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Disparity Estimation

@ DSI: Disparity image

/

Scene Ground truth
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Stereo Estimation Methods

@ Local methods

@ Grow and seed methods: use a few good correspondences and grow the
estimation from them

Adaptive Window methods (AW)

Global methods: define a Markov random field over

o Pixel-level
e Fronto-parallel planes
o Slanted planes
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MRFs on pixels

@ The energy is defined as

E(dy,--- ,dy ZCd)JrZZ C(d;, d;)

i JeEN()

where x; € {0,1,--- , D} represents a variable for the disparity of the i—th
pixel
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@ This optimization is in general NP-hard.

Raquel Urtasun (TTI-C) Computer Vision Feb 26, 2013 4 /77



MRFs on pixels

@ The energy is defined as

E(dy,--- ,dy ZCd)JrZZ C(d;, d;)

i JeEN()

where x; € {0,1,--- , D} represents a variable for the disparity of the i—th
pixel

@ This optimization is in general NP-hard.

@ Global optima can be obtained in a few cases.
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Semiglobal block matching [Hirschmueller08]

@ The energy is defined as
E(dh, -, Zc )+y > C(did)
i JeEN()
with the following pairwise term
0 ifdi=d;
Cldi,dj))=< N if|ldi—di|=1

Ao otherwise
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Semiglobal block matching [Hirschmueller08]

@ The energy is defined as
E(dh, -, Zc )+y > C(did)
i JeEN()
with the following pairwise term
0 ifdi=d;
Cldi,dj))=< N if|ldi—di|=1
Ao otherwise

@ |t computes the costs in each direction

Dj(p; d) = C(p; d) + ming{D(p —j,d") + pa(d — d')}
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Semiglobal block matching [Hirschmueller08]

@ The energy is defined as

E(dy, -, ZC )+> > Cldid)

i JEN()
with the following pairwise term
0 ifdi=d;
Cldi,dj))=< N if|ldi—di|=1
Ao otherwise

@ |t computes the costs in each direction

Dj(p; d) = C(p; d) + ming{D(p —j,d") + pa(d — d')}

@ And aggregate the costs

d) = ZLj(p,d
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Semiglobal block matching [Hirschmueller08]

@ The energy is defined as

E(dy, -, ZC )+> > Cldid)

i JeEN()
with the following pairwise term
0 ifdi=d;
Cldi,dj))=< N if|ldi—di|=1

Ao otherwise

@ |t computes the costs in each direction

Dj(p; d) = C(p; d) + ming {D(p —j. d') + pa(d — d')}
@ And aggregate the costs

d) = ZLj(p,d

@ Then do winner take all
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nce in trees

@ Given distribution p(y1,- - ,¥n)
@ Inference: computing functions of the distribution

e mean
e marginal
e conditionals

Marginal inference in singly-connected graph (trees)

@ Later: extensions to loopy graphs

[Source: P. Gehler]
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Variable Elimination

» Consider Markov chain (a,b,c,d € {0,1})

with distribution

p(a.b.c.d) = p(a| b)p(b| c)p(c | d)p(d)

» Task: compute the marginal p(a)

[Source: P. Gehler]
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OO0 0,20

a) = 3 plabed)

b,c,d

= > p(al b)p(b]| c)p(c | d)p(d)

b,c,d

» Naive: 2 x 2 x 2 = 8 states to sum over
» Re-order summation:

p(a) = 3 p(a| Ble(b | )3 ple | d)p(d)
b,c

d

~ vy

':fd‘((c )

[Source: P. Gehler]
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Variable Elimination

pa) = S plalb)e(b| )Y plc | d)p(d)
d

b,c B
’rd“('c)
pa) = S p(alb)S plb] )alc)
b € ,
’v:((b)
pla) = D plal b)re(b)
b

» We need 2+ 2 + 2 = 6 calculations

» For a chain of length T scale linearly n* 2, cf naive approach
2”

[Source: P. Gehler]
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» Again:
0000

p(a.b,c,d) = p(a| b)p(b | c)p(c | d)p(d)
» Now find p(d | a)

p(d]a) = 3 p(alb)p(b] c)p(c| d)p(d)
b.c
— S p(al bp(b| <) ple | d)p(d)
c b

J

'n:(’f-')

= 7c(d) not a distribution

[Source: P. Gehler]
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() )—D

» Found that
p(d | a) = kve(d)
» and since ", p(d | a)=1

k= L

224 7e(d)

» Again 7¢(d) is not a distribution (but a message)

[Source: P. Gehler]
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Now with factor graphs

4 £, i /
Oa a0 202 202

p(a, b, c.d) = fi(a. b)fa(b. c)fs(c. d)fa(d)

P(aa b: C) - Z P(a: b: =) d)

d
- f](é‘, b)ﬁ?(h C) Z l‘(3("':1 d)ﬁi(d)
d
ud_:(C)
p(a,b) =" pla,b,c) = fi(a,b) 3 falb, Jptg—c(c)
tems(b)

[Source: P. Gehler]
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Inference in Chain Structured Factor Graphs

@ Simply recurse further
® Ym—n(n) carries the information beyond m
@ We did not need the factors in general (next) we will see that making a

distinction is helpful

[Source: P. Gehler]
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General singly-connected factor graphs |

» Now consider a branching graph:

with factors
fi(a, b)fa(b, c,d)f3(c)fa(d, e)fs(d)

» For example: find marginal p(a, b)

[Source: P. Gehler]
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General singly-connected factor graphs Il

pla.b) = i(a,b) 3 fulb,c, d)f(c)fs(d)fu(d. €)

c,d,e
#Fzrb(b)
p—b(b) = _ fa(b, c,d) fg(c Z fa(d, e)
e hmn€)s y y
P"d—»fg(d)

[Source: P. Gehler]
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General singly-connected factor graphs Il

pd—p(d) = Z fa(d. e)

#‘%A’d(d) "—v—’
iy —d(d)

[Source: P. Gehler]
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General singly-connected factor graphs IV

» If we want to compute the marginal p(a):

p(a) = 3 Fi(a, b)jusy(b)
b

-

v

,u'fl—>a(a)

» which we could also view as

p(a) = zb: fi(a, b) jug,—p(b)

Hb—fy (b)

[Source: P. Gehler]
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@ Once computed, messages can be re-used

@ All marginals p(c), p(d), p(c,d),- - can be written as a function of
messages

@ We need an algorithm to compute all messages: Sum-Product algorithm

[Source: P. Gehler]
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Sum-product algorithm overview

@ Algorithm to compute all messages efficiently, assuming the graph is
singly-connected

@ It can be used to compute any desired marginals

@ Also known as belief propagation (BP)

The algorithm is composed of
1 Initialization
2 Variable to Factor message

3 Factor to Variable message

[Source: P. Gehler]
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1. Initialization

@ Messages from extremal (simplical) node factors are initialized to the factor

(left)

@ Messages from extremal (simplical) variable nodes are set to unity (right)

oe@) = 1@ peglz) =1

fl_O.r $O—.f

[Source: P. Gehler]
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2. Variable to Factor message

PP | TN
ge{ne(x)\f}

fbf—a(T)

[Source: P. Gehler]

Raquel Urtasun (TTI-C)

Computer Vision Feb 26, 2013 21/



3. Factor to Variable message

@ We sum over all states in the set of variables

@ This explains the name for the algorithm (sum-product)

Pfox(x) = Z o (Xr) H ty—£(y)

yEXF\x ye{ne(f)\x}

#f—x(i')®

Poga—5(u3)

[Source: P. Gehler]
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Marginal computation

p(x) o JT wr—x(®)

fene(x)

h 15— (T)

f2

fa His—zx ('T )

[Source: P. Gehler]
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Message Ordering

» Messages depend on previous computed messages

» Only extremal jnodes/factors do not depend on other messages
» To compute all messages in the graph

1. leaf-to-root: (pick root node, compute messages pointing
towards root)
2. root-to-leave: (compute messages pointing away from root)

N 5 3 D 2 3
—_— — —_— — -— -— —

[Source: P. Gehler]
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Problems with loops

» Marginalizing over d introduces new link (changes graph
structure — in contrast to singly connected graphs)

f1
O8O Oo
fa fa A
e ° fs 4
fa °
P(aa b,c, d) - l‘('-1('5": b)ﬁ?(b: C)fS(Ca d)ﬁl(d: a)

and marginal

P(aa b, C) = l‘(1(5": b)f2(ba C) Z l“-3(‘:1 d)f‘l(da a)
d

L.

fs(a,c)

[Source: P. Gehler]
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» Mean
IE:',!;v(x)[xl = Z XP(X)
xeX
» Mode
x* = argmax p(x)
xeX

» Conditional Distributions

P(xXiy Xj | i, x1)orp(Xi | X1, - -+ s Xi—1, Xig1s- -+ 5 Xn)
» Max-Marginals

x* = argmax p(x;) = - - dxnargmax/ p(x)dxy
X EX; *XiEX; (X150 X1, Xiq 140 2%n)

[Source: P. Gehler]
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Computing the Partition Function

» The partition function (p(x) = % [ ®#(Xr)) (normalization
constant) Z can be computed after the leaf-to-root step (no
need for the root-to-leaf step) (choose any x € X)

zZ = ZHéf(Xf) (10)
X f
Y S 0OT0 e

x X\{x} fene(x) fgne(x)

= > I > II ¢¢xn (12)

X fene(x) X\{x} fZne(x)

- Z H #f—)x(x) (13)

x fene(x)

[Source: P. Gehler]
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Log Messages

» In large graphs, mlssages may become very small
» Work with log-messages instead A = log p

» Variable-to-factor messages

IO | N

ge{ne(x)\f}
then becomes

Ax—)f(x) = Z Ag—)x(X)

g<{ne(x)\f}

[Source: P. Gehler]
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Log Messages

» Work with log-messages instead A = log

» Factor-to-Variable messages

prox(x) = Y Se(X) [ () (16)

yEXr\x ye{ne(f)\x}

then becomes

Afosx(x) = log Z (Xr) exp Z )\y—>f(.'9’)
yEXF\x ye{ne(f)\x}
(17)

[Source: P. Gehler]
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Log-Factor-to-Variable Message:

Mox(x)=log Y Oe(X)exp > Ae(y) (18)

YEX \x ye{ne(f)\x}

v

v

large numbers lead to numerical instability

v

Use the following equality

log > exp(v)) = ar+log Y exply =) (19)

v

With a = max A, _,¢(y)

[Source: P. Gehler]
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Finding the maximal state: Max-Product

» For a given distribution p(x) find the most likely state:

x* = argmax p(x1,...,Xxp)
X1yeee3Xn

» Again use factorization structure to distribute the
maximisation to local computations
» Example: chain

f(x1, x2, X3, x4) = P(x1, x2)P(x2, X3) (X3, x1)

[Source: P. Gehler]
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Be careful: not maximal marginal states!

» The most likely state

*
x* = argmax p(x1, ..., Xn)
X13--3Xn

does not need to be the one for which the marginals are

maximized:
» Foralli=1,...,n
X! = argmax p(x;)
xi
‘ x=0 x=1
» Example: y=0| 0.3 0.4
y=1] 03 0.0

[Source: P. Gehler]
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Example chain

max f(x)

[Source: P. Gehler]

max  o(x1, X2)P(x2, X3) (X3, Xa)

X1,X2,X3,X4
max ¢ (x1, x2)d(x2, x3) max ¢ (x3, x4)
X1 ,X2,X3 X4
\_\,_/
7(xs)
max ¢(x1, x2) max ¢(xz2, x3)v(x3)
X1 ,X2 X3
. - ,
7(x2)
max max ¢(x1, x2)y(x2)
x1 X2
N ~ e
Y(x1)
max y(x1)
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Example chain

» Once computed the messages (7(-)) find the optimal values

x{ = argmax7y(x)

X1
X = argmax d(x1, x2)7(x2)
x3 = argmax d(x3,x3)7(x3)
x; = argmax o(x3, xa)v(xa)

» this is called backtracking (an application of dynamic
programming)

» can choose arbitrary start point

[Source: P. Gehler]
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Trees

» Spot the messages:

max f(x) = max f(a, b)h(b,c,d)f(c)fa(d, e)fs(d)

a,b,c,d,e

= maxfi,,(a)

[Source: P. Gehler]
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Max-Product Algorithm

Pick any variable as root and
1 Initialisation (same as sum-product)
2 Variable to Factor message (same as sum-product)
3 Factor to Variable message

Then compute the maximal state

[Source: P. Gehler]
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1. Initialization

@ Messages from extremal node factors are initialized to the factor

@ Messages from extremal variable nodes are set to unity
ptin(x) = f(z) Upp(z) =1

f _.C wc_. s

@ Same as sum product

[Source: P. Gehler]
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2. Variable to Factor message

@ Same as for sum-product

wor() =TT peon(®)

ge{ne(x)\f}

hi My (I)

2 . fifymz(Z T P"s—hf(f). f

fo Pramr(T)

[Source: P. Gehler]
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3. Factor to Variable message

@ Different message than in sum-product

@ This is now a max-product

prox(x) = max op(Xe)  [[  py—rly)
yedr\x ye{ne(f)\x}

fiy £ (y1)

[Source: P. Gehler]
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Maximal state of Variable

x* = argmax H f—sx(x)
X
fene(x)

h ﬂflﬁx(x)

fa

I

@ This does not work with loops

@ Same problem as the sum product algorithm

[Source: P. Gehler]
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Algorithm 1: Belief Propagation on Trees

1 (log,p) = BeliefPropagation(V, F.E.E)

2 Input:

3 (V,F ,E), tree-structured factor graph,

4 E, energies EF forall F F .

5 Qutput:

6: logZ , log partition function of p(y),

7. , marginal distributions pg for all F F .
Algorithm:
9. Fix an element of V arbitrarily as tree root
Compute leaf-to-root order R as sequence of directed
11:  edges of E
12 for i=1,...,|R| do
1w if {(v,F)=R(i) is variable-to-factor edge then

®

14 Compute Gy, ¢ using (3.2)

15 else

16 (F,v) =R(i) is factor-to-variable edge
17 Compute rr_y using (3.3)

1 end if

10: end for

20; Compute logZ by (3.4)

21; Compute root-to-leaf order R" = reverse(R)

22 for i=1,...,|R| do

23 if (v,F)=R'(i) is variable-to-factor edge then

24 Compute gy, ,F using (3.2)

25 Compute gr using (3.5)

26 else

27 (F,v) =R'(i) is factor-to-variable edge
28, Compute rr_y using (3.3)

20 Compute p(y ) using (3.6)

300 end if

31 end for
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Dealing with loops

@ Keep on doing this iterations, i.e., loopy BP

The problem with loopy BP is that it is not guaranteed to converge
@ Message-passing algorithms based on LP relaxations have been developed
@ These methods are guaranteed to converge

@ Perform much better in practice
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Algorithm 2: Loopy Belief Propagation (sum-product)
1 (logZ, ) = SuMPRODUCTLOOPYBP(V, F,£,E,2,T)
2 Input:
% (V,F,£), factor graph,
E, energies Ep for all F ¢ F,
£, convergence tolerance,
T, maximum number of iterations.
QOutput:
log Z, approximate log partition function of p(y),
i, approximate marginal distributions pp for all ¥ € F.
1 Algorithm:
1 gy,op(w) <0, forall (i, F) e £, € Vs
120 pp(yr) 0, for all F € Fyr € Vi
w for t=1,...,7 do
. for (v,F)eF do

N9 s

150 for y; € ): do
16: Compute rp_,y, (1;) using (3.3)
17 end for

1 end for
w  for (v,F)eF do

20 for y; € ): do

2 Compute gy, .r(y:) using (3.9) to (3.11)
an end for

21 end for

24:  Compute approximate marginals p' using (3.12) to (3.17)
25 w4 ||p — pfls {Measure change in beliefs}

26 p—
21 if w<e then
28: break {Converged}

20 end if
an: end for
31: Compute log Z using (3.18)
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Global Minimization Techniques

Ways to get an approximate solution typically
@ Dynamic programming approximations

@ Sampling

Simulated annealing

Graph-cuts: imposes restrictions on the type of pairwise cost functions

@ Message passing: iterative algorithms that pass messages between nodes in
the graph. Which graph?
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Inference with graph cuts
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Submodular Functions

A Pseudo-boolean function f : {0,1}" — R is submodular if

F(A)+ f(B) > f(AV B)+ f(AAB) VA, B e {0,1}"
—_—

OR AND
@ Example: n=2, A=11,0], B=10,1]
f([1,0]) + £([0,1]) > £([1,1]) + £([0,0])

@ Sum of submodular functions is submodular — Easy to proof.

@ Some energies in computer vision can be submodular
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Minimizing submodular Functions

@ Pairwise submodular functions can be transformed to st-mincut/max-flow
[Hammer, 65].

@ Very low running time ~ O(n)
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The ST-mincut problem

@ Suppose we have a graph G = {V, E, C}, with vertices V, Edges E and
costs C.

[Source: P. Kohli]
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The ST-mincut problem

@ An st-cut (S,T) divides the nodes between source and sink.

@ The cost of a st-cut is the sum of cost of all edges going from S to T

5+1+9=15

[Source: P. Kohli]
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The ST-mincut problem

@ The st-mincut is the st-cut with the minimum cost

2+2+4-=28

[Source: P. Kohli]
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Back to our energy minimization

Construct a graph such that
1 Any st-cut corresponds to an assignment of x

2 The cost of the cut is equal to the energy of x : E(x)

[Source: P. Kohli]
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St-mincut and Energy Minimization

E(x) = iZGi () + iZjeu (xi»xj)

Forallij ©(0,1) +8;(1,0) >6,(0.0)+6;(1,1)

I Equivalent (transformable)

E(x) = Z € X+ Zcij x(1-x;)
i i,j

[Source: P. Kohli]
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How are they equivalent?

A=6,(00) B=6,0,1) €=6,(10) D=8, (1)

1 0 1 0 1
B
0 0 0 D-C 0 0 +C-
+ +
A-D
C-A 1| 0 |D-C 1
0 0

if x;=1 addC- if x, = 1 add

A D-C
- 8,0.0
+ (6,(1,0)-8;(0,0)) x; + (6,(1,0)-6;(0,0)) x;
+ (8;(1,0) + 6,(0,1) - 6;(0,0) - §;(1,1)) (1-x) x;

B+C-A-D = O is true from the submodularity of 6;

[Source: P. Kohli]
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Graph Construction

I:l Source (0)

@ @

[Source: P. Kohli]
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Graph Construction

Source (0)

2

@ @

[Source: P. Kohli]
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Graph Construction

E(ﬁl,az) = 2&1 + 5&1

Source (0)

2

@ @
5

[ ] sink (1)
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Graph Construction

E(ﬁl,az) = 2&1 + 5&1"‘ 902 + 4&2

Source (0)

9

[Source: P. Kohli]
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Graph Construction

E(ﬁl,az) = 2&1 + 561"' gﬁz + 4&2 + 20152

Source (0)
2 9
a; O az

/-

[] sink (1)

[Source: P. Kohli]
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Graph Construction

E(ﬁl,az) = 2&1 + 5&1"‘ 9(!2 + 462 + 20152 + alaz

Source (0)
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Graph Construction

E(Gl,az) = 21‘.11 + 561"' 9“2 + 462 + 20162 + 5102

Source (0)

[Source: P. Kohli]
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Graph Construction

E(Ql,az) = 201 + Ba, + 902 + 4 +2

D Source (0)

Cost of cut = 11

‘al=1 a; =1 ‘

E(1.1) =11

[Source: P. Kohli]
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Graph Construction

E(Gl,az) = 201 +53.+9 + 4&2 + zalaz +

Source (0)

st-mincut cost = 8

E(1.0)-= 8

[Source: P. Kohli]
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How to compute the St-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between
Source and Sink s.t.

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Min-cut\Max-flow Theorem

In every network, the maximum flow
equals the cost of the st-mincut

Assuming non-negative capacity

[Source: P. Kohli]
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How does the code look like

| Graph *g;

For all pixels p

D Source (0)

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end
for all adjacent pixels p,q

add_weights(nodelD(p), nodelD(q), cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)

[Source: P. Kohli]
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How does the code look like

Graph *g;

For all pixels p
Source (0)
/* Add a node to the graph */

nodelD(p) = g->add_node();
bgCost(a;) bgCost(a;)

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

[4] a
@ :

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost(p,q)); fgCOST(O.l) fgCOST(O.Z)
end

g->compute_maxflow(); I:‘ Sink (l)

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)

[Source: P. Kohli]
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How does the code look like

Graph *g;

For all pixels p

Source (0)

/* Add a node to the graph */
nodelD(p) = g->add_node();

bgCost(a;) bgCost(a;)
/* Set cost of terminal edges */

set_weights(nodelD(p), fgCost(p), bgCost(p)); COST(p,q)
a;
end
—

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost(p,q)); fgCOST(O.l) fgCOST(O.Z)

end
g->compute_maxflow(); I:‘ Sink (l)

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)
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How does the code look like

Graph *g;

For all pixels p

Source (0)

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q

add_weights(nodelD(p), nodelD(q), cost(p,q)); fgCosT(aI)
end

g->compute_maxflow(); D Sink (l)

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1) ‘ a; = bg a; = fg ‘

[Source: P. Kohli]
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Graph cuts for multi-label problems

@ Exact Transformation to QPBF [Roy and Cox 98] [Ishikawa 03] [Schlesinger
et al. 06] [Ramalingam et al. 08]

So what is the problem?

En(yiva. . Yo) = B, (X% ... Xp)
Multi-label Problem Binary label Problem

such that:
LetY and X be the set of feasible solutions, then

1. One-One encoding function T:X->Y

2. arg min E_(y) =T(arg min Ej,(x))

@ Very high computational cost

[Source: P. Kohli]
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Computing the Optimal Move

Current Solution

Search
Neighbourhood

-------- » Optimal Move

Key Property

Move Space

+«————— SolutionSpace =~ ——

Bigger move > Better solutions

Space * Finding the optimal move hard

[Source: P. Kohli]
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Move Making Algorithms

Minimizing Pairwise Functions
[Boykov Veksler and Zabih, PAMI 2001]

+ Series of locally optimal moves
+ Each move reduces energy
« Optimal move by minimizing submodular function

® Current Solution

]
I:l Search Neighbourhood

Move Space (t) : 2"

1] Number of Variables
L Number of Labels

Space of Solutions (x) : L"

[Source: P. Kohli]
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Energy Minimization

@ Consider pairwise MRFs

E(F)= > Voglfaify) + D Dplf)

{p,a}eN

with AV defining the interactions between nodes, e.g., pixels
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Energy Minimization

@ Consider pairwise MRFs
E(f) = Z Vp,q(fpafq)"‘ZDp(fp)
{p.a}eN P

with AV defining the interactions between nodes, e.g., pixels

@ D, non-negative, but arbitrary.
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Energy Minimization

@ Consider pairwise MRFs
Z Vo,a(fo, fq) + Z Dy(f5)
{p.a}eN P
with AV defining the interactions between nodes, e.g., pixels
@ D, non-negative, but arbitrary.
@ This is the graph-cuts notation.

@ Important to notice it's the same thing.
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Metric vs Semimetric

Two general classes of pairwise interactions
@ Metric if it satisfies for any set of labels «, 3,
V(ie,) =0 + a=p

V(a,8) = V(B,«
V(ie,5) < V() + V(v,8)
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Metric vs Semimetric

Two general classes of pairwise interactions
@ Metric if it satisfies for any set of labels «, 3,
V(ia,) =0 <+ =4

V(a, ) = ( ya) >
V(e,8) < V(ay)+ (,ﬂ)

@ Semi-metric if it satisfies for any set of labels «, 3,7

V(ie,) =0 & a=p
V(Oé,ﬁ) = V(ﬁ,a) >0
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Examples for 1D label set

@ Truncated quadratic is a semi-metric
V(a, B) = min(K, |a — B)

with K a constant.
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Examples for 1D label set

@ Truncated quadratic is a semi-metric
V(a, B) = min(K, |a — B)

with K a constant.

@ Truncated absolute distance is a metric
V(a, B) = min(K, |a = S])

with K a constant.
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Examples for 1D label set

@ Truncated quadratic is a semi-metric
V(a, B) = min(K, |a — B)

with K a constant.

@ Truncated absolute distance is a metric

V(a, B) = min(K, |a = S])
with K a constant.

@ For multi-dimensional, replace | - | by any norm.
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Examples for 1D label set

@ Truncated quadratic is a semi-metric

V(a, 8) = min(K, | — BJ?)
with K a constant.

@ Truncated absolute distance is a metric

V(a, 8) = min(K, o — 3])
with K a constant.
@ For multi-dimensional, replace | - | by any norm.
@ Potts model is a metric
V(ia,B) =K - T(a # )

with T(-) = 1 if the argument is true and 0 otherwise.
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@ «a — B moves works for semi-metrics

@ « expansion works for V' being a metric

x= txt+(2-t)x2

~

New Current Second
solution Solution solution

E ()= E(tx* + (2- t) x?)

Minimize over move variables t

Figure: Figure from P. Kohli tutorial on graph-cuts

@ For certain x! and x?, the move energy is sub-modular QPBF
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Swap Move

* Variables labeled a, £ can swap their labels

Tree
Ground
Swap Sky, House —> [l House
—_— Sky

[Source: P. Kohli]
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Swap Move

* Variables labeled a, f can swap their labels

= Move energy is submodular if:
= Unary Potentials: Arbitrary
= Pairwise potentials: Semi-metric

8;(.lt) 20
©;(.lt) =0 «<——» a=b

Examples: Potts model, Truncated Convex

[Source: P. Kohli]
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Expansion Move

e Variables take label & or retain current label

— Tree
—p - Ground
L — - House
— Sky

[Source: P. Kohli]
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Expansion Move

e Variables take label & or retain current label

Semi metric
+

= Unary Potentials: Arbitrary Triangle
Inequality

= Move energy is submodular if:

= Pairwise potentials: Metric

6, (la.p) + 6, (1,.1.) > 6, (l..1.)
Examples: Potts model, Truncated linear

Cannot solve truncated quadratic

[Source: P. Kohli]
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.

@ The only difference between P and P’ is that some pixels that were labeled
in P are now labeled in P’, and vice-versa.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.

@ The only difference between P and P’ is that some pixels that were labeled
in P are now labeled in P’, and vice-versa.

@ Given a label /, a move from a partition P (labeling f) to a new partition P’
(labeling ') is called an a-expansion if P, C P/, and P; C P;.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.

@ The only difference between P and P’ is that some pixels that were labeled
in P are now labeled in P’, and vice-versa.

@ Given a label /, a move from a partition P (labeling f) to a new partition P’
(labeling ') is called an a-expansion if P, C P/, and P; C P;.

@ An a-expansion move allows any set of image pixels to change their labels
to a.
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Example

Figure: (a) Current partition (b) local move (c) oo — S-swap (d) a-expansion.

Raquel Urtasun (TTI-C) Computer Vision Feb 26, 2013 67 / 77



Algorithms

L. Start with an arbitrary labeling f
Set success := 0
3. For each pair of labels {a,f} C L
3.1. Find f=argminE(f') among f' within one a-j swap of f

3.2. If E(f}(E(f), set f := f and success := 1
4. TIf success = 1 goto 2

Return f

[

o

1. Start with an arbitrary labeling f
2. Set success := 0
3. For each label e L
3.1. Find f = argmin E(f') among f' within one a-expansion of f
3.2, If E(f) < E(f), set f := f and success :

=1
4, If success = 1 goto 2
5. Return [
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Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap
of f.
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Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap

of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gog = Vag, Eap)-
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Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap
of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gog = Vag, Eap)-

@ The structure of this graph is dynamically determined by the current
partition P and by the labels «, §.
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Graph Construction

@ The set of vertices includes the two terminals « and 3, as well as image
pixels p in the sets P, and Pj (i.e., f, € {a, 5}).

@ Each pixel p € P,g is connected to the terminals o and 3, called t-links.

@ Each set of pixels p, g € P,z which are neighbors is connected by an edge
€p.q

edge weight for
ty | Dp(e) + T aewy Ve, fy) | P € Pag
9€Pag
ti Dy(8) +% usy V(B8,1y) | p € Pas
€ Pag
Eipa} Ve, B) oy

P:q€Pag
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Computing the Cut

@ Any cut must have a single t-link not cut.

@ This defines a labeling

a if £ €C for p € Puy
fe g if tffEC for p € Pus
fp for peP, pé& Pus.

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, " fast approximate energy minimization via graph cuts’
PAMI 2001.
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@ For any cut, then

(a) If t5,ty €C then egq ¢C.
(b) If t)eC then epqy &C.
(c) If 42 eC then epqy €C.
(d) If 5.t7eC then epq €C.

Raquel Urtasun (TTI-C) Computer Vision Feb 26, 2013



Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.
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Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph G, = (Va, a)-
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Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph G, = (Va, a)-

@ The structure of this graph is dynamically determined by the current
partition P and by the label a.
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Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph G, = (Va, a)-

@ The structure of this graph is dynamically determined by the current
partition P and by the label a.

@ Different graph than the o — 3 swap.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.

@ Each set of pixels p, g which are neighbors and f, = f;, we connect with and
n-link.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.

@ Each set of pixels p, g which are neighbors and f, = f;, we connect with and
n-link.

@ For each pair of neighboring pixels such that f, # f;, we create a triplet
{ep.a: €2, t5 -

o= { U Ut U com |

P {pateN {pateN
re Tty =Ty
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.

@ Each set of pixels p, g which are neighbors and f, = f;, we connect with and
n-link.

@ For each pair of neighboring pixels such that f, # f;, we create a triplet
{ep.a: €2, t5 -

@ The set of edges is then

o= { U Ut U com |

P {pateN {pateN
re Tty =Ty
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Graph Construction

edge | weight for
ty oo pE€ Py
tf Dp (fﬂ) P é Pa
| Dol peEP

epa} | V)
eg | Viefo) | {n, @} N, f# 1y

te | Vi fo)
epa | Vfpa) [{Dd} €N, fr=1,
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@ There is a one-to-one correspondences between a cut and a labeling.

a if tHeC
fg: VpeP

f it hec

@ The energy of the cut is the energy of the labeling.

@ See Boykov et al, " fast approximate energy minimization via graph cuts’
PAMI 2001.

Property 5.2. If {p,q} € N and f, # f,, then a minimum cut C
on G, satisfies:

(@) If t2,t3eC then CNEpy =0

(b) If tp,t7€C then CNé&pg =1t

(e) If t;’,t; €C then CNE&pg = efpa)-

(d) If f.7€C then CNEgy = ey
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Global Minimization Techniques

Ways to get an approximate solution typically

@ Dynamic programming approximations

@ Sampling
@ Simulated annealing
@ Graph-cuts: imposes restrictions on the type of pairwise cost functions

@ Message passing: iterative algorithms that pass messages between nodes in
the graph. Which graph?

Now we can solve for the MAP (approximately) in general energies. We can solve
for other problems than stereo
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