
Probabilistic Tracking

Marcus A. Brubaker
mbrubake@cs.toronto.edu

1Tuesday, February 12, 2013

mailto:mbrubake@cs.toronto.edu
mailto:mbrubake@cs.toronto.edu

Outline

The goal is to introduce the fundamentals of probabilistic, model-based
tracking for computer vision

• Background

• Basic algorithms

• Kalman filter

• Particle filter

• Sequential importance sampling

• MAP/ML

• Annealed “particle filter”

2Tuesday, February 12, 2013

Problem

Tracking is the process of inferring information given a sequence of
observations over time

What might we infer?

• Shape (e.g., size, curvature)

• Appearance (e.g., colour, texture)

• State (e.g., position or orientation)

• Dynamics (e.g., accelerating, stopped, etc)

3Tuesday, February 12, 2013

Problem

Tracking is the process of inferring information given a sequence of
observations over time

What are our observations?

• RGB images (e.g., standard cameras)

• Depth images (e.g., Kinect, Time-of-flight sensors)

• Transformations of the above (e.g., colour or gradient histograms, edges,
feature points and descriptors, object detections, etc)

4Tuesday, February 12, 2013

Problem

Tracking is the process of inferring information given a sequence of
observations over time

What makes it hard?

• Observations are often noisy, misleading, indirect, cluttered, incomplete

• Data association is not always clear

• Problem is often inherently ambiguous, ie, no single right answer

5Tuesday, February 12, 2013

Basics of Probability

Let and be continuous random variables

Probability density function describes the density of probability at
a point and is also called the probability distribution of

Will often refer to as the “probability of a” but this is not quite
accurate, really mean the “probability density of a”.

PDFs must satisfy:

Joint probability density function is the probability density of
both random variables taking on a particular value.

Conditional probability density function is the probability density
of one random variable given that the value of the other random variable is
known.

a b

p(a)

�
p(a)da = 1p(a) ≥ 0

p(a)

p(a, b)

p(a|b)

a

6Tuesday, February 12, 2013

Basics of Probability

Some properties that we’ll use a lot:

Factorization:

Bayes’ Rule:

Marginalization:

Independence: if, and only if, and are independent then

p(a, b) = p(a)p(b)

a b

p(a) =

�
p(a, b)db

p(a|b) = p(b|a)p(a)
p(b)

p(a, b) = p(a|b)p(b) = p(b|a)p(a)

7Tuesday, February 12, 2013

Basics of Probability

If variables are discrete, the same properties hold with small modifications

Probability function where

Marginalization:

p(a) �

a

p(a) = 10 ≤ p(a) ≤ 1

p(a) =
�

b

p(a, b)

8Tuesday, February 12, 2013

Basics of Probability

The expected value of a function of a random variable is the average value

Some common uses for expectation

Mean

(Co-)variance

9Tuesday, February 12, 2013

Probabilistic Formulation of Tracking

Denote the state at time t as

• might be the position and orientation of an object, the pose of a human
body, the current appearance model of an object, etc

For convenience we’ll denote a sequence of states from time 1 to t as

x1:t = (x1, . . . ,xt)

xt

xt

10Tuesday, February 12, 2013

Probabilistic Formulation of Tracking

Denote the observation at time t as

• Observations could include an entire image, filter responses (e.g.,
gradients), optical flow, feature points, detector responses, etc

Similarly we’ll denote a sequence of observations from time 1 to t as

zt

z1:t = (z1, . . . , zt)

11Tuesday, February 12, 2013

Probabilistic Formulation of Tracking

We can now define what we’re fundamentally interested in

The posterior distribution at time t is the conditional probability
distribution of the states given the observations

Sometimes we don’t need the full posterior. Instead we look at the
filtering distribution at time t which is the probability of the most recent
state given the observations up to that time

p(x1:t|z1:t)

p(xt|z1:t) =
�

· · ·
�

p(x1:t|z1:t)dxt−1 · · ·dx1

12Tuesday, February 12, 2013

Probabilistic Formulation of Tracking

Given these distributions we can answer the key tracking questions:

• What is the most likely state?

• What does the average state look like?

• Are there multiple, similarly probable states?

max
xt

p(xt|z1:t)

E[xt|z1:t] =
�

xtp(xt|z1:t)dxt

∂

∂xt
p(xt|z1:t) = 0

13Tuesday, February 12, 2013

Probabilistic Formulation of Tracking

We can ask similar questions about the motion (i.e., sequence of states):

• What is the most likely motion?

• What does the average motion look like?

• Are there multiple, similarly probable motions?

E[x1:t|z1:t] =
�

x1:tp(x1:t|z1:t)dxt

max
x1:t

p(x1:t|z1:t)

∂

∂x1:t
p(x1:t|z1:t) = 0

14Tuesday, February 12, 2013

Probabilistic Formulation of Tracking

Lets be more specific about what the problem at hand is

Probabilistic tracking is the problem of (efficiently) computing the posterior
(or filtering) distribution at each time t

Problem: what exactly is the posterior distribution?

15Tuesday, February 12, 2013

Defining the Posterior

We can apply Bayes’ rule to the posterior to express it in terms of:

The likelihood measures the how well the observations match the state.

The prior expresses how likely the states are without observations.

The evidence is a normalizing factor which doesn’t depend on the states.

p(x1:t|z1:t) =
p(z1:t|x1:t)p(x1:t)

p(z1:t)

likelihood

evidence

prior

16Tuesday, February 12, 2013

Defining the Posterior: Model Assumptions

To construct a likelihood and prior, we make some assumptions

The prior (or motion model) is assumed to be a first-order Markov model
where the past is independent of the future given the present

p(xt|x1:t−1) = p(xt|xt−1)

Using this assumption we can rewrite the prior

= p(x1)
�t

i=2 p(xi|xi−1)

p(x1:t) = p(xt|x1:t−1)p(x1:t−1) (factorization)

= p(xt|xt−1)p(x1:t−1) (first-order Markov)

17Tuesday, February 12, 2013

Defining the Posterior: Model Assumptions

To construct a likelihood and prior, we make some assumptions

The observations are conditionally independent given the states

p(z1:t|x1:t) =
t�

i=1

p(zi|xi)

18Tuesday, February 12, 2013

Defining the Posterior: Model Assumptions

These assumptions serve three purposes

1. The prior can be easily specified with a single step motion model

2. The likelihood can be easily specified with a single observation model

3. The posterior and filtering distributions can be written in a computationally
convenient, recursive form

p(zt|xt)

p(xt|xt−1)

19Tuesday, February 12, 2013

Defining the Posterior: Recursive form

(Bayes’ rule)p(x1:t|z1:t) =
p(z1:t|x1:t)p(x1:t)

p(z1:t)

∝ p(z1:t|x1:t)p(x1:t)

=

�
t�

i=1

p(zi|xi)

�
p(x1)

t�

i=2

p(xi|xi−1)

∝ p(zt|xt)p(xt|xt−1)p(x1:t−1|z1:t−1)

(assumptions)

(recursion)

Posterior distribution:

previous posterior

20Tuesday, February 12, 2013

Defining the Posterior: Recursive form

Filtering distribution:

∝
�

p(zt|xt)p(xt|xt−1)p(x1:t−1|z1:t−1)dx1:t−1

p(xt|z1:t) =
�

p(x1:t|z1:t)dx1:t−1 (marginalization)

= p(zt|xt)

�
p(xt|x1:t−1)p(x1:t−1|z1:t−1)dx1:t−1

(first-order Markov)

= p(zt|xt)

�
p(x1:t|z1:t−1)dx1:t−1 (factorization)

(marginalization)= p(zt|xt)p(xt|z1:t−1)

prediction distribution

21Tuesday, February 12, 2013

Defining the Posterior: Recursive form

The prediction distribution is the distribution of the next state given the
previous observations

p(xt|z1:t−1) =

�
p(xt−1,xt|z1:t−1)dxt−1

=

�
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

22Tuesday, February 12, 2013

Defining the Posterior: Recursive form

The recursive form is important theoretically and computationally:

• All information contained in past observations is represented in the
previous posterior distribution

• Given only the previous posterior distribution and a new observation, we
should be able to compute the next posterior distribution

Without it we would potentially need to reference all the past observations to
create the next posterior distribution

23Tuesday, February 12, 2013

Defining the Posterior: Filtering vs Smoothing

There are two different tasks to consider with temporal observations

Filtering is what we’ve mostly been talking about, looking at the
distribution of the current state given the past (online)

Smoothing looks at the distribution of the current state given both the
past and the future (batch)

The smoothing distribution is

p(xτ |z1:t) ∝
p(zτ |xτ)p(xτ |z1:τ−1)p(xτ |zτ+1:t)

p(xτ)

24Tuesday, February 12, 2013

Defining the Posterior: Filtering vs Smoothing

There are two different tasks to consider with temporal observations

Filtering is what we’ve mostly been talking about, looking at the
distribution of the current state given the past (online)

Smoothing looks at the distribution of the current state given both the
past and the future (batch)

We’re going to focus on filtering

25Tuesday, February 12, 2013

Defining the Posterior: Likelihoods

There are many different kinds of likelihoods that have been used in computer
vision for tracking

We can’t cover them all here but just to give you some idea:

• Feature points

• Image templates or detector responses

• Histograms of colour, gradients, etc

• Image edges

• Background subtraction

• ...

Constructing the “right” likelihood for a tracking problem is probably one of
the most important pieces but it’s also one of the hardest

26Tuesday, February 12, 2013

Defining the Posterior: Motion Models

While there are a large number of likelihoods, the number of (commonly used)
motion models are much smaller and we’ll talk about the most common

Before we talk about specific examples, lets go over why motion models are
important

• Observations can be noisy or misleading

• Posteriors often have multiple, equally likely, modes or explanations

A good motion model (or prior) helps a tracker choose between competing
explanations and observations when they’re not helpful

27Tuesday, February 12, 2013

Defining the Posterior: Motion Models

What makes a good motion model?

Two main qualities:

• Generic - applicable to a wide number of tasks, actions, subjects, etc

• Informative - provides good information about good and bad motions

Bearing this in mind, lets look at some commonly used motion models

28Tuesday, February 12, 2013

Defining the Posterior: Motion Models

For simplicity assume that is the 2D position of an object in the image

The simplest model is Brownian motion, ie, random Gaussian noise

In other terms

xt

xt = xt−1 + η η ∼ N (0,Σ)

p(xt|xt−1) = |2πΣ|−0.5 exp

�
−1

2
(xt − xt−1)

TΣ−1(xt − xt−1)

�

29Tuesday, February 12, 2013

Defining the Posterior: Motion Models

Brownian motion is fairly generic, only assuming that the current and previous
positions are nearby

It’s also very “jerky”, more than we really expect motion to be, making it
relatively uninformative

30Tuesday, February 12, 2013

Defining the Posterior: Motion Models

Other common motion models tend to be higher order, that is, they look at
motion over several frames

But this violates the first-order Markov assumption!

Can always “stack” the state to include some history:

yt =





xt

xt−1
...

xt−p





31Tuesday, February 12, 2013

Defining the Posterior: Motion Models

Other motion models:

Constant Velocity:

Damped Spring:

Auto-Regressive:

32Tuesday, February 12, 2013

Defining the Posterior: Motion Models

Models for more complex motions (or states) can be learned or, in some
cases, built from first principles

• To learn a motion model, can effectively treat it as regression problem

• When tracking 3D motion, can use physics to derive motion models

33Tuesday, February 12, 2013

Inference: Kalman Filter

Now that we have a posterior (in terms of a likelihood and motion model), the
task of tracking is to effectively compute and use this posterior

Unfortunately, computing and analyzing a general posterior is hard so we
typically use approximations

However, these is one case where the posterior can be computed easily in
closed form

34Tuesday, February 12, 2013

Inference: Kalman Filter

Assume the entire model is Gauss-Linear

That is, the motion model is linear plus Gaussian noise and the observations
are linear in the state plus Gaussian noise

35Tuesday, February 12, 2013

Inference: Kalman Filter

The transition and observation densities can be written as

where

36Tuesday, February 12, 2013

Inference: Kalman Filter

Then it can be shown that the prediction distribution is also Gaussian

37Tuesday, February 12, 2013

Inference: Kalman Filter

Using that, the posterior at the next time is:

38Tuesday, February 12, 2013

Inference: Kalman Filter

The form of the means and variances are given below for reference (try to
derive them on your own)

39Tuesday, February 12, 2013

Inference: Kalman Filter

Kalman filter in computer vision

• Lane following [Dickmanns and Graefe, “Dynamic Monocular Machine
Vision” 1988]

• Monocular 3D motion estimation [Broida et al, “Recursive 3D
Estimation from a Monocular Image Sequence” 1990]

Dickmanns & Graefe: Dynamic Monocular Machine Vision 225

ally, and if two pictures of such a scene are taken
within a few milliseconds they will normally be very
similar to each other.

In order to understand how the temporal conti-
nuity of natural scenes can facilitate dynamic vi-
sion, assume that a first TV image of such a scene
has just been interpreted. It is then rather easy to
interpret the immediately following image, as the
differences between the two are very small. This
observation has important consequences for the de-
sign of a real-time vision system. It means that the
task of dynamic scene interpretation becomes eas-
ier if the time spent on each image is reduced, and
that the task becomes more difficult if the system is
slower. Therefore, the cycle time of the low level
vision subsystem should ideally be less than one
frame period of the TV signal used, making it pos-
sible to evaluate every single image as it is delivered
by the camera. (The higher levels of the vision sys-
tem which operate on symbolic descriptions of the
scene may use longer cycle times, depending on the
dynamics of the machine to be controlled and of the
objects in the scene.)

Another important aspect on which to base the
architecture of hardware for dynamic vision for mo-
tion control is the desired output of the system: it is
the behavior of a visually controlled machine, and
not, as often in traditional static image processing,
either another image or a fairly complete, perhaps
even verbal, description of the image.

The appropriate behavior of a vision controlled
machine typically depends on the presence and lo-
cation,, or absence of certain objects in its environ-
ment. The vision task is then clearly goal directed,
the first subtask being to locate features in the im-
age which are indicative of the presence and loca-
tion of important objects. It seems obvious that
such features in many typical situations occupy
only a small fraction of the total area of each image
(Figure 1). It suffices then to process only those
areas of each image which actually contain relevant
features.

In dynamic scene interpretation the location of
all important features is usually known in advance
and with fairly good precision from the interpreta-
tion of previous images. This means that, when in-
terpreting the next image in the sequence, the
search space in which the feature of interest should
be looked for is small, and the feature can be redis-
covered rather quickly if the search is indeed fo-
cused on this small search space. This leads to the
probably most important point in the design of hard-
ware for real-time vision: since nearly all the rele-
vant information in the image is contained in a lim-
ited number of small regions the combined size of

Figure 1. Small regions of an image contain almost all
information relevant for motion control.

which is only a small fraction (often less than 10%)
of the whole image, much will be gained if all the
available computing power can be concentrated on
those regions. Moreover, since each region may
contain a different type of feature, it is important to
be able to use different algorithms in each region.

This shows that a conventional image processing
system which is designed to treat all pixels in an
image in the same way does not have the proper
structure for dynamic vision. The same is true for
some massively parallel computers of the single in-
struction, multiple data (SIMD) type. Because
these machines, too, must treat all pixels of an im-
age in the same manner, they may waste 90% or
more of their computing power on processing parts
of the image which are known in advance to contain
no relevant information. In the worst case, addi-
tional computing power is needed to delete all the
irrelevant data which are produced in the process.

The concept of processing only a limited number
of well defined regions within an image is also the
key to a natural division of the problem into sub-
tasks which can be executed in parallel on a
coarsely grained multiprocessor system. Each par-
allel processor in such a system can be assigned one
relevant region, and it can locate--independently of
all other processors--the associated features in that
region. Such a system not only has a very clear
structure (one region--one group of features--one
subtask--one processor), but it can also be very
efficient, since the parallel processors do not have
to spend time synchronizing or coordinating each
other.

An important key to this concept is that the size,
shape, and location of each region may be varied

Y ’

Fig. 6. First and fourth frames of real image sequence

component due to the positioning of the camera. The
object image size (i.e., the size of the tire) is about 2
in at the start of the sequence, and about 3 in at the
end. The total rotation was about 4 rad and the total
translation about 45 in. The photographs were digitized
to a resolution of 50 pixels/in. Two previously chosen
reference points were located on all the images, and
the distances of the feature points from them were
measured on a Sun workstation. A simple geometrical
transformation was used to reference all measurements
to the coordinate axes in the first image. This was
done to reduce errors due to small camera movements
during imaging, and the positioning of the photographs
during scanning. Feature point correspondences
were obtained manually by inspection. The focal
length of the imaging system was not known, and was
assumed to be unity. This has the effect of scaling the
translation and structure parameters up or down, but
is not a serious problem since the latter can only be
determined up to a scale factor.

As mentioned before, the actual state values are
not known to us, so it is not possible to display the
errors in the state estimate. Instead, the actual and
the estimated trajectories of the feature points are
shown in Fig. 7. The filter should ideally “lock on” to
the motion of the target within the first few frames,
and should track it efficiently in spite of small errors in
measurement and modeling. Fig. 7 seems to confirm
that the IEKF is doing a reasonably good job of
tracking the moving object. However, in certain cases
this might be misleading, since it is possible that two
or more entirely different sets of motion parameters
could give rise to similar image point trajectories.
This is discussed further in the next section. Ideally,
“ground truth” measurements using reliable measuring
devices should be used to verify the IEKF state
estimates.

0.5 -

0.4 -

0.3 -

0.2 ~

0.1 -

* -actual : o - estimated

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 7. Actual and estimated image point trajectories.

C. Selecting the IEKF Parameters

In order to run the IEKF, the following parameters
have to be supplied in addition to the image point
measurements: 1) initial estimate 9, 2) initial error
covariance P(O), 3) plant noise covariance matrices
Q k , and 4) measurement (observation) noise
covariances matrices Rk.

is to run a batch estimation algorithm on the first
few frames. Details of the batch algorithm used
in this implementation are given in the Appendix.
For the particular motion parameters chosen in the
simulations, the batch algorithm required about 250
iterations to converge. For Cases 1 and 2, only a crude
initial guess was desired, and hence the batch algorithm
was forcibly terminated after about 75 iterations.
For Case 3, final output of the batch algorithm after
convergence was used. In all three cases, the first
10 frames were used for obtaining the initial state
estimate. For the real image sequence, the initial guess
was obtained by running a batch estimation algorithm
on the first 14 frames for about 150 iterations.

The uniqueness of the batch solution depends
mainly on the number of feature points, the number
of frames, and the motion parameters. This issue is
addressed in detail in [19]. As expected, the batch
solution is found to be more reliable as the number of
feature points and the number of frames increase; but
it is also dependent on the amount of motion between
frames. It is observed that multiple batch solutions are
obtained only when there is some genuine ambiguity in
the motion. For instance, if the frame rate is very high
compared with the motion velocities, the motion is
likely to be ambiguous given a fixed number of frames.
This was observed, for instance, in the real image
experiment when only the first 8 frames, instead of the
first 14, were used to obtain the batch solution. Fig. 8
shows the image plane trajectories reconstructed from
the 8-frame batch solution, which should be compared
with the actual image plane trajectories in Fig. 7. It can

The easiest way to obtain a good initial estimate

650 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 24, NO. 4 JULY 1990

T

40Tuesday, February 12, 2013

Inference: Beyond the Kalman Filter

Most tracking problems in computer vision don’t fit nicely into a Gauss-Linear
model

• Non-linear observations (e.g., perspective projection)

• Non-Gaussian observation noise (e.g., detection failures, false detections,
appearance changes)

• Non-linear dynamics (e.g., human motion)

Kalman filter does not (directly) apply to these situations

41Tuesday, February 12, 2013

Inference: Beyond the Kalman Filter

Approximate versions of the Kalman Filter have been derived for non-linear
dynamics

Extended Kalman Filter (EKF): Approximate the non-linear dynamics with
a local linearization of the dynamics (i.e., set A to be the Jacobian of the
non-linear dynamics)

Unscented Kalman Filter (UKF): Instead of linearizing the dynamics, draw
a number of samples, simulate the dynamics, and compute the mean and
covariance of the new points

Both the EKF and the UKF have problems when the dynamics are not close
to linear

42Tuesday, February 12, 2013

Inference: Beyond the Kalman Filter

The Kalman Filter has one fundamental flaw for computer vision problems

Posteriors in computer vision are almost never
unimodal (much less Gaussian)!

43Tuesday, February 12, 2013

Inference: Non-Gaussian Posteriors

image 3D model
(camera view)

3D model
(top view)

Many 3D configurations may be consistent with a given image.

[courtesy of Cristian Sminchisescu]

44Tuesday, February 12, 2013

Inference: Non-Gaussian Posteriors

45Tuesday, February 12, 2013

Inference: Non-Gaussian Posteriors

So if we care about representing the posterior properly, we need an inference
algorithm which can handle non-Gaussian distributions

But if we end up picking the most likely state at the end of the day, do we
really need to worry about representing the full posterior?

YES: tracking (filtering) is a recursive process.
If we fail to represent important details now,

tracking may fail later!

46Tuesday, February 12, 2013

Inference: Particle Filter

A particle filter performs inference by approximating the distribution with a
(weighted) set of points and makes very few assumptions about the model

In it’s simplest form it requires two things from the model:

• Draw samples from the motion model

• Evaluate the likelihood function

47Tuesday, February 12, 2013

Inference: Particle Filter

A particle filter maintains a set of samples (or particles) which approximate
the posterior distribution

If we can draw a set of samples where

The Monte Carlo approximation allows us to compute

48Tuesday, February 12, 2013

Inference: Particle Filter

We don’t know how to draw samples from in general

A particle filter uses importance sampling where samples are drawn from
the importance distribution and weighted to correct the difference

That is

Where the weights are the ratio of the distributions

49Tuesday, February 12, 2013

Inference: Particle Filter

Expectation with these weighted samples

50Tuesday, February 12, 2013

Inference: Particle Filter

A set of properly weighted samples can also be thought of as a more direct
approximation to the posterior

This is important because of the prediction distribution

51Tuesday, February 12, 2013

Inference: Particle Filter

Here is a simple version of a particle filter (aka, the Condensation algorithm
[Isard and Blake, IJCV 1998]):

1) Given the filtering distribution at the previous time represented by a set
of weighted samples and a new observation

2) For draw samples from the prediction distribution and
weight them by the likelihood

a) Pick particle j with probability

b) Sample a new state from the motion model

c) Evaluate the likelihood of the new sample to get its weight

3) Normalize the weights
w(i)

t =
��N

j=1 w
(j)
t

�−1
w(i)

t

w(j)
t−1

i = 1, . . . , N

ŵ(i)
t = p(zt|x(i)

t)

x(i)
t ∼ p(xt|x(j)

t−1)

St = {x(j)
t , w(j)

t }Nj=1
zt

52Tuesday, February 12, 2013

Inference: Particle Filter

Lets take a closer look at what’s happening here

Consider the following posterior:

Condensation—Conditional Density Propagation for Visual Tracking 9

Figure 3. Factored sampling: a set of points s(n), the centres of the blobs in the figure, is sampled randomly from a prior density p(x). Each
sample is assigned a weight πi (depicted by blob area) in proportion to the value of the observation density p(z | x = s(n)). The weighted
point-set then serves as a representation of the posterior density p(x | z), suitable for sampling. The one-dimensional case illustrated here extends
naturally to the practical case that the density is defined over several position and shape variables.

n ∈ {1, . . . , N } is chosen with probability πn , where

πn =
pz

(

s(n)
)

∑N
j=1 pz

(

s(j)
)

and

pz(x) = p(z | x),

the conditional observation density. The value x′ = xn
chosen in this fashion has a distribution which approx-
imates the posterior p(x | z) increasingly accurately as
N increases (Fig. 3).
Note that posterior mean properties E[g(x) | z] can

be generated directly from the samples {s(n)}byweight-
ing with pz(x) to give:

E[g(x) | z] ≈
∑N

n=1 g
(

s(n)
)

pz
(

s(n)
)

∑N
n=1 pz

(

s(n)
)

. (7)

For example, themean can be estimated using g(x) = x
(illustrated in Fig. 4) and the variance using g(x) =
xxT . In the case that p(x) is a spatial Gauss-Markov
process, Gibbs sampling from p(x) has been used
to generate the random variates {s(1), . . . , s(N)}. Oth-
erwise, for low-dimensional parameterisations as in
this paper, standard, direct methods can be used for
Gaussians2 (Press et al., 1988). Note that, in the case
that the density p(z | x) is normal, the mean obtained
by factored sampling is consistent with an estimate ob-
tained more conventionally, and efficiently, from linear
least squares estimation. For multi-modal distributions
which cannot be approximated as normal, so that linear

estimators are unusable, estimates of mean x by fac-
tored sampling continue to apply.

4. The CONDENSATION Algorithm

The Condensation algorithm is based on factored
sampling but extended to apply iteratively to successive
images in a sequence. The same sampling strategy
has been developed elsewhere (Gordon, et al., 1993;
Kitagawa, 1996), presented as developments ofMonte-
Carlo methods. Jump-diffusion tracking (Miller et al.,
1995) may also be related to the approach described
here.
Given that the process at each time-step is a self-

contained iteration of factored sampling, the out-
put of an iteration will be a weighted, time-stamped
sample-set, denoted {s(n)t , n = 1, . . . , N }withweights
π

(n)
t , representing approximately the conditional state-
density p(xt |Zt) at time t . How is this sample-set
obtained? Clearly, the process must begin with a prior
density and the effective prior for time-step t should
be p(xt |Zt−1). This prior is of course multi-modal in
general and no functional representation of it is avail-
able. It is derived from the sample set representation
{(s(n)t−1, π

(n)
t−1), n = 1, . . . , N } of p(xt−1 |Zt−1), the

output from the previous time-step, to which predic-
tion (5) must then be applied.
The iterative process as applied to sample-sets, de-

picted in Fig. 5, mirrors the continuous diffusion pro-
cess in Fig. 2. At the top of the diagram, the out-
put from time-step t − 1 is the weighted sample-set
{(s(n)t−1, π

(n)
t−1), n = 1, . . . , N }. The aim is to maintain,

at successive time-steps, sample sets of fixed size N ,

53Tuesday, February 12, 2013

10 Isard and Blake

Figure 4. Sample-set representation of shape distributions: the sample-set representation of probability distributions, illustrated in one dimen-
sion in Fig. 3, is illustrated here (a) as it applies to the distribution of a multi-dimensional curve parameter x. Each sample s(n) is shown as a
curve (of varying position and shape) with a thickness proportional to the weight πn . The weighted mean of the sample set (b) serves as an
estimator of the distribution mean.

Figure 5. One time-step in the Condensation algorithm: Each of the three steps—drift-diffuse-measure—of the probabilistic propagation
process of Fig. 2 is represented by steps in the Condensation algorithm.

Inference: Particle Filter

Randomly
select particles

Sample from
motion dynamics p(zt|xt)

Weight particles
by likelihood

St
[Isard and Blake, 1998]

54Tuesday, February 12, 2013

Inference: Particle Filter

[Isard and Blake, 1998]

Condensation—Conditional Density Propagation for Visual Tracking 17

Figure 10. Tracking with multi-modal state-density: an approximate depiction of the state-density is shown, computed by smoothing the
distribution of point masses s(1)t , s(2)t , . . . in theCondensation algorithm. The density is, of course, multi-dimensional; its projection onto the
horizontal translation axis is shown here. The initial distribution is roughly Gaussian but this rapidly evolves to acquire peaks corresponding to
each of the three people in the scene. The right-most peak drifts leftwards, following the moving person, coalescing with and separating from
the other two peaks as it moves. Having specified a tracker for one person we effectively have, for free, a multi-person tracker, owing to the
innate ability of the Condensation algorithm to maintain multiple hypotheses.

uncluttered background, tracked by a Kalman filter
contour-tracker with default dynamics to record 140
fields (2.8 s) of tracked head positions, the most that
could be tracked before losing lock. Those 140 fields
were sufficient to learn a bootstrapmotionmodelwhich
then allowed the Kalman filter to track the training data
for 800 fields (16 s) before loss of lock. The motion
model obtained from these 800fieldswas used in exper-
iments with the Condensation tracker and applied
to the test data, now including clutter.
Figure 11 shows some stills from the test sequence,

with a trail of preceding head positions to indicate mo-
tion. The motion is primarily translation, with some
horizontal shear apparent as the dancer turns her head.
Representing the state density with N = 100 samples
at each time-step proves just sufficient for successful
tracking. As in the previous example, a prior density
can be computed as the steady state of themotionmodel
and, in this case, that yields a prior for position that
spreads across most of the image area, as might be

expected given the range of the dance. Such a broad
distribution cannot effectively be represented by just
N = 100 samples. One alternative is to increase N in
the early stages of tracking, and this is done in a later
experiment. Alternatively, the prior can be based on
a narrower distribution whose centre is positioned by
hand over the object at time 0, and that iswhatwas done
here. Observation parameters were µ = 24, σ = 7
with M = 18 normals.
Figure 12 shows the motion of the centroid of the

estimated head position as tracked both by the Con-
densation algorithm and by a Kalman filter using
the same motion model. TheCondensation tracker
correctly estimated head position throughout the se-
quence, but after about 40 fields (0.80 s), the Kalman
filter was distracted by clutter, never to recover.
Given that there is only one moving person in this

experiment, unlike the previous one in which there
were three, it might seem that a unimodal repre-
sentation of the state density should suffice. This is

55Tuesday, February 12, 2013

Inference: Particle Filter

56Tuesday, February 12, 2013

Inference: Particle Filter

Particle filters theoretically can perform inference on any model so long as we
can sample from the motion model, evaluate the likelihood and use enough
particles

So, how many particles do we need? How do we know if we have enough?

First, how many particles are needed to accurately represent a posterior

Imagine a Gaussian distribution with a full covariance matrix, need more
than independent samples to get a non-degenerate estimate of the
covariance

What if we have multiple modes?

What if we have “heavy tails”?

What if we have a uniform distribution?

d2

57Tuesday, February 12, 2013

Inference: Particle Filter

The number of particles needed to represent a distribution depends on the
entropy (kind of like the volume) of the distribution, not the dimensionality of
the parameters

Bad news is that entropy typically scales linearly with the number of
dimensions and the number of particles needed scales exponentially with the
entropy

But this is just how many particles are needed to represent a distribution, it’s
actually a lower bound on how many are needed for a particle filter

58Tuesday, February 12, 2013

Inference: Particle Filter

The problem is that the prediction distribution may be far away from the
likelihood

Samples will never come close to the likelihood or the true posterior!

59Tuesday, February 12, 2013

Inference: Particle Filter

Or the prediction distribution may be broad and the likelihood very peaky

60Tuesday, February 12, 2013

Inference: Particle Filter

Unfortunately, this is all too common in computer vision

This is from a likelihood function in human pose estimationVideo-Based People Tracking 11

500 600 700 800 900 1000 1100 1200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Z−Axis Translation

Pr
ob

ab
ili

ty

−300 −200 −100 0 100 200 300
0

0.002

0.004

0.006

0.008

0.01

0.012

Optical Axis Translation

Pr
ob

ab
ili

ty

(a) (b) (c) (d)

Fig. 6 Appearance likelihood. The behavior of the appearance likelihood described by Equation
(8) is illustrated. Similarly to Figure 4 a true pose, consistent with the pose of the subject illustrated
in Figure 3, is taken and the probability of that pose as a function of varying a single degree of free-
dom in the state are illustrated in (a) and (c); as before in (a) the entire body is shifted up and down
(along the Z-axis), in (d) along the optical axis of the camera. In (b) and (d) poses corresponding to
the strongest peak in the likelihood of (a) and (c) respectively are illustrated. Notice that due to the
strong separation between foreground and background in this image sequence, appearance likeli-
hood performs similarly to the background likelihood model (illustrated in Figure 4); in sequences
where foreground and background contain similar colors appearance likelihoods tend to produce
superior performance.

3.4 Edges and Gradient Based Features

Unfortunately foreground and background appearance models have several prob-
lems. In general they have difficulty handling large changes in appearance such as
those caused by varying illumination and clothing. Additionally, near boundaries
they can become inaccurate since most foreground models do not capture the shad-
ing variations that occur near edges, and the pixels near the boundary are a mixture
of foreground and background colors due to limited camera resolution. For this rea-
son, and to be relatively invariant to lighting and small errors in surface geometry, it
has been common to use edge-based likelihoods (e.g., Wachter and Nagel (1999)).
These models assume that the projected edges of the person should correspond to
some local structure in image intensity.
Perhaps the simplest approach to the use of edge information is the Chamfer

distance (Barrow, Tenenbaum, Bolles, and Wolf, 1977). or the Hausdorff distance
(Huttenlocher, Klanderman, and Rucklidge, 1993). Edges are first extracted from the
observed image using standard edge detection methods (Forsyth and Ponce, 2003)
and a distance map is computed where d(x) is the squared Euclidean distance from
pixel x to the nearest edge pixel. The outline of the subject in the image is computed
and the boundary is sampled at a set of points {bi}Mi=1. In the case of Chamfer
matching the likelihood function is

p(d |s) = exp

(

−
1
M

M

!
i=1

d(bi)

)

. (9)

Chamfer matching is fast, as the distance map need only be computed once and is
evaluated only at edge points. Additionally, it is robust to changes in illumination
and other appearance changes of the subject. However it can be difficult to obtain

Video-Based People Tracking 11

500 600 700 800 900 1000 1100 1200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Z−Axis Translation

Pr
ob

ab
ili

ty

−300 −200 −100 0 100 200 300
0

0.002

0.004

0.006

0.008

0.01

0.012

Optical Axis Translation

Pr
ob

ab
ili

ty

(a) (b) (c) (d)

Fig. 6 Appearance likelihood. The behavior of the appearance likelihood described by Equation
(8) is illustrated. Similarly to Figure 4 a true pose, consistent with the pose of the subject illustrated
in Figure 3, is taken and the probability of that pose as a function of varying a single degree of free-
dom in the state are illustrated in (a) and (c); as before in (a) the entire body is shifted up and down
(along the Z-axis), in (d) along the optical axis of the camera. In (b) and (d) poses corresponding to
the strongest peak in the likelihood of (a) and (c) respectively are illustrated. Notice that due to the
strong separation between foreground and background in this image sequence, appearance likeli-
hood performs similarly to the background likelihood model (illustrated in Figure 4); in sequences
where foreground and background contain similar colors appearance likelihoods tend to produce
superior performance.

3.4 Edges and Gradient Based Features

Unfortunately foreground and background appearance models have several prob-
lems. In general they have difficulty handling large changes in appearance such as
those caused by varying illumination and clothing. Additionally, near boundaries
they can become inaccurate since most foreground models do not capture the shad-
ing variations that occur near edges, and the pixels near the boundary are a mixture
of foreground and background colors due to limited camera resolution. For this rea-
son, and to be relatively invariant to lighting and small errors in surface geometry, it
has been common to use edge-based likelihoods (e.g., Wachter and Nagel (1999)).
These models assume that the projected edges of the person should correspond to
some local structure in image intensity.
Perhaps the simplest approach to the use of edge information is the Chamfer

distance (Barrow, Tenenbaum, Bolles, and Wolf, 1977). or the Hausdorff distance
(Huttenlocher, Klanderman, and Rucklidge, 1993). Edges are first extracted from the
observed image using standard edge detection methods (Forsyth and Ponce, 2003)
and a distance map is computed where d(x) is the squared Euclidean distance from
pixel x to the nearest edge pixel. The outline of the subject in the image is computed
and the boundary is sampled at a set of points {bi}Mi=1. In the case of Chamfer
matching the likelihood function is

p(d |s) = exp

(

−
1
M

M

!
i=1

d(bi)

)

. (9)

Chamfer matching is fast, as the distance map need only be computed once and is
evaluated only at edge points. Additionally, it is robust to changes in illumination
and other appearance changes of the subject. However it can be difficult to obtain

61Tuesday, February 12, 2013

Inference: Particle Filter

How can we know if this happens?

If we have N weighted samples, how do we know if they’re any good?

The effective sample size is an estimate of the number of independent
samples

Neff ≈ 1
�N

j=1(w
(j))2

If the weights are equal, i.e., , then

If one weight is large and the rest are small then

w(j) = N−1 Neff = N

Neff ≈ 1

62Tuesday, February 12, 2013

Inference: Particle Filter

So, how many particles should you use?

As many as you can afford!

What if it still doesn’t work?

Improve the model (i.e., reduce its entropy)

Broaden the prediction distribution by changing the motion model

Or...

63Tuesday, February 12, 2013

Inference: Sequential Importance Sampling

The simple particle filter is an example of what’s called a Sequential
Importance Sampling algorithm

The more general class of algorithms will give us more flexibility

To see the connection, consider importance sampling from the posterior

p(x1:t|z1:t) ∝
�

t�

i=1

p(zi|xi)

�
p(x1:t)

64Tuesday, February 12, 2013

Inference: Sequential Importance Sampling

If the importance distribution used is the prior

To draw a sample from the prior:

1) Draw sample from the initial distribution

2) For sample from the motion model

x1:t ∼ p(x1:t)

x(i)
1:t

x(i)
1 ∼ p(x1)

τ = 2, . . . , t

x(i)
τ ∼ p(xτ |x(i)

τ−1)

65Tuesday, February 12, 2013

Inference: Sequential Importance Sampling

The importance weights when using the prior

w(x1:t) =
p(x1:t|z1:t)
p(x1:t)

∝

��t
i=1 p(zi|xi)

�
p(x1:t)

p(x1:t)

=
t�

i=1

p(zi|xi)

66Tuesday, February 12, 2013

Inference: Sequential Importance Sampling

So to draw an importance sample and compute it’s weight

1) Draw sample from the initial distribution

2) Evaluate the initial weight

3) For

x(i)
1 ∼ p(x1)

τ = 2, . . . , t

x(i)
τ ∼ p(xτ |x(i)

τ−1)

w(i)
1 = p(z1|x(i)

1)

w(i)
τ = w(i)

τ−1p(zτ |x(i)
τ)

67Tuesday, February 12, 2013

Inference: Sequential Importance Sampling

So given a set of weighted importance samples at time t-1

Updating with a new observation is easy, for each sample j

1)

2)

As t increases the number of effective samples decreases, potentially very
quickly. This is know as the problem of particle depletion.

St−1 = {x(j)
t−1, w

(j)
t−1}Nj=1

x(j)
t ∼ p(xt|x(j)

t−1)

w(j)
t = w(j)

t−1p(zt|x
(j)
t)

68Tuesday, February 12, 2013

Inference: Sequential Importance Sampling

To avoid particle depletion SIS can incorporate resampling

Given a set of particles we can create a new set

For

1) Sample index j with probability

2) ,

If the original set was properly weighted, the new set
is properly weighted as well

St = {x(j)
t , w(j)

t }Nj=1

i = 1, . . . , N̂

w(j)
t

ŵ(i)
t = N̂−1x̂(i)

t = x(j)
t

Ŝt = {x̂(j)
t , ŵ(j)

t }N̂j=1

69Tuesday, February 12, 2013

Inference: Sequential Importance Sampling

To get the simple particle filter (the Condensation algorithm), perform SIS with
resampling at every every step (check this yourself!)

So what does the SIS perspective give us?

• We don’t have to resample at every step, just take each particle, sample
from the motion model and multiply the weight by the likelihood

• More importantly, we can use a different importance distribution

70Tuesday, February 12, 2013

Inference: Sequential Importance Sampling

Here is a (more) general version of a particle filter based on these ideas

1) If desired (eg, based on ESS) resample the particle set

2) For each particle j in set

a)

b)

3) Normalize the weights

St−1 = {x(j)
t−1, w

(j)
t−1}Nj=1

x(j)
t ∼ q(xt|x(j)

t−1, zt)

w�(j)
t = w(j)

t−1

p(zt|x(j)
t)p(x(j)

t |x(j)
t−1)

q(xt|x(j)
t−1, zt)

w(j)
t = w�(j)

t

�
N�

i=1

w�(i)
t

�

71Tuesday, February 12, 2013

Inference: Sequential Importance Sampling

How do we set the importance/proposal distribution?

If then we’re back to the basic algorithm

Ideally, we’d like but this generally
won’t be something we can sample from (if it was we’d be done!)

For specific problems we can often exploit domain knowledge to make
better proposal distributions (eg, object detections, background blobs, etc)

q(xt|x(j)
t−1, zt) = p(x(j)

t |x(j)
t−1)

q(xt|x(j)
t−1, zt) ∝ p(zt|xt)p(xt|x(j)

t−1)

72Tuesday, February 12, 2013

Inference: Sequential Importance Sampling

Other particle filter/SIS variations:

Rao-Blackwellized Particle Filter: Reduce posterior entropy by
analytically integrating out state variables [Khan et al, CVPR 2004]

Auxiliary Particle Filter: Peek ahead at the observation in order to build a
better proposal distribution [Pitt and Shephard, JASA 1999]

SIS with MCMC: Use MCMC sampling to improve the particle set at each
iteration [Liu and Chen, JASA 1998; Choo and Fleet, ICCV 2001]

73Tuesday, February 12, 2013

MAP Tracking

There are many other tracking algorithms people have explored which are
non-probabilistic

They focus on finding the maxima of the filtering distribution at each time,
given the maxima at the previous time

xMAP
t = argmax

xt

p(xt|xMAP
t−1 , z1:t)

= argmax
xt

p(zt|xt)p(xt|xMAP
t−1)

These algorithms basically constitute different ways to maximize a function

74Tuesday, February 12, 2013

MAP Tracking

Here is an example of a gradient based optimization MAP tracker which uses
a detailed model of hand shape and appearance

[de la Gorce et al, PAMI 2010]

75Tuesday, February 12, 2013

MAP Tracking

Some algorithms that have been used successfully

• Gradient based local optimization

• Iterative-least squares local optimization

• Particle-swarm optimization

• Annealed “particle filter”

76Tuesday, February 12, 2013

Annealed Particle Filter

The annealed particle filter is a particle filter-like algorithm, however it’s
sample set is not properly weighted

This is more than a theoretical problem: it can result in unexpected tracking
failures when the likelihood function is ambiguous or misleading

However, it is one of the most popular algorithms in (generative) human pose
tracking

77Tuesday, February 12, 2013

Annealed Particle Filter

The APF begins the with basic particle filtering algorithm:

1) Given the filtering distribution at the previous time represented by a set
of weighted samples and a new observation

2) For draw samples from the prediction distribution and
weight them by the likelihood

a) Pick particle j with probability

b) Sample a new state from the motion model

w(j)
t−1

i = 1, . . . , N

St = {x(j)
t , w(j)

t }Nj=1
zt

x(i,0)
t ∼ p(xt|x(i)

t−1)

78Tuesday, February 12, 2013

Annealed Particle Filter

Then APF then iterates a process of diffusion and reweighting using an
annealed version of the likelihood function

The diffusion distribution is typically a Gaussian

For

For ,

Normalize the weights and resample the particle set

For ,

For

l = 1, . . . , L

i = 1, . . . , N

i = 1, . . . , N

Tl(x|x�) = N (x|x�,Σl)

x(i,l)
t ∼ Tl(xt|x(i,l−1)

t)

w(i,l)
t =

�
p(zt|x(i,l−1)

t)
�αl

i = 1, . . . , N

w(i)
t = p(zt|x(i,L)

t)

x(i)
t = x(i,L)

t

79Tuesday, February 12, 2013

Annealed Particle Filter

This annealing process first
smooths out the likelihood function
and gradually roughens it, making
it easier to search

As the annealing proceeds, the
samples converge to a local mode

w3
()X

()X

()X

()Xw2

w1

w0

St,3

St,3
π

St,2

St,1
π

St,0
π

St+1,3

St,0

St,2
π

St,1

X

X

X

X

Figure 2: Illustration of the annealed particle filter with M = 3.With a multi-layered search
the sparse particle set is able to migrate gradually towards the global maximum without being
distracted by local maxima. The final set provides a good indication of the weighting
function’s global maximum.

In the case of traditional annealing, the temperature acts like a barrier, restricting
the movement of samples: the cooler the temperature, the fewer the number of samples
with a low function value (energy) that will be generated. In the context of a
particle set, a high survival rate corresponds to an even spread probability mass, while
a low one suggests the mass is concentrated in a few particles. Hence decreasing the
survival rate has the same effect as cooling the temperature in traditional annealing.
Now is clearly a monotonic decreasing function of . At a given layer, we

therefore adjust the value of to change the value of so that
approaches a desired value. This is trivially done by searching over (using the
value from the previous time step as the starting point) to find the value that
solves the equation

desired

10

[Deutscher and Reid, 2005]

80Tuesday, February 12, 2013

Annealed Particle Filter

The APF is typically run with fewer particles than the PF, but has a similar cost
due to the annealing process

Because (in its original form) it only anneals the likelihood function, the motion
model is effectively meaningless and the estimated states can make very
large jumps

This can be fixed by incorporating the motion model into the weighting, e.g.,

The APF can also be altered to properly weight the particles [Gall et al, JMIV
2007]

w(i,l)
t =



p(zt|x(i,l−1)
t)

N�

j=1

w(i)
t−1p(x

(i,l−1)
t |x(j)

t−1)




αl

81Tuesday, February 12, 2013

Annealed Particle Filter

The APF has had the most success in human motion estimation from multiple
cameras (typically at least 4 with wide baseline)

[Gall et al, IJCV 2010]

82Tuesday, February 12, 2013

Challenges: High-dimensional pose

People have many degrees of freedom, comprising an articulated

skeleton overlaid with soft tissue and deformable clothing.

83Tuesday, February 12, 2013

Challenges: Appearance, size and shape

People come in all shapes and sizes, with highly variable appearance.

84Tuesday, February 12, 2013

Challenges: Noisy and missing data

Ambiguities in pose are commonplace, e.g., due to:
background clutter, apparent similarity of parts,

occlusions, loose clothing …

85Tuesday, February 12, 2013

Challenges: Depth and reflection ambiguities

image 3D model
(camera view)

3D model
(top view)

Many 3D configurations may be consistent with a given image.

[courtesy of Cristian Sminchisescu]

86Tuesday, February 12, 2013

Kinematic models in tracking

 Motion Model: damped 2nd order Markov model with Beta process
noise and joint angle limits

 Observations: steerable pyramid coefficients (image edges)

 Inference: hybrid Monte Carlo particle filter

[Poon & Fleet 2001]

87Tuesday, February 12, 2013

Kinematic models in tracking

[Urtasun, Fleet, Hertzmann & Fua, 2005]

 Motion Model: non-linear latent model of the pose manifold, with 2nd
order Gauss-Markov model for temporal evolution

 Observations: tracked 2D patches on body (WSL tracker)

 Inference: MAP estimation (hill climbing)

88Tuesday, February 12, 2013

Physics-based models

Physics-based motion models naturally account for:
 balance and body lean (e.g., on hills)
 sudden accelerations (e.g., collisions)
 static contact (e.g., avoiding footskate)
 variations in style due to changes in speed and mass distribution

(e.g., carrying an object)
…

Goal: use dynamics to model key physical properties of motion
for 3D people tracking

89Tuesday, February 12, 2013

[Kawada Industries HRP-2, Robodex 2003]

Physics-based models: Humanoid Robots

Active control strategies used with
humanoid robots:

 energetically inefficient (highly geared,
low center of mass, …)

 tedious to design and implement
ZMP-based stability criteria

Usually produce characteristically
inhuman motion.

90Tuesday, February 12, 2013

Physics-based models: Computer animation

Learning physics-based models
from mocap data using space-time
optimization:

 high-dimensional models
(stiffness, damping, muscle
preferences, …)

 challenging optimization
 generalization

[Liu, Hertzmann & Popovic, 2006]

91Tuesday, February 12, 2013

Physics-based models: Passive dynamics

Passive dynamic robotic walkers have been built which exhibit human-
like gaits, with similar efficiency.

[McGeer 1990] [Collins & Ruina 2005]

92Tuesday, February 12, 2013

The Anthropomorphic Walker

Anthropomorphic Walker
 2D model with rigid bodies for the

torso and each leg
 forces can be added with a spring

between the legs and an impulsive
toe-off

[McGeer 1990; Kuo 2001/02]

Im
pu

lse

Key Properties:
when powered, exhibits a human-like preferred speed-step

length relationship
 invariant to total mass and leg length (approximately)

93Tuesday, February 12, 2013

A physics-based model of human motion

To use the anthropomorphic walker for tracking we need
 equations of motions,
 a prior distribution of spring stiffness and impulse which produce

natural 2D motions,
 a 3D pose model consistent with the underlying dynamics, and
 a likelihood function to relate the 3D pose model to the image.

94Tuesday, February 12, 2013

 Contact: instantaneous change in velocity due
to (inelastic) contact with ground:

 Equations of motion:

Dynamics of the anthropomorphic walker

Equations of motion govern the dynamics of leg orientations and ground
contact, given lengths and relative masses:

spring forceforces due to
gravity and
constraints

 Generalized coordinates:

Given initial conditions and control
parameters, the equations of motion are
integrated to find the time-varying pose.

generalized mass
matrix

acceleration

post-contact
velocity

pre-contact
velocity

impulse

95Tuesday, February 12, 2013

Simulation

Simulation with constant stiffness and impulse

96Tuesday, February 12, 2013

Control

Using optimization, parameters and initial state can
be found which generate cyclic motions at different speeds and
step lengths

Speed: 6.7 km/hr; Step length: 0.875mSpeed: 5.4 km/hr; Step length: 0.875mSpeed: 4.0 km/hr; Step length: 0.875mSpeed: 4.0 km/hr; Step length: 0.625mSpeed: 2.7 km/hr; Step length: 0.875mSpeed: 2.7 km/hr; Step length: 0.625mSpeed: 2.7 km/hr; Step length: 0.375m

97Tuesday, February 12, 2013

Spring Constant Impulse Magnitude

speed
step length

speed
step length

In tracking, the dynamics parameters are unknown and a simple
prior, based on these optimizations, is used.

Stochastic Control

98Tuesday, February 12, 2013

3D kinematic model

Kinematic parameters include the relative
orientations of torso, thigh, knee and
ankle.

the dynamical model constrains contact
of stance foot, the two thigh angles

other parameters modeled as smooth,
second-order Markov processes.

limb lengths are assumed to be static

99Tuesday, February 12, 2013

Sequential Monte Carlo inference:

Sampling from the transition density

Bayesian people tracking

Image observations:

likelihood posteriortransition

dynamics pose

State:

Resample when the effective number of samples becomes small

 sample control
 parameters

simulate dynamics sample kinematics,
given dynamics

Posterior distribution:

100Tuesday, February 12, 2013

Measurement / Observations

Optical FlowForeground Model Background Model

101Tuesday, February 12, 2013

Foreground / Background Model

102Tuesday, February 12, 2013

Calibration and initialization

Camera calibrated with respect to ground plane.
Gravity assumed to be normal to the ground.
Body position, pose and dynamics coarsely hand-initialized.
Excluding likelihood evaluations, runs at ~15 fps (5000 particles)

103Tuesday, February 12, 2013

Experiment 1: Changing speed

Input data.

104Tuesday, February 12, 2013

Experiment 1: Changing speed
Speed and support transfer versus time.

105Tuesday, February 12, 2013

Experiment 1: Changing speed

Approximate MAP trajectory

(half speed)

106Tuesday, February 12, 2013

Experiment 1: Changing speed

Approximate MAP trajectory in 3D

(half speed)

107Tuesday, February 12, 2013

Experiment 2: Occlusion

Input data.

108Tuesday, February 12, 2013

Experiment 2: Occlusion

Approximate MAP trajectory

(half speed)

109Tuesday, February 12, 2013

Experiment 2: Occlusion

Posterior distribution over marker locations on 3D model.

(half speed)

110Tuesday, February 12, 2013

Experiment 2: Occlusion

Posterior distribution over marker locations on 3D model.

(half speed)
111Tuesday, February 12, 2013

Experiment 3: Turning with changes in speed

Approximate MAP trajectory

112Tuesday, February 12, 2013

Experiment 3: Turning with changes in speed

Approximate MAP trajectory in 3D

113Tuesday, February 12, 2013

