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Disparity Estimation

DSI: Disparity image

Ground truth Scene 
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Stereo Estimation Methods

Local methods

Grow and seed methods: use a few good correspondences and grow the
estimation from them

Adaptive Window methods (AW)

Global methods: define a Markov random field over

Pixel-level
Fronto-parallel planes
Slanted planes
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MRFs on pixels

The energy is defined as

E (d1, · · · , dn) =
∑
i

C (di ) +
∑
i

∑
j∈N (j)

C (di , dj)

where xi ∈ {0, 1, · · · ,D} represents a variable for the disparity of the i−th
pixel

This optimization is in general NP-hard.

Global optima can be obtained in a few cases.
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Semiglobal block matching [Hirschmueller08]

The energy is defined as

E (d1, · · · , dn) =
∑
i

C (di ) +
∑
i

∑
j∈N (j)

C (di , dj)

with the following pairwise term

C (di , dj) =


0 if di = dj

λ1 if |di − dj | = 1

λ2 otherwise

It computes the costs in each direction

Dj(p; d) = C (p; d) + mind′{D(p− j, d ′) + ρd(d − d ′)}

And aggregate the costs

D(p; d) =
∑
j

Lj(p, d)

Then do winner take all
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Inference in trees

Given distribution p(y1, · · · , yn)

Inference: computing functions of the distribution

mean
marginal
conditionals

Marginal inference in singly-connected graph (trees)

Later: extensions to loopy graphs

[Source: P. Gehler]
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Variable Elimination

[Source: P. Gehler]
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[Source: P. Gehler]
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Variable Elimination

[Source: P. Gehler]
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Finding Conditional Marginals

[Source: P. Gehler]
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Finding Conditional Marginals

[Source: P. Gehler]

Raquel Urtasun (TTI-C) Computer Vision Feb 26, 2013 11 / 77



Now with factor graphs

[Source: P. Gehler]
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Inference in Chain Structured Factor Graphs

Simply recurse further

γm→n(n) carries the information beyond m

We did not need the factors in general (next) we will see that making a
distinction is helpful

[Source: P. Gehler]
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General singly-connected factor graphs I

[Source: P. Gehler]
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General singly-connected factor graphs II

[Source: P. Gehler]
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General singly-connected factor graphs III

[Source: P. Gehler]
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General singly-connected factor graphs IV

[Source: P. Gehler]
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Summary

Once computed, messages can be re-used

All marginals p(c), p(d), p(c , d), · · · can be written as a function of
messages

We need an algorithm to compute all messages: Sum-Product algorithm

[Source: P. Gehler]
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Sum-product algorithm overview

Algorithm to compute all messages efficiently, assuming the graph is
singly-connected

It can be used to compute any desired marginals

Also known as belief propagation (BP)

The algorithm is composed of

1 Initialization

2 Variable to Factor message

3 Factor to Variable message

[Source: P. Gehler]
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1. Initialization

Messages from extremal (simplical) node factors are initialized to the factor
(left)

Messages from extremal (simplical) variable nodes are set to unity (right)

[Source: P. Gehler]
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2. Variable to Factor message

[Source: P. Gehler]
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3. Factor to Variable message

We sum over all states in the set of variables

This explains the name for the algorithm (sum-product)

[Source: P. Gehler]
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Marginal computation

[Source: P. Gehler]
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Message Ordering

[Source: P. Gehler]
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Problems with loops

[Source: P. Gehler]
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What to infer?

[Source: P. Gehler]
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Computing the Partition Function

[Source: P. Gehler]
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Log Messages

[Source: P. Gehler]
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Log Messages

[Source: P. Gehler]
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Trick

[Source: P. Gehler]
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Finding the maximal state: Max-Product

[Source: P. Gehler]
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Be careful: not maximal marginal states!

[Source: P. Gehler]
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Example chain

[Source: P. Gehler]
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Example chain

[Source: P. Gehler]
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Trees

[Source: P. Gehler]
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Max-Product Algorithm

Pick any variable as root and

1 Initialisation (same as sum-product)

2 Variable to Factor message (same as sum-product)

3 Factor to Variable message

Then compute the maximal state

[Source: P. Gehler]
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1. Initialization

Messages from extremal node factors are initialized to the factor

Messages from extremal variable nodes are set to unity

Same as sum product

[Source: P. Gehler]
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2. Variable to Factor message

Same as for sum-product

[Source: P. Gehler]
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3. Factor to Variable message

Different message than in sum-product

This is now a max-product

[Source: P. Gehler]
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Maximal state of Variable

This does not work with loops

Same problem as the sum product algorithm

[Source: P. Gehler]
Raquel Urtasun (TTI-C) Computer Vision Feb 26, 2013 40 / 77



Raquel Urtasun (TTI-C) Computer Vision Feb 26, 2013 41 / 77



Dealing with loops

Keep on doing this iterations, i.e., loopy BP

The problem with loopy BP is that it is not guaranteed to converge

Message-passing algorithms based on LP relaxations have been developed

These methods are guaranteed to converge

Perform much better in practice
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Global Minimization Techniques

Ways to get an approximate solution typically

Dynamic programming approximations

Sampling

Simulated annealing

Graph-cuts: imposes restrictions on the type of pairwise cost functions

Message passing: iterative algorithms that pass messages between nodes in
the graph. Which graph?
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Inference with graph cuts
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Submodular Functions

A Pseudo-boolean function f : {0, 1}n → < is submodular if

f (A) + f (B) ≥ f (A ∨ B)︸ ︷︷ ︸
OR

+ f (A ∧ B)︸ ︷︷ ︸
AND

∀A,B ∈ {0, 1}n

Example: n = 2, A = [1, 0], B = [0, 1]

f ([1, 0]) + f ([0, 1]) ≥ f ([1, 1]) + f ([0, 0])

Sum of submodular functions is submodular → Easy to proof.

Some energies in computer vision can be submodular
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Minimizing submodular Functions

Pairwise submodular functions can be transformed to st-mincut/max-flow
[Hammer, 65].

Very low running time ∼ O(n)
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The ST-mincut problem

Suppose we have a graph G = {V ,E ,C}, with vertices V , Edges E and
costs C .

[Source: P. Kohli]
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The ST-mincut problem

An st-cut (S,T) divides the nodes between source and sink.

The cost of a st-cut is the sum of cost of all edges going from S to T

[Source: P. Kohli]
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The ST-mincut problem

The st-mincut is the st-cut with the minimum cost

[Source: P. Kohli]
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Back to our energy minimization

Construct a graph such that

1 Any st-cut corresponds to an assignment of x

2 The cost of the cut is equal to the energy of x : E(x)

[Source: P. Kohli]
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St-mincut and Energy Minimization

[Source: P. Kohli]
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How are they equivalent?

A B 

C D 

0     1 

0 

1 
xi 

xj 

=  A  + 
0 0 

C-A C-A 

0     1 

0 

1 

0 D-C 

0 D-C 

0     1 

0 

1 

0 
B
+C-
A-D 

0 0 

0     1 

0 

1 
+ + 

if x1=1 add C-
A 

if x2  = 1 add 
D-C 

B+C-A-D ! 0 is true from the submodularity of !ij
  

A = !ij
 (0,0)        B = !ij(0,1)           C = !ij

 (1,0)          D = !ij
 (1,1) 

!ij (xi,xj)  = !ij(0,0)  
    + (!ij(1,0)-!ij(0,0)) xi + (!ij(1,0)-!ij(0,0)) xj  
    + (!ij(1,0) + !ij(0,1) - !ij(0,0) - !ij(1,1)) (1-xi) xj 

[Source: P. Kohli]
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Graph Construction

[Source: P. Kohli]
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Graph Construction
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Graph Construction

[Source: P. Kohli]
Raquel Urtasun (TTI-C) Computer Vision Feb 26, 2013 54 / 77



How to compute the St-mincut?

[Source: P. Kohli]
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How does the code look like

[Source: P. Kohli]
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How does the code look like

[Source: P. Kohli]
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Graph cuts for multi-label problems

Exact Transformation to QPBF [Roy and Cox 98] [Ishikawa 03] [Schlesinger
et al. 06] [Ramalingam et al. 08]

Very high computational cost

[Source: P. Kohli]
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Computing the Optimal Move

[Source: P. Kohli]
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Move Making Algorithms

[Source: P. Kohli]
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Energy Minimization

Consider pairwise MRFs

E (f ) =
∑

{p,q}∈N

Vp,q(fp, fq) +
∑
p

Dp(fp)

with N defining the interactions between nodes, e.g., pixels

Dp non-negative, but arbitrary.

This is the graph-cuts notation.

Important to notice it’s the same thing.
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Metric vs Semimetric

Two general classes of pairwise interactions

Metric if it satisfies for any set of labels α, β, γ

V (α, β) = 0 ↔ α = β

V (α, β) = V (β, α) ≥ 0

V (α, β) ≤ V (α, γ) + V (γ, β)

Semi-metric if it satisfies for any set of labels α, β, γ

V (α, β) = 0 ↔ α = β

V (α, β) = V (β, α) ≥ 0
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Examples for 1D label set

Truncated quadratic is a semi-metric

V (α, β) = min(K , |α− β|2)

with K a constant.

Truncated absolute distance is a metric

V (α, β) = min(K , |α− β|)

with K a constant.

For multi-dimensional, replace | · | by any norm.

Potts model is a metric

V (α, β) = K · T (α 6= β)

with T (·) = 1 if the argument is true and 0 otherwise.
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Binary Moves

α− β moves works for semi-metrics

α expansion works for V being a metric

Figure: Figure from P. Kohli tutorial on graph-cuts

For certain x1 and x2, the move energy is sub-modular QPBF
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Swap Move

[Source: P. Kohli]
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Swap Move

[Source: P. Kohli]
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Expansion Move

[Source: P. Kohli]
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Expansion Move

[Source: P. Kohli]
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More formally

Any labeling can be uniquely represented by a partition of image pixels
P = {Pl |l ∈ L}, where Pl = {p ∈ P|fp = l} is a subset of pixels assigned
label l .

There is a one to one correspondence between labelings f and partitions P.

Given a pair of labels α, β, a move from a partition P (labeling f ) to a new
partition P’ (labeling f ′) is called an α− β swap if Pl = P ′ for any label
l 6= α, β.

The only difference between P and P ′ is that some pixels that were labeled
in P are now labeled in P ′, and vice-versa.

Given a label l , a move from a partition P (labeling f ) to a new partition P ′

(labeling f ′) is called an α-expansion if Pα ⊂ P ′
α and P ′

l ⊂ Pl .

An α-expansion move allows any set of image pixels to change their labels
to α.
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partition P’ (labeling f ′) is called an α− β swap if Pl = P ′ for any label
l 6= α, β.

The only difference between P and P ′ is that some pixels that were labeled
in P are now labeled in P ′, and vice-versa.

Given a label l , a move from a partition P (labeling f ) to a new partition P ′

(labeling f ′) is called an α-expansion if Pα ⊂ P ′
α and P ′

l ⊂ Pl .

An α-expansion move allows any set of image pixels to change their labels
to α.
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Example

Figure: (a) Current partition (b) local move (c) α− β-swap (d) α-expansion.
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Algorithms

Raquel Urtasun (TTI-C) Computer Vision Feb 26, 2013 68 / 77



Finding optimal Swap move

Given an input labeling f (partition P) and a pair of labels α, β we want to
find a labeling f̂ that minimizes E over all labelings within one α− β-swap
of f .

This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gαβ = (Vαβ , Eαβ).

The structure of this graph is dynamically determined by the current
partition P and by the labels α, β.
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Graph Construction

The set of vertices includes the two terminals α and β, as well as image
pixels p in the sets Pα and Pβ (i.e., fp ∈ {α, β}).

Each pixel p ∈ Pαβ is connected to the terminals α and β, called t-links.

Each set of pixels p, q ∈ Pαβ which are neighbors is connected by an edge
ep,q
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Computing the Cut

Any cut must have a single t-link not cut.

This defines a labeling

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, ”fast approximate energy minimization via graph cuts”
PAMI 2001.
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Properties

For any cut, then
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Finding the optimal α expansion

Given an input labeling f (partition P) and a label α we want to find a
labeling f̂ that minimizes E over all labelings within one α-expansion of f .

This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gα = (Vα, Eα).

The structure of this graph is dynamically determined by the current
partition P and by the label α.

Different graph than the α− β swap.
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Graph Construction

The set of vertices includes the two terminals α and ᾱ, as well as all image
pixels p ∈ P.

Additionally, for each pair of neighboring pixels p, q such that fp 6= fq we
create an auxiliary node ap,q.

Each pixel p is connected to the terminals α and ᾱ, called t-links.

Each set of pixels p, q which are neighbors and fp = fq, we connect with and
n-link.

For each pair of neighboring pixels such that fp 6= fq, we create a triplet
{ep,a, ea,q, tᾱa }.

The set of edges is then
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Graph Construction
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Properties

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, ”fast approximate energy minimization via graph cuts”
PAMI 2001.
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Global Minimization Techniques

Ways to get an approximate solution typically

Dynamic programming approximations

Sampling

Simulated annealing

Graph-cuts: imposes restrictions on the type of pairwise cost functions

Message passing: iterative algorithms that pass messages between nodes in
the graph. Which graph?

Now we can solve for the MAP (approximately) in general energies. We can solve

for other problems than stereo
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