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Today

Dimensionality Reduction

PCA

Autoencoders
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Mixture models and Distributed Representations

One problem with mixture models: each observation assumed to come from
one of K prototypes

Constraint that only one active (responsibilities sum to one) limits the
representational power

Alternative: Distributed representation, with several latent variables relevant
to each observation

Can be several binary/discrete variables, or continuous
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Example: Continuous Underlying Variables

What are the intrinsic latent dimensions in these two datasets?

How can we find these dimensions from the data?
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Principal Components Analysis

PCA: most popular instance of second main class of unsupervised learning
methods, projection methods, aka dimensionality-reduction methods

Aim: find a small number of “directions” in input space that explain
variation in input data; re-represent data by projecting along those directions

Important assumption: variation contains information

Data is assumed to be continuous:

I linear relationship between data and the learned representation
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PCA: Common Tool

Handles high-dimensional data

I If data has thousands of dimensions, can be difficult for a classifier to
deal with

Often can be described by much lower dimensional representation

Useful for:

I Visualization
I Preprocessing
I Modeling – prior for new data
I Compression
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PCA: Intuition

As in the previous lecture, training data has N vectors, {xn}Nn=1, of
dimensionality D, so xi ∈ RD

Aim to reduce dimensionality:
I linearly project to a much lower dimensional space, M << D:

x ≈ Uz + a

where U is a D ×M matrix and z a M-dimensional vector

Search for orthogonal directions in
space with the highest variance

I project data onto this subspace

Structure of data vectors is encoded
in sample covariance
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Finding Principal Components

To find the principal component directions, we center the data (subtract the
sample mean from each variable)

Calculate the empirical covariance matrix:

C =
1

N

N∑
n=1

(x(n) − x̄)(x(n) − x̄)T

with x̄ the mean

What’s the dimensionality of C?

Find the M eigenvectors with largest eigenvalues of C : these are the
principal components

Assemble these eigenvectors into a D ×M matrix U

We can now express D-dimensional vectors x by projecting them to
M-dimensional z

z = UTx
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Standard PCA

Algorithm: to find M components underlying D-dimensional data

1. Select the top M eigenvectors of C (data covariance matrix):

C =
1

N

N∑
n=1

(x(n) − x̄)(x(n) − x̄)T = UΣUT ≈ U1:M Σ1:MUT
1:M

where U is orthogonal, columns are unit-length eigenvectors

UTU = UUT = 1

and Σ is a matrix with eigenvalues on the diagonal, representing the
variance in the direction of each eigenvector

2. Project each input vector x into this subspace, e.g.,

zj = uTj x; z = UT
1:Mx
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Two Derivations of PCA

Two views/derivations:

I Maximize variance (scatter of green points)
I Minimize error (red-green distance per datapoint)
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PCA: Minimizing Reconstruction Error

We can think of PCA as projecting the data onto a lower-dimensional
subspace

One derivation is that we want to find the projection such that the best
linear reconstruction of the data is as close as possible to the original data

J(u, z,b) =
∑
n

||x(n) − x̃(n)||2

where

x̃(n) =
M∑
j=1

z
(n)
j uj +

D∑
j=M+1

bjuj

Objective minimized when first M components are the eigenvectors with the
maximal eigenvalues

z
(n)
j = uTj x

(n); bj = x̄Tuj
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Applying PCA to faces

Run PCA on 2429 19x19 grayscale images (CBCL data)

Compresses the data: can get good reconstructions with only 3 components

PCA for pre-processing: can apply classifier to latent representation

I PCA with 3 components obtains 79% accuracy on face/non-face
discrimination on test data vs. 76.8% for GMM with 84 states

Can also be good for visualization
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Applying PCA to faces: Learned basis
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Applying PCA to digits
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Relation to Neural Networks

PCA is closely related to a particular form of neural network

An autoencoder is a neural network whose outputs are its own inputs

The goal is to minimize reconstruction error
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Autoencoders

Define
z = f (W x); x̂ = g(V z)

Goal:

min
W,V

1

2N

N∑
n=1

||x(n) − x̂(n)||2

If g and f are linear

min
W,V

1

2N

N∑
n=1

||x(n) − VW x(n)||2

In other words, the optimal solution is PCA.
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Autoencoders: Nonlinear PCA

What if g() is not linear?

Then we are basically doing nonlinear PCA

Some subtleties but in general this is an accurate description
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Comparing Reconstructions
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