
Computer Vision: Image Features

Raquel Urtasun

TTI Chicago

Jan 17, 2013

Raquel Urtasun (TTI-C) Computer Vision Jan 17, 2013 1 / 97



What did we see in class last week?
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Last classes

Image formation

Filtering: convolution vs correlation

Separable filters

Computing edges

Steerable filters

Other transformations
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Today’s lecture ...

Local features:

Interest point detection
Descriptors
Matching
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Material

Chapter 3 and 4 of Rich Szeliski book

Available online here
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http://szeliski.org/Book/
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Local features
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Feature extraction: Corners and blobs

[Source: N. Snavely]
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Motivation: Automatic panoramas
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Why extract features?

How to combine these two images to form a panorama?

Figure: Two images
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Why extract features?

How to combine these two images to form a panorama?

Figure: Feature extraction and matching
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Why extract features?

How to combine these two images to form a panorama?

Figure: Image aligment
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Image matching
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[Source: N. Snavely]
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Harder Case

Why is this harder?

!"#$%&'#(%')# !"#*+,!-#

[Source: N. Snavely]
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Harder Still

Figure: NASA Mars Rover images

[Source: N. Snavely]
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Look for tiny squares ...

Figure: NASA Mars Rover images with SIFT feature matches

[Source: N. Snavely]
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Local features

Detection: Identify the interest points.

Description: Extract vector feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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Two approaches to Find Features

Tracking: searches in a small neighborhood around each detected feature.

When images are taken from nearby viewpoints
or in successive times (e.g., video sequence)

Matching: Determine correspondence between descriptors in two views.

When a large motion can happen, e.g., panoramas, wide baseline
stereo, object recognition.
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Goal: interest operator repeatability

We want to detect (at least some of) the same points in both images.

We have to be able to run the detection procedure independently per
image.

Figure: No chance to find the true matches

[Source: K. Grauman]
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Goal: descriptor distinctiveness

We want to be able to reliably match, i.e., determine which point goes
with which.

Must provide some invariance to geometric and photometric differences
between the two views.

[Source: K. Grauman]
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Invariant local features

geometric invariance: translation, rotation, scale

photometric invariance: brightness, exposure,

!"#$%&"'(")*&+,$-&)'

[Source: N. Snavely]
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Advantages of local features

Locality: features are local, so robust to occlusion and clutter

Quantity: hundreds or thousands in a single image

Distinctiveness: can differentiate a large database of objects

Efficiency: real-time performance achievable

[Source: N. Snavely]
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More motivation

Feature points are used for:

Image alignment (e.g., mosaics)

3D reconstruction

Motion tracking

Object recognition

Indexing and database retrieval

Robot navigation

...

[Source: N. Snavely]
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Local features

Detection: Identify the interest points.

Description: Extract vector feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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What points to choose?

[Source: K. Grauman]
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Want uniqueness

Look for image regions that are unusual: lead to unambiguous matches in
other images

How to define ”unusual”?
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What points to choose?

Textureless patches are nearly impossible to localize.

Patches with large contrast changes (gradients) are easier to localize.

But straight line segments at a single orientation suffer from the aperture
problem, i.e., it is only possible to align the patches along the direction
normal to the edge direction.

Gradients in at least two (significantly) different orientations are the easiest,
e.g., corners.
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Local measure of uniqueness

Suppose we only consider a small window of pixels

What defines whether a feature is a good or bad candidate?

[Source: S. Seitz, D. Frolova, D. Simakov]
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Local measure of feature uniqueness

Suppose we only consider a small window of pixels

How does the window change when you shift it?

Shifting the window in any direction causes a big change
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A Simple Matching Criteria

Consider shifting the window W by (u, v)

how do the pixels in W change?

compare each pixel before and after by summing up the squared
differences (SSD)

!"

this defines an SSD error

E (u, v) =
∑

(x,y)∈W

[I (x + u, y + v)− I (x , y)]2
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A Simple Weighted Matching Criteria

Compare two image patches using (weighted) summed square difference

EWSSD(u) =
∑
i

w(pi )[I1(pi + u)− I0(pi )]2

with I0 and I1 two images being compared, u(ux , uy ) a displacement vector,
w(p) a spatially varying weighting function, and the summation i is over all
the pixels in the patch.

We do not know which other image locations the feature will end up being
matched against.

We can only compute how stable this metric is with respect to small
variations in position u by comparing an image patch against itself.

This is the auto-correlation function

EAC (∆u) =
∑
i

w(pi )[I0(pi + ∆u)− I0(pi )]2
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Which one is better?

[Source: R. Szeliski]
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How to select and interest point?

Small motion assumption

Using a Taylor Series expansion I0(pi + ∆u) ≈ I0(pi ) +∇I0(pi )∆u with

∇I0(pi ) =

(
∂I0
∂x

,
∂I0
∂y

)
(pi )

the image gradient. We can approximate the autocorrelation as

EAC (∆u) =
∑
i

w(pi )[I0(pi + ∆u)− I0(pi )]2

≈
∑
i

w(pi )[I0(pi ) +∇I0(pi )∆u− I0(pi )]2

=
∑
i

w(pi )[∇I0(pi )∆u]2

= ∆uTA∆u

Gradient can be computed with the filtering techniques we saw, e.g.,
derivatives of Gaussians.
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More on selection

The autocorrelation is EAC (∆u) = ∆uTA∆u, with

A =
∑
u

∑
v

w(u, v)

[
I 2x Ix Iy
Iy Ix I 2y

]
= w ∗

[
I 2x Ix Iy
Iy Ix I 2y

]
where we have replaced the weighted summations with discrete convolutions
with the weighting kernel w .

A can be interpreted as a tensor where the outer products of the gradients
are convolved with a weighting function.

Eigenvalues a notion of uncertainty

[Source: R. Szeliski]
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Quick review on eigenvalue/eigenvector

The eigenvectors of a matrix A are the vectors x that satisfy

Ax = λx

with λ a scalar call the eigenvalue

The eigenvalues can be found by solving

det(A− λI ) = 0

In our case A is a 2× 2 matrix, so the solution is

λ =
1

2
[(a11 + a22 ±

√
4a12a21 + (a11 − a22)2]

Once you know λ you can find x by solving

(A− λI )x = 0

[Source: N. Snavely]
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Eigenvalues a notion of uncertainty

A is symmetric

A = U

[
λ0 0
0 λ1

]
UT with Aui = λiui

The eigenvalues of A reveal the amount of intensity change in the two
principal orthogonal gradient directions in the window.

How is this matrix for

[Source: R. Szeliski]
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Eigenvalues a notion of uncertainty

 xmin 

 xmax 

Eigenvalues and eigenvectors of A

xmax = direction of largest increase in E

λmax = amount of increase in direction xmax

xmax = direction of smallest increase in E

λmin = amount of increase in direction xmin

[Source: N. Snavely]
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Example

[Source: N. Snavely]
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Interpreting the eigenvalues

Classification of image points using eigenvalues of A:

!1 

!2 

“Corner” 
!1 and !2 are large, 
 !1 ~ !2; 
E increases in all 
directions 

!1 and !2 are small; 
E is almost constant 
in all directions 

“Edge”  
!1 >> !2 

“Edge”  
!2 >> !1 

“Flat” 
region 

[Source: N. Snavely]
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Local Feature Selection Criteria

Shi and Tomasi, 94 proposed the smallest eigenvalue of A, i.e., λ
−1/2
0 , which

is a rotationally invariant measure

Harris and Stephens, 88 is rotationally invariant and downweights edge-like
features where λ1 � λ0

det(A)− αtrace(A)2 = λ0λ1 − α(λ0 + λ1)2

Triggs, 04 suggested
λ0 − αλ1

Brown et al, 05 use the harmonic mean

det(A)

trace(A)
=

λ0λ1
λ0 + λ1

which is smoother when λ0 ≈ λ1.
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Type of responses

[Source: K. Grauman]
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Harris Corner detector

1 Compute the gradients at each point in the image

2 Compute A for each image window to get its cornerness scores.

3 Compute the eigenvalues

4 Find points whose surrounding window gave large corner response (f >
threshold).

5 Take the points of local maxima, i.e., perform non-maximum suppression.
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Example

[Source: K. Grauman]
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1) Compute Cornerness

[Source: K. Grauman]
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2) Find High Response

[Source: K. Grauman]
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3) Non-maxima Suppresion

[Source: K. Grauman]
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Results

[Source: K. Grauman]
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Another Example

[Source: K. Grauman]
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Cornerness

[Source: K. Grauman]
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Interest Points

[Source: K. Grauman]
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Image Transformations

Geometric:

Rotation Scale

Photometric:

Intensity change

[Source: N. Snavely]

Raquel Urtasun (TTI-C) Computer Vision Jan 17, 2013 48 / 97



Properties of Harris Corner Detector

Rotation invariant?

A = w ∗
[

I 2x Ix Iy
Iy Ix I 2y

]
= U

[
λ0 0
0 λ1

]
UT with Aui = λiui

[Source: N. Snavely]
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Properties of Harris Corner Detector

Scale Invariant?

[Source: K. Grauman]
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Properties of Harris Corner Detector

Affine intensity change I → aI + b?

Only derivatives are used, so it’s invariant to shift I → I + b

What about intensity scale?

R 

x (image coordinate) 

threshold 

R 

x (image coordinate) 

!"#$"%%&'()*"#(")+'!"#$%&'#(&!'&)(!*#+,$&-'#

[Source: K. Grauman]
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Scale invariant interest points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

Extract features at a variety of scales, e.g., by using multiple resolutions in
a pyramid, and then matching features at the same level.

When does this work?

More efficient to extract features stable in both location and scale.

Find scale that gives local maxima of a function f in both position and scale.

[Source: K. Grauman]
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Automatic Scale Selection

Function responses for increasing scale (scale signature).

[Source: T. Tuyttellaars]
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Implementation

Instead of computing f for larger and larger windows, we can implement
using a fixed window size with a Gaussian pyramid

!"#$%&$%"'(%%)'*#'+,%-*%'.(/
0%*1%%('2%3%2"4'%565'-'7/".8%'.$-6%9'

[Source: N. Snavely]
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What can the signature function be?

Lindeberg (1998): extrema in the Laplacian of Gaussians (LoG).

Lowe (2004) proposed computing a set of sub-octave Difference of
Gaussian filters looking for 3D (space+scale) maxima in the resulting
structure.

[Source: R. Szeliski]
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Blob detection

Laplacian of Gaussian: Circularly symmetric operator for blob detection in
2D

∇2g =
∂2g

∂x2
+
∂2g

∂y2

[Source: K. Grauman]
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Blob detection in 2D: scale selection

Laplacian-of-Gaussian = blob detector

[Source: B. Leibe]
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Characteristic Scale

We define the characteristic scale as the scale that produces peak of
Laplacian response

[Source: S. Lazebnik]
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Example

[Source: K. Grauman]
Raquel Urtasun (TTI-C) Computer Vision Jan 17, 2013 59 / 97



Example

[Source: K. Grauman]
Raquel Urtasun (TTI-C) Computer Vision Jan 17, 2013 59 / 97



Example

[Source: K. Grauman]
Raquel Urtasun (TTI-C) Computer Vision Jan 17, 2013 59 / 97



Example

[Source: K. Grauman]
Raquel Urtasun (TTI-C) Computer Vision Jan 17, 2013 59 / 97



Example

[Source: K. Grauman]
Raquel Urtasun (TTI-C) Computer Vision Jan 17, 2013 59 / 97



Example

[Source: K. Grauman]
Raquel Urtasun (TTI-C) Computer Vision Jan 17, 2013 59 / 97



Scale invariant interest points
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Example

[Source: S. Lazebnik]
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Fast approximation

[Source: K. Grauman]
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Lowe’s DoG

Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian
filters looking for 3D (space+scale) maxima in the resulting structure

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Computer Vision Jan 17, 2013 63 / 97



Properties of the ideal feature

Local: features are local, so robust to occlusion and clutter (no prior
segmentation).

Invariant: to certain transformations, e.g, scale, rotation.

Robust: noise, blur, discretization, compression, etc. do not have a big
impact on the feature.

Distinctive: individual features can be matched to a large database of
objects.

Quantity: many features can be generated for even small objects.

Accurate: precise localization.

Efficient: close to real-time performance.
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A lot of other interest point detectors

Hessian

Lowe: DoG

Lindeberg: scale selection

Miikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine

Tuyttelaars & Van Gool: EBR and IBR

Matas: MSER

Kadir & Brrady: Salient Regions

Speeded–Up Robust Features (SURF) of Bay et al.

· · ·
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Evaluation criteria: repeatability

Repeatability rate: percentage of detected features that have correct
corresponding points

What’s the problem of this?

[Source: T. Tuytelaars]
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Evaluation criteria: repeatability

Two points are in correspondence if the intersection over union is bigger
than a certain threshold.

Look for affine invariant features!

[Source: T. Tuytelaars]
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Local features

Detection: Identify the interest points.

Description: Extract vector feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Computer Vision Jan 17, 2013 68 / 97



The ideal feature descriptor

Repeatable (invariant/robust)

Distinctive

Compact

Efficient
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How to achieve invariance?

Make sure your detector is invariant

Design an invariant feature descriptor

Simplest descriptor: a single 0. What’s this invariant to?
Next simplest descriptor: a square window of pixels. What’s this
invariant to?
Lets look at some better approaches

[Source: N. Snavely]
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Invariances

[Source: T. Tuytelaars]
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Invariances

[Source: T. Tuytelaars]
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Raw Pixels as Local Descriptrs

The simplest way is to write down the list of intensities to form a feature
vector, and normalize them (i.e., mean 0, variance 1).

Why normalization?

But this is very sensitive to even small shifts, rotations and any affine
transformation.

[Source: K. Grauman]Raquel Urtasun (TTI-C) Computer Vision Jan 17, 2013 72 / 97



SIFT descriptor [Lowe 2004]

Compute the gradient at each pixel in a 16× 16 window around the
detected keypoint, using the appropriate level of the Gaussian pyramid at
which the keypoint was detected.

Downweight gradients by a Gaussian fall-off function (blue circle) to reduce
the influence of gradients far from the center.

In each 4× 4 quadrant, compute a gradient orientation histogram using 8
orientation histogram bins.

[Source: R. Szeliski]
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SIFT descriptor [Lowe 2004]

The resulting 128 non-negative values form a raw version of the SIFT
descriptor vector.

To reduce the effects of contrast or gain (additive variations are already
removed by the gradient), the 128-D vector is normalized to unit length.

To further make the descriptor robust to other photometric variations,
values are clipped to 0.2 and the resulting vector is once again renormalized
to unit length.

SIFT: Scale Invariant Feature Transform

Great engineering effort!

Why subpatches?

Why does SIFT have some illumination invariance?
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SIFT descriptor [Lowe 2004]

Extraordinarily robust matching technique

Changes in viewpoint: up to about 60 degree out of plane rotation

Changes in illumination: sometimes even day vs. night

Fast and efficient – can run in real time

Lots of code available

[Source: S. Seitz]
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Example

Figure: NASA Mars Rover images with SIFT feature matches

[Source: N. Snavely]
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PCA-SIFT

The dimensionality of SIFT is very high, i.e., 128D for each keypoint

Reduce the dimensionality using linear dimensionality reduction

In this case, principal component analysis (PCA)

Use 10D or so descriptor
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SIFT properties

Invariant to

Scale

Rotation

Partially invariant to

Illumination changes

Camera viewpoint

Occlusion, clutter
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Making descriptor rotation invariant (MOPS)

Rotate patch according to its dominant gradient orientation

This puts the patches into a canonical orientation

Multiscale Oriented PatcheS descriptor

Figure: Figure from M. Brown

[Source: K. Grauman]
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Gradient location-orientation histogram (GLOH)

Developed by Mikolajczyk and Schmid (2005): variant on SIFT that uses a
log-polar binning structure instead of the four quadrants.

The spatial bins are 11, and 15, with eight angular bins (except for the
central region), for a total of 17 spatial bins and 16 orientation bins.

The 272D histogram is then projected onto a 128D descriptor using PCA
trained on a large database.

[Source: R. Szeliski]
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Other Descriptors

Steerable filters

moment invariants,

complex filters

shape context,

PCA-SIFT,

HOG,

SURF

DAISY

· · ·
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Local features

Detection: Identify the interest points.

Description: Extract vector feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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Matching local features

Once we have extracted features and their descriptors, we need to match the
features between these images.

Matching strategy: which correspondences are passed on to the next stage

Devise efficient data structures and algorithms to perform this matching

Figure: Images from K. Grauman
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Matching local features

To generate candidate matches, find patches that have the most similar
appearance (e.g., lowest SSD)

Simplest approach: compare them all, take the closest (or closest k, or
within a thresholded distance)

[Source: K. Grauman]
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Ambiguous matches

At what SSD value do we have a good match?

To add robustness, consider ratio of distance to best match to distance to
second best match

If low, first match looks good.
If high, could be ambiguous match.

[Source: K. Grauman]
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Matching SIFT Descriptors

Nearest neighbor (Euclidean distance)

Threshold ratio of nearest to 2nd nearest descriptor

Figure: Images from D. Lowe

[Source: K. Grauman]
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Which threshold to use?

Setting the threshold too high results in too many false positives, i.e.,
incorrect matches being returned.

Setting the threshold too low results in too many false negatives, i.e., too
many correct matches being missed

Figure: Images from R. Szeliski

[Source: R. Szeliski]
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How to measure performance

How can we measure the performance of a feature matcher?

50 
75 

200 false match 

true match 

!"#$%&"'()*$#+,"'

[Source: N. Snavely]
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How to quantize how good is our matching?

TP: true positives, i.e., number of correct matches

FN: false negatives, matches that were not correctly detected

FP: false positives, proposed matches that are incorrect

TN: true negatives, non-matches that were correctly rejected.

True positive rate (recall) TPR =
TP

TP + FN
=

TP

P

False positive rate FPR =
FP

FP + TN
=

FP

N

positive predictive value (precision) PPV =
TP

TP + FP
=

TP

P ′

accuracy ACC =
TP + TN

P + N
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Measuring performance

Any particular matching strategy (at a particular threshold or parameter
setting) can be rated by the TPR and FPR numbers

We want TPR=1 (recall) and FPR=0

As we vary the matching threshold, we obtain a family of such points, i.e.,
receiver operating characteristic (ROC curve)

The closer this curve lies to the upper left corner, the better its performance

Figure: Images from R. Szeliski

[Source: R. Szeliski]Raquel Urtasun (TTI-C) Computer Vision Jan 17, 2013 90 / 97



Measuring performance

Area under the curve (AUC) is a way to summarize ROC with 1 number.

Mean average precision, which is the average precision (PPV) as you vary
the threshold, i.e., area under the curve in the precision-recall curve.

The equal error rate is sometimes used as well.

Figure: Images from R. Szeliski
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Applications of local invariant features

Wide baseline stereo

Motion tracking

Panoramas

Mobile robot navigation

3D reconstruction

Recognition

[Source: K. Grauman]
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Wide Baseline Stereo

[Source: T. Tuytelaars]
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Recognizing the Same Object

[Source: K. Grauman]
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Motion Tracking

Figure: Images from J. Pilet
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Summary

Interest point detection

Harris corner detector

Laplacian of Gaussian, automatic scale selection

Difference of Gaussians

Invariant descriptors

Rotation according to dominant gradient direction

Histograms for robustness to small shifts and translations (SIFT descriptor)

Polar coordinate descriptors GLOH.
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Next class ... more sophisticated matching

Raquel Urtasun (TTI-C) Computer Vision Jan 17, 2013 97 / 97


	Introduction

