicator vector, with x; = 1 if x; € A, and x; = —1 otherwise.
Let d = W1 be the row sums of the symmetric matrix W, and D = diag(d)
be the corresponding diagonal matrix.

@ Shi and Malik, compute the cut by solving
. y"(D—W)y
min ———=

y yT Dy

with y = ((1+x) — b(1 — x))/2 is a vector with all 1's and -b’s such that
y -d =0, by relaxing y to be real value.

@ D — W is the Laplacian
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Solving for the cut

@ Minimizing this Rayleigh quotient is equivalent to solving the generalized
eigenvalue system
(D — W)y = ADy
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Solving for the cut

@ Minimizing this Rayleigh quotient is equivalent to solving the generalized
eigenvalue system
(D — W)y = ADy

@ This is a normal eigenvalue problem
(I-N)z= )z

with N = DY/2WD'/2 is the normalized affinity matrix, and z = D/?y.

@ This is an example of a spectral method for segmentation, solution is the
second smallest eigenvector/eigenvalue

@ This process can be applied in a hierarchical manner to have more clusters

@ Shi and Malik employ the following affinity

w;j = exp (—HF" —Fillz _ llpi _Pj||§)

2 2
% Os

for pixels within a radious ||pi — pj||> < r, and F is a feature vector with
color, intensities, histograms, gradients, etc.
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Algorithm

[J. Shi and J. Malik, PAMI0O]

1. Given an image or image sequence, set up a
weighted graph G = (V,E) and set the weight on
the edge connecting two nodes to be a measure of
the similarity between the two nodes.

2. Solve (D — W)z = ADz for eigenvectors with the
smallest eigenvalues.

3. Use the eigenvector with the second smallest
eigenvalue to bipartition the graph.

4. Decide if the current partition should be subdivided
and recursively repartition the segmented parts if
necessary.
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Examples

b

Figure: Shi and Malik N-Cuts
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