Q-learning Tutorial

CSC411
Geoffrey Roeder

Slides Adapted from lecture: Rich Zemel, Raquel Urtasun, Sanja Fidler,
Nitish Srivastava



Tutorial Agenda

Refresh RL terminology through Tic Tac Toe
Deterministic Q-Learning: what and how
Q-learning Matlab demo: Gridworld

Extensions: non-deterministic reward, next state

More cool demos
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RL & Tic-Tac-Toe

@ Each board position (taking into account symmetry) has some probability
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RL & Tic-Tac-Toe

@ Each board position (taking into account symmetry) has some probability

@ Simple learning process:

» start with all values = 0.5
» policy: choose move with highest

probability of winning given current
legal moves from current state
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» update entries in table based on
outcome of each game
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@ Each board position (taking into account symmetry) has some probability

@ Simple learning process:

» start with all values = 0.5

» policy: choose move with highest
probability of winning given current
legal moves from current state

» update entries in table based on
outcome of each game

» After many games value function will
represent true probability of winning
from each state
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RL & Tic-Tac-Toe

@ Each board position (taking into account symmetry) has some probability

@ Simple learning process:

» start with all values = 0.5

» policy: choose move with highest
probability of winning given current
legal moves from current state

» update entries in table based on
outcome of each game

» After many games value function will
represent true probability of winning
from each state

@ Can try alternative policy: sometimes select moves randomly (exploration)
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MDP Refresher

Familiar? Skip?



MDP Formulation

@ Goal: find policy m that maximizes expected accumulated future rewards
V™ (s;), obtained by following 7 from state s;:

Vi(st) = r+7ren + o+
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MDP Formulation

@ Goal: find policy m that maximizes expected accumulated future rewards
V™ (s;), obtained by following 7 from state s;:

V™ (st)

re+ e+ 2+
— ZWi”tJri
1=0

@ Game show example:
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MDP Formulation

@ Goal: find policy m that maximizes expected accumulated future rewards
V™ (s;), obtained by following 7 from state s;:

V™ (st)

re+ e+ 2+
— ZWirtJri
1=0

@ Game show example:

» assume series of questions, increasingly difficult, but increasing payoff
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MDP Formulation

@ Goal: find policy m that maximizes expected accumulated future rewards
V™ (s;), obtained by following 7 from state s;:

VW(St) = It +Yr4+1 +’ert+2 + -

oo
/
— E Y 4
=0

@ Game show example:

» assume series of questions, increasingly difficult, but increasing payoff
» choice: accept accumulated earnings and quit; or continue and risk
losing everything

@ Notice that:
V7(s0) = e+ 7V (se01)
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@ We might try to learn the function V' (which we write as V*)

V= (s) = max|r(s,a) +yV7(o(s; a))]

@ Here §(s, a) gives the next state, if we perform action a in current state s

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 30/ 1



@ We might try to learn the function V' (which we write as V*)

V*(s) = max [r(s,a) +vV*(d(s, a))]

@ Here §(s, a) gives the next state, if we perform action a in current state s

@ We could then do a lookahead search to choose best action from any state s:

T (s) = arg max [r(s,a) +vV*(d(s, a))]
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@ We might try to learn the function V' (which we write as V*)

V*(s) = max [r(s,a) +vV*(d(s, a))]

@ Here §(s, a) gives the next state, if we perform action a in current state s

@ We could then do a lookahead search to choose best action from any state s:

T (s) = arg max [r(s,a) +vV*(d(s, a))]

@ But there's a problem:

» This works well if we know () and r()
» But when we don't, we cannot choose actions this way
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Q Learning

Deterministic rewards and actions



Q Learning

@ Define a new function very similar to V*

Q(s,a) =r(s,a) +~vV*(i(s, a))

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 31/1



@ Define a new function very similar to V*

Q(s,a) =r(s,a) +~vV*(i(s, a))

@ If we learn @), we can choose the optimal action even without knowing 0!

™(s) = arg max [r(s,a) + yV*(4(s, a))]
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@ Define a new function very similar to V*

Q(s,a) =r(s,a) +~vV*(i(s, a))

@ If we learn @), we can choose the optimal action even without knowing 0!

*(s) arg max [r(s,a) + yV*(4(s, a))]

arg max Q(s, a)
d
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@ Define a new function very similar to V*

Q(s,a) =r(s,a) +~vV*(i(s, a))

@ If we learn @), we can choose the optimal action even without knowing 0!

" (s)

arg max [r(s,a) + yV*(4(s, a))]

arg max Q(s, a)
d

@ @ is then the evaluation function we will learn
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Training Rule to Learn Q

@ R and V* are closely related:

V*(s) = max Q(s, a)
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Training Rule to Learn Q

@  and V™ are closely related:

V*(s) = max Q(s, a)

@ So we can write  recursively:

Q(st, ar)

r(se, a:) +vyV*(0(st, at))
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Q(st,a:) = r(se,ar) +vV(d(st, ar))
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Training Rule to Learn Q

@  and V™ are closely related:

V*(s) = max Q(s, a)

@ So we can write  recursively:

Q(st, ar) -y VE(0(st, ar))

)+ max Q(st+1,a)
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@ Let Q denote the learner’s current approximation to

@ Consider training rule

N\

Q(s,a) < r(s,a) + v max Q(s’,a")

where s’ is state resulting from applying action a in state s

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016



Q Learning for Deterministic World

@ For each s, a initialize table entry Q(s,a) « 0
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Q Learning for Deterministic World

@ For each s, a initialize table entry Q(s,a) « 0

@ Start in some initial state s
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Q Learning for Deterministic World

@ For each s, a initialize table entry Q(s,a) « 0
@ Start in some initial state s

@ Do forever:

Zemel, Urtasun, Fidler (UofT) CSC 411: 19-Reinforcement Learning November 29, 2016 34 /1



Q Learning for Deterministic World

@ For each s, a initialize table entry Q(s,a) « 0
@ Start in some initial state s

@ Do forever:

» Select an action a and execute it
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Q Learning for Deterministic World

@ For each s, a initialize table entry Q(s,a) « 0
@ Start in some initial state s

@ Do forever:

» Select an action a and execute it
» Receive immediate reward r
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Q Learning for Deterministic World

@ For each s, a initialize table entry Q(s,a) « 0
@ Start in some initial state s

@ Do forever:

» Select an action a and execute it
» Receive immediate reward r
» Observe the new state s’
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Q Learning for Deterministic World

@ For each s, a initialize table entry Q(s,a) « 0
@ Start in some initial state s
@ Do forever:

» Select an action a and execute it
» Receive immediate reward r
» Observe the new state s’

» Update the table entry for Q(s, a) using Q learning rule:

Q(s,a) < r(s,a) +~ max Q(s’,a")
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Q Learning for Deterministic World

@ For each s, a initialize table entry Q(s,a) « 0
@ Start in some initial state s
@ Do forever:

» Select an action a and execute it
» Receive immediate reward r

» Observe the new state s’
>

Update the table entry for Q(s, a) using Q learning rule:

Q(s,a) < r(s,a) +~ max Q(s’,a")
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Q Learning for Deterministic World

@ For each s, a initialize table entry Q(s,a) « 0
@ Start in some initial state s
@ Do forever:

» Select an action a and execute it
» Receive immediate reward r
» Observe the new state s’

» Update the table entry for Q(s, a) using Q learning rule:

Q(s,a) < r(s,a) +~ max Q(s’,a")

> s+ &

@ If we get to absorbing state, restart to initial state, and run thru " Do
forever” loop until reach absorbing state
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Updating Estimated Q

@ Assume the robot is in state s;; some of its current estimates of ) are as
shown; executes rightward move

2 90‘
R 7 100 R 100
63 53
81 81
Y > y
ariglzt
initial state: Sl next state: 52
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Updating Estimated Q

@ Assume the robot is in state s;; some of its current estimates of Q) are as
shown; executes rightward move

R 72 100 90‘ R 100
63 63
81 81
—
A sight
initial state: Sl next state: S,

Q(Sla aright) — rT° ij ©(527 a/)
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Updating Estimated Q

@ Assume the robot is in state s;; some of its current estimates of ) are as
shown; executes rightward move

72 100 90 100I
R - E R
63 63
81 81
Y >~ Y
ariglzt
initial state: Sl next state: s,

é\‘?(517 aright) — 7 ij é\‘?(527 a/)

+— r+0.9max{63,81,100} + 90
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Updating Estimated Q

@ Assume the robot is in state s;; some of its current estimates of ) are as
shown; executes rightward move

2 90
R 7 100 ‘ R 100
63 63
81 81
Y > Y
ariglzt
initial state: Sl next state: SZ

é\‘?(517 aright) — 7 mﬁX é\‘?(527 a/)

<~ r+0.9max{63,81,100} + 90

@ Important observation: at each time step (making an action a in state s
only one entry of @ will change (the entry Q(s, a))
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Updating Estimated Q

@ Assume the robot is in state s;; some of its current estimates of ) are as
shown; executes rightward move

2 90l
R 7 100 R 100
63 63
81 81
Y > Y
ariglzt
initial state: S next state: SZ

1

é\‘?(517 aright) — 7 mﬁX é\‘?(527 a/)

<~ r+0.9max{63,81,100} + 90

@ Important observation: at each time step (making an action a in state s
only one entry of @ will change (the entry Q(s, a))

@ Notice that if rewards are non-negative, then CA) values only increase from 0,
approach true @
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Q Learning: Summary

@ Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state
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Q Learning: Summary
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@ Each executed action a results in transition from state s; to s;; algorithm
updates Q(s;, a) using the learning rule
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@ Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state
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@ Intuition for simple grid world, reward only upon entering goal state —
estimates improve from goal state back
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1. All Q(s, a) start at 0
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Q Learning: Summary

@ Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

@ Each executed action a results in transition from state s; to s;; algorithm
updates Q(s;, a) using the learning rule

@ Intuition for simple grid world, reward only upon entering goal state —
estimates improve from goal state back

1. All Q(s, a) start at 0 i
2. First episode — only update Q(s, a) for transition leading to goal state
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Q Learning: Summary

@ Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

@ Each executed action a results in transition from state s; to s;; algorithm
updates Q(s;, a) using the learning rule

@ Intuition for simple grid world, reward only upon entering goal state —
estimates improve from goal state back

1. All Q(s, a) start at 0

2. First episode — only update Q(s, a) for transition leading to goal state
3. Next episode — if go thru this next-to-last transition, will update
Q(s, a) another step back
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Q Learning: Summary

@ Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

@ Each executed action a results in transition from state s; to s;; algorithm
updates Q(s;, a) using the learning rule

@ Intuition for simple grid world, reward only upon entering goal state —
estimates improve from goal state back

1.
2.
3.

All Q(s, a) start at 0

First episode — only update Q(s, a) for transition leading to goal state
Next episode — if go thru this next-to-last transition, will update
Q(s, a) another step back

Eventually propagate information from transitions with non-zero reward
throughout state-action space
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Gridworld Demo



Extensions

Non-deterministic reward and actions



Q Learning: Exploration/Exploitation

@ Have not specified how actions chosen (during learning)
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Q Learning: Exploration/Exploitation

@ Have not specified how actions chosen (during learning)

@ Can choose actions to maximize Q(s, a)
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Q Learning: Exploration/Exploitation

@ Have not specified how actions chosen (during learning)

@ Can choose actions to maximize Q(s, a)

@ Good idea?
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Q Learning: Exploration/Exploitation

@ Have not specified how actions chosen (during learning)
@ Can choose actions to maximize Q(s, a)

@ Good idea?

@ Can instead employ stochastic action selection (policy):

exp(k@(As, a;))
Zj exp(kQ(s, a;))

P(ails) =
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Q Learning: Exploration/Exploitation

@ Have not specified how actions chosen (during learning)

@ Can choose actions to maximize Q(s, a)
@ Good idea?

@ Can instead employ stochastic action selection (policy):

exp(k@(As, a;))
Zj exp(kQ(s, a;))

P(ails) =

@ Can vary k during learning
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Q Learning: Exploration/Exploitation

@ Have not specified how actions chosen (during learning)

@ Can choose actions to maximize Q(s, a)
@ Good idea?

@ Can instead employ stochastic action selection (policy):

exp(k@(As, a;))
Zj exp(kQ(s, a;))

P(ails) =

@ Can vary k during learning

» more exploration early on, shift towards exploitation
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Non-deterministic Case

@ What if reward and next state are non-deterministic?
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Non-deterministic Case

@ What if reward and next state are non-deterministic?

@ We redefine V, @ based on probabilistic estimates, expected values of them:

V™(s) = Exlrn+yrg1+7rge+--]
EW[Z”Yirthi]
1=0
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Non-deterministic Case

@ What if reward and next state are non-deterministic?

@ We redefine V, @ based on probabilistic estimates, expected values of them:

V™(s) = Exlrn+yrg1+7rge+--]
EW[Z”Yirthi]
1=0

and

Q(57 a) — E:r(s, a) - /7\/*(5(57 a))]
= E[r(s,a) +~ Z p(s'|s, a) max Q(s',a')]
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Non-deterministic Case: Learning Q

@ Training rule does not converge (can keep changing @ even if initialized to
true Q values)
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Non-deterministic Case: Learning Q

@ Training rule does not converge (can keep changing @ even if initialized to
true Q values)

@ So modify training rule to change more slowly
Q(s,a) + (1 — an) @n-1(s, @) + an[r +vmax Qn_1(s’, a)]
a

where s’ is the state land in after s, and a’ indexes the actions that can be

taken in state s’ .

Tt visits,(s, a)

U

where visits i1s the number of times action a is taken in state s
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More Cool Demos



Other Examples:

Super Mario World
https://www.youtube.com/watch”?v=L4KBBAwF_bE

Model-based RL: Pole Balancing
hitps://www.youtube.com/watch?v=XiigTGKZtks



| earn how to fly a
Helicopter

» http://heli.stanford.edu/

* Formulate as an RL problem
e State - Position, orientation, velocity, angular velocity

e Actions - Front-back pitch, left-right pitch, tail rotor pitch,
blade angle

 Dynamics - Map actions to states. Ditficult!
« Rewards - Don't crash, Do interesting things.

Slide credit: Nitish Srivastava


http://heli.stanford.edu/

