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What did we see in class last week?
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Panoramas
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Today’s Readings

Chapter 6 and 11 of Szeliski’s book
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Let’s look at camera calibration
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Camera Calibration

Find the quantities internal to the camera that affect the imaging process as well
as the position of the camera with respect to the world

Rotation and translation

Position of image center in the image

Focal length

Different scaling factors for row pixels and column pixels

Skew factor

Lens distortion (pin-cushion effect)
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Why do we need calibration?

Have good reconstruction

Interact with the 3D world

[Source: Ramani]
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Camera and Calibration Target

Most methods assume that we have a known 3D target in the scene

[Source: Ramani]
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Most common used Procedure

Many algorithms!

Calibration target: 2 planes at right angle with checkerboard patterns (Tsai
grid)

We know positions of pattern corners only with respect to a coordinate
system of the target

We position camera in front of target and find images of corners

We obtain equations that describe imaging and contain internal parameters
of camera

We also find position and orientation of camera with respect to target
(camera pose)

[Source: Ramani]
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Obtaining 2D-3D correspondences

Canny edge detection

Straight line fitting to detect linked edges. How?

Intersect the lines to obtain the image corners

Matching image corners and 3D target checkerboard corners (sometimes
using manual interaction)

We get pairs (image point)–(world point), (xi , yi )→ (Xi ,Yi ,Zi ).

[Source: Ramani]
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Calibration

Estimate matrix P using 2D-3D correspondences

Estimate K and (R, t) from P

P = K · R · [I3×3 | t]

Left 3x3 submatrix of P is product of upper-triangular matrix and
orthogonal matrix
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Inherent Constraints

The visual angle between any pair of 2D points must be the same as the
angle between their corresponding 3D points.
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Direct Linear Transform

Simplest to form a set of linear equations (analog to the 2D case)

xi =
p00Xi + p01Yi + p02Zi + p03
p20Xi + p21Yi + p22Yi + p23

yi =
p10Xi + p11Yi + p12Zi + p13
p20Xi + p21Yi + p22Yi + p23

with (xi , yi ), the measured 2D points, and (Xi ,Yi ,Zi ) are known 3D
locations

This can be solve in a linear fashion for P. How?

Similar to the homography case.

This is called the Direct Linear Transform (DLT)

How many unknowns? how many correspondences?

11 or 12 unknowns, 6 correspondences

Are we done?

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 13 / 56



Direct Linear Transform

Simplest to form a set of linear equations (analog to the 2D case)

xi =
p00Xi + p01Yi + p02Zi + p03
p20Xi + p21Yi + p22Yi + p23

yi =
p10Xi + p11Yi + p12Zi + p13
p20Xi + p21Yi + p22Yi + p23

with (xi , yi ), the measured 2D points, and (Xi ,Yi ,Zi ) are known 3D
locations

This can be solve in a linear fashion for P. How?

Similar to the homography case.

This is called the Direct Linear Transform (DLT)

How many unknowns? how many correspondences?

11 or 12 unknowns, 6 correspondences

Are we done?

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 13 / 56



Direct Linear Transform

Simplest to form a set of linear equations (analog to the 2D case)

xi =
p00Xi + p01Yi + p02Zi + p03
p20Xi + p21Yi + p22Yi + p23

yi =
p10Xi + p11Yi + p12Zi + p13
p20Xi + p21Yi + p22Yi + p23

with (xi , yi ), the measured 2D points, and (Xi ,Yi ,Zi ) are known 3D
locations

This can be solve in a linear fashion for P. How?

Similar to the homography case.

This is called the Direct Linear Transform (DLT)

How many unknowns? how many correspondences?

11 or 12 unknowns, 6 correspondences

Are we done?

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 13 / 56



Direct Linear Transform

Simplest to form a set of linear equations (analog to the 2D case)

xi =
p00Xi + p01Yi + p02Zi + p03
p20Xi + p21Yi + p22Yi + p23

yi =
p10Xi + p11Yi + p12Zi + p13
p20Xi + p21Yi + p22Yi + p23

with (xi , yi ), the measured 2D points, and (Xi ,Yi ,Zi ) are known 3D
locations

This can be solve in a linear fashion for P. How?

Similar to the homography case.

This is called the Direct Linear Transform (DLT)

How many unknowns? how many correspondences?

11 or 12 unknowns, 6 correspondences

Are we done?

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 13 / 56



Direct Linear Transform

Simplest to form a set of linear equations (analog to the 2D case)

xi =
p00Xi + p01Yi + p02Zi + p03
p20Xi + p21Yi + p22Yi + p23

yi =
p10Xi + p11Yi + p12Zi + p13
p20Xi + p21Yi + p22Yi + p23

with (xi , yi ), the measured 2D points, and (Xi ,Yi ,Zi ) are known 3D
locations

This can be solve in a linear fashion for P. How?

Similar to the homography case.

This is called the Direct Linear Transform (DLT)

How many unknowns? how many correspondences?

11 or 12 unknowns, 6 correspondences

Are we done?

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 13 / 56



Direct Linear Transform

Simplest to form a set of linear equations (analog to the 2D case)

xi =
p00Xi + p01Yi + p02Zi + p03
p20Xi + p21Yi + p22Yi + p23

yi =
p10Xi + p11Yi + p12Zi + p13
p20Xi + p21Yi + p22Yi + p23

with (xi , yi ), the measured 2D points, and (Xi ,Yi ,Zi ) are known 3D
locations

This can be solve in a linear fashion for P. How?

Similar to the homography case.

This is called the Direct Linear Transform (DLT)

How many unknowns? how many correspondences?

11 or 12 unknowns, 6 correspondences

Are we done?

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 13 / 56



Direct Linear Transform

Simplest to form a set of linear equations (analog to the 2D case)

xi =
p00Xi + p01Yi + p02Zi + p03
p20Xi + p21Yi + p22Yi + p23

yi =
p10Xi + p11Yi + p12Zi + p13
p20Xi + p21Yi + p22Yi + p23

with (xi , yi ), the measured 2D points, and (Xi ,Yi ,Zi ) are known 3D
locations

This can be solve in a linear fashion for P. How?

Similar to the homography case.

This is called the Direct Linear Transform (DLT)

How many unknowns? how many correspondences?

11 or 12 unknowns, 6 correspondences

Are we done?

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 13 / 56



Finding Camera Translation

Once P is recovered, how do I obtain the other matrices?

t is the null vector of matrix P as

Pt = 0

t is the unit singular vector of P corresponding to the smallest singular value

The last column of V, where

P = UDVT

is the SVD of P
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Finding Camera Orientation and Internal Parameters

Left 3× 3 submatrix M of P is of form

M = KR

where K is an upper triangular matrix, and R is an orthogonal matrix

Any non-singular square matrix M can be decomposed into the product of
an upper-triangular matrix K and an orthogonal matrix R using the RQ
factorization

Similar to QR factorization but order of 2 matrices is reversed
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RQ Factorization

Define the matrices

Rx =

1 0 0
0 c −s
0 s c

 ,Ry =

 c ′ 0 s ′

0 1 0
−s ′ 0 c ′

 ,Rz =

c ′′ −s ′′ 0
s ′′ c ′′ 0
0 0 1


We can compute

c = − M33

(M2
32 + M2

33)1/2
s =

M32

(M2
32 + M2

33)1/2

Multiply M by Rx . The resulting term at (3, 2) is zero because of the values
selected for c and s

Multiply the resulting matrix by Ry , after selecting c and s so that the
resulting term at position (3, 1) is set to zero

Multiply the resulting matrix by Rz , after selecting c and s so that the
resulting term at position (2, 1) is set to zero
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RQ Factorization

Why does this algorithm work?

MRxRyRz = K

Thus we have
M = KRT

z RT
y RT

x = KR
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Improved computation of P

We have equations involving homgeneous coordinates

xi = PXi

Thus xi and Xi just have to be proportional

xi × PXi = 0

Let pT
1 ,p

T
2 ,p

T
3 be the row vectors of P

PXi =

pT
1 Xi

pT
2 Xi

pT
3 Xi


Therefore

xi × PXi =

vipT
3 Xi − wipT

2 Xi

wipT
3 Xi − uipT

2 Xi

uipT
3 Xi − vipT

2 Xi


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Improved computation of P

We have

xi × PXi =

vipT
3 Xi − wipT

2 Xi

wipT
3 Xi − uipT

2 Xi

uipT
3 Xi − vipT

2 Xi

 = 0

We can thus write 04 −wiXT
i viXT

i

wiXT
i 04 −uiXT

i

−viXT
i uiXT

i 04

p1

p2

p3

 = 0

Third row can be obtained from sum of ui times first row −vi times second
row

2 independent equations in 11 unknowns (ignoring scale)

With 6 correspondences, we get enough equations to compute matrix P

Ap = 0
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p1

p2

p3

 = 0

Third row can be obtained from sum of ui times first row −vi times second
row

2 independent equations in 11 unknowns (ignoring scale)

With 6 correspondences, we get enough equations to compute matrix P

Ap = 0
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Solving the system

Ap = 0

Minimize ||Ap|| with the constraint ||p|| = 1

P is the unit singular vector of A corresponding to the smallest singular value

The last column of V, where

A = UDVT

is the SVD of A

Called Direct Linear Transformation (DLT)
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Improving the P estimation

In most applications we have prior knowledge about some of the parameters
of K, e.g., pixels are squared, skew is small, optical center near the center of
the image

Use this constraints and frame the problem as a minimization

Find P using DLT
Use as initialization for nonlinear minimization

∑
i ρ(xi ,PXi ), with ρ a

robust estimator
Use Levenberg-Marquardt iterative minimization

See 6.2.2. in Szeliski’s book
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Radial Distorsion

We have assumed that lines are imaged as lines

Significant error for cheap optics and for short focal lengths
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Radial Distorsion Correction

We can write the correction as

xc − x0 = L(r)(x − x0)

yc − y0 = L(r)(y − y0)

with L(r) = 1 + κ1r
2 + κ2r

4 and r2 = (x − x0)2 + (y − y0)2

We thus minimize the following function

f (κ1, κ2) =
∑
i

(x ′i − xci )
2 + (y ′i − yci )

2

using lines known to be straight, with (x ′, y ′) the radial projection of (x , y)
on straight line
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Let’s look at 3D alignment
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Motivation

[Source: W. Burgard]
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3D Alignment

Before we were looking at aligning 2D points, or 2D to 3D points.

Now let’s do it in 3D

Given two corresponding point sets {xi , x′i}, in the case of rigid (Euclidean)
motion we want R and t that minimizes

ER3D =
∑
i

||x′i − Rxi − t||22

This is call the absolute orientation problem

Is this easy to do?
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Key Idea

If the correct correspondences are known, the correct relative
rotation/translation can be calculated in closed form

[Source: W. Burgard]
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Center of Mass

The centroids of the two point clouds c and c ′ can be used to estimate the
translation

µ =
1

N

N∑
i=1

xi µ′ =
1

N

N∑
i=1

x′i

Subtract the corresponding center of mass from every point in the two sets,

x̄i = xi − µ
x̄′i = x′i − µ′
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Solving for the Rotation

Let W =
∑N

i=1 x̄′i x̄
T
i

We can compute the SVD of W

W = USVT

If the rank is 3 we have a unique solution

R = UVT

t = µ− Rµ′

What if we don’t have correspondences?
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ICP

If the correspondences are not know, it is not possible to obtain the global
solution

Iterated Closest Points (ICP) [Besl & McKay 92]

Iterative algorithm that alternates between solving for correspondences and
solving for (R, t)

Does it remained you of any algorithm you have seen before?

Converges to right solution if starting positions are ”close enough”

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 30 / 56



ICP

If the correspondences are not know, it is not possible to obtain the global
solution

Iterated Closest Points (ICP) [Besl & McKay 92]

Iterative algorithm that alternates between solving for correspondences and
solving for (R, t)

Does it remained you of any algorithm you have seen before?

Converges to right solution if starting positions are ”close enough”

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 30 / 56



ICP

If the correspondences are not know, it is not possible to obtain the global
solution

Iterated Closest Points (ICP) [Besl & McKay 92]

Iterative algorithm that alternates between solving for correspondences and
solving for (R, t)

Does it remained you of any algorithm you have seen before?

Converges to right solution if starting positions are ”close enough”

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 30 / 56



ICP

If the correspondences are not know, it is not possible to obtain the global
solution

Iterated Closest Points (ICP) [Besl & McKay 92]

Iterative algorithm that alternates between solving for correspondences and
solving for (R, t)

Does it remained you of any algorithm you have seen before?

Converges to right solution if starting positions are ”close enough”

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 30 / 56



ICP

If the correspondences are not know, it is not possible to obtain the global
solution

Iterated Closest Points (ICP) [Besl & McKay 92]

Iterative algorithm that alternates between solving for correspondences and
solving for (R, t)

Does it remained you of any algorithm you have seen before?

Converges to right solution if starting positions are ”close enough”

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 30 / 56



ICP Variants

Point subsets (from one or both point sets)

Weighting the correspondences

Data association

Rejecting certain (outlier) point pairs

[Source: W. Burgard]
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Performance of Variants

Speed

Stability (local minima)

Tolerance wrt. noise and/or outliers

Basin of convergence (maximum initial misalignment)

[Source: W. Burgard]
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ICP Variants

Use all points

Uniform sub-sampling

Random sampling

Normal-space sampling distributed as uniformly as possible

Feature based Sampling

[Source: W. Burgard]
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Normal-based sampling

Ensure that samples have normals distributed as uniformly as possible

better for mostly-smooth areas with sparse features

[Source: W. Burgard]
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Feature-based sampling

try to find important points

decrease the number of correspondences

higher efficiency and higher accuracy

requires preprocessing

[Source: W. Burgard]
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ICP Variants

Point subsets (from one or both point sets)

Weighting the correspondences

Data association

Rejecting certain (outlier) point pairs
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Selection vs. Weighting

Could achieve same effect with weighting

Hard to guarantee that enough samples of important features except at high
sampling rates

Weighting strategies turned out to be dependent on the data.

Preprocessing / run-time cost tradeoff (how to find the correct weights?)

[Source: W. Burgard]
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ICP Variants

Point subsets (from one or both point sets)

Weighting the correspondences

Data association

Rejecting certain (outlier) point pairs
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Data association

Has greatest effect on convergence and speed

Closest point: stable, but slow and requires preprocessing

Normal shooting: slightly better than closest point for smooth structures,
worse for noisy or complex structures

Point to plane: lets flat regions slide along each other

Projection: much faster but slightly worst alignments

Closest compatible point: normals, colors

[Source: W. Burgard]
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ICP Variants

Point subsets (from one or both point sets)

Weighting the correspondences

Data association

Rejecting certain (outlier) point pairs, e.g., Trimmed ICP rejects a %

Where do these 3D points come from?
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Let’s look into stereo reconstruction
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Stereo

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923 

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Feb 7, 2013 43 / 56



Stereo

Stereo matching is the process of taking two or more images and
estimating a 3D model of the scene by finding matching pixels in the
images and converting their 2D positions into 3D depths

We perceived depth based on the difference in appearance of the right and
left eye.
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Stereo

Given two images from different viewpoints

The depth is proportional to the inverse of the disparity

How can we compute the depth of each point in the image?

Based on how much each pixel moves between the two images

[Source: N. Snavely]
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Epipolar Geometry

Pixel in one image x0 projects to an epipolar line segment in the other
image

The segment is bounded at one end by the projection of the original viewing
ray at infinity p∞ and at the other end by the projection of the original
camera center c0 into the second camera, which is known as the epipole e1.
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Epipolar Geometry

If we project the epipolar line in the second image back into the first, we get
another line (segment), this time bounded by the other corresponding
epipole e0

Extending both line segments to infinity, we get a pair of corresponding
epipolar lines, which are the intersection of the two image planes with the
epipolar plane that passes through both camera centers c0 and c1 as well
as the point of interest p
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Rectification

The epipolar geometry depends on the relative pose and calibration of the
cameras

This can be computed using the fundamental matrix

Once this is computed, we can use the epipolar lines to restrict the search
space to a 1D search

Rectification, the process of transforming the image so that the search is
along horizontal line
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Epipolar Geometry

!"#"$%&'(
%#)!*( !"#$%&#'% !"($%&#'%

!"#$%&'()*$+',-./)0$12$'$,./)32$4#/%5#6-'3$-/'6*3'76($+'&)/'$
8'!+,-!.(*-)/)#$,'%/9$

The disparity for pixel (x1, y1) is (x2 − x1) if the images are rectified

This is a one dimensional search for each pixel

Very challenging to estimate the correspondences

[Source: N. Snavely]
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Fundamental Matrix

Projective geometry depends only on the cameras internal parameters and
relative pose of cameras

Fundamental matrix F encapsulates this geometry

For any pair of points correspoding in both images

xT0 Fx1 = 0
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Epipolar Plane

[Source: Ramani]
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Pensils of Epipolar Lines

[Source: Ramani]
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Computation of Fundamental Matrix

F can be computed from correspondences between image points alone

No knowledge of camera internal parameters required

No knowledge of relative pose required
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Fundamental Matrix and Projective Geometry

Take x in camera P and find scene point X on ray of x in camera P

Find the image x′ of X in camera P′

Find epipole e′ as image of C in camera P′, e′ = P′C

Find epipolar line l′ from e′ to x′ in P′ as function of x

The fundamental matrix F is defined l′ = Fx

x′ belongs to l′, so x′T l′ = 0, so

x′
T

Fx = 0
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Finding the Fundamental Matrix from known Projections

Take x in camera P and find one scene point on ray from C to x

Point X = P+x satisfies x = PX with P+ = PT (PPT )−1 so
PX = PPT (PPT )−1x = x

Image of this point in camera P′ is x′ = P′X = P′P+x

Image of C in camera P′ is epipole e′ = P′C

Epipolar line of x in P′ is

l′ = (e′)× (P′P+x)

l′ = Fx defines the fundamental matrix

F = (P′C)× (P′P+)
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Properties of the fundamental matrix

Matrix 3× 3 since x′TFx = 0

Let F be the fundamental matrix of camera pair (P,P′), the fundamental
matrix of camera pair (P′,P) is F′ = FT

This is true since xTF′x′ = 0 implies x′TF′Tx = 0, so F′ = FT

Epipolar line of x is l′ = Fx

Epipolar line of x′ is l = FTx′

Epipole e′ is left null space of F, and e is right null space.

All epipolar lines l′ contains epipole e′, so e′T l′ = 0, i.e. e′TFx = 0 for all x,
therefore e′TF = 0

F is of rank 2 because F = e′ × (P′P+) and e′× is of rank 2

F has 7 degrees of freedom, there are 9 elements, but scaling is not
important and det(F) = 0 removes one degree of freedom
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