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Today

Unsupervised learning

Clustering

I k-means
I Soft k-means
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Motivating Examples

Determine groups of people in image above

I based on clothing styles
I gender, age, etc

Determine moving objects in videos
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Unsupervised Learning

Supervised learning algorithms have a clear goal: produce desired outputs for
given inputs.

I You are given {(x (i), t(i))} during training (inputs and targets)

Goal of unsupervised learning algorithms (no explicit feedback whether
outputs of system are correct) less clear.

I You are given the inputs {x (i)} during training, labels are unknown.

Tasks to consider:

I Reduce dimensionality
I Find clusters
I Model data density
I Find hidden causes

Key utility

I Compress data
I Detect outliers
I Facilitate other learning
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Major Types

Primary problems, approaches in unsupervised learning fall into three classes:

1. Dimensionality reduction: represent each input case using a small
number of variables (e.g., principal components analysis, factor
analysis, independent components analysis)

2. Clustering: represent each input case using a prototype example (e.g.,
k-means, mixture models)

3. Density estimation: estimating the probability distribution over the
data space
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Clustering

Grouping N examples into K clusters one of canonical problems in
unsupervised learning

Motivation: prediction; lossy compression; outlier detection

We assume that the data was generated from a number of different classes.
The aim is to cluster data from the same class together.

I How many classes?
I Why not put each datapoint into a separate class?

What is the objective function that is optimized by sensible clustering?
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Clustering

Assume the data {x(1), . . . , x(N)} lives in a Euclidean space, x(n) ∈ Rd .

Assume the data belongs to K classes (patterns)

How can we identify those classes (data points that belong to each class)?
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K-means

Initialization: randomly initialize cluster centers

The algorithm iteratively alternates between two steps:

I Assignment step: Assign each data point to the closest cluster

Assignments Refitted 
means 
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K-means

Initialization: randomly initialize cluster centers

The algorithm iteratively alternates between two steps:

I Assignment step: Assign each data point to the closest cluster
I Refitting step: Move each cluster center to the center of gravity of the

data assigned to it

Assignments Refitted 
means 
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Figure from Bishop Simple demo: http://syskall.com/kmeans.js/
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K-means Objective

What is actually being optimized?

K-means Objective:
Find cluster centers m and assignments r to minimize the sum of squared
distances of data points {x(n)} to their assigned cluster centers

min
{m},{r}

J({m}, {r}) = min
{m},{r}

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2

s.t.
∑
k

r
(n)
k = 1,∀n, where r

(n)
k ∈ {0, 1},∀k, n

where r
(n)
k = 1 means that x(n) is assigned to cluster k (with center mk)

Optimization method is a form of coordinate descent (”block coordinate
descent”)

I Fix centers, optimize assignments (choose cluster whose mean is
closest)

I Fix assignments, optimize means (average of assigned datapoints)
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The K-means Algorithm

Initialization: Set K cluster means m1, . . . ,mK to random values

Repeat until convergence (until assignments do not change):

I Assignment: Each data point x(n) assigned to nearest mean

k̂n = arg min
k

d(mk , x
(n))

(with, for example, L2 norm: k̂n = arg mink ||mk − x(n)||2)

and Responsibilities (1 of k encoding)

r
(n)
k = 1←→ k̂(n) = k

I Update: Model parameters, means are adjusted to match sample
means of data points they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k
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K-means for Vector Quantization

Figure from Bishop
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K-means for Image Segmentation

How would you modify k-means to get super pixels?
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Questions about K-means

Why does update set mk to mean of assigned points?

Where does distance d come from?

What if we used a different distance measure?

How can we choose best distance?

How to choose K?

How can we choose between alternative clusterings?

Will it converge?

Hard cases – unequal spreads, non-circular spreads, in-between points
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Why K-means Converges

Whenever an assignment is changed, the sum squared distances J of data
points from their assigned cluster centers is reduced.

Whenever a cluster center is moved, J is reduced.

Test for convergence: If the assignments do not change in the assignment
step, we have converged (to at least a local minimum).

K-means cost function after each E step (blue) and M step (red). The
algorithm has converged after the third M step
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Local Minima

The objective J is non-convex (so
coordinate descent on J is not guaranteed
to converge to the global minimum)

There is nothing to prevent k-means
getting stuck at local minima.

We could try many random starting points

We could try non-local split-and-merge
moves:

I Simultaneously merge two nearby
clusters

I and split a big cluster into two

A bad local optimum 
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Soft K-means

Instead of making hard assignments of data points to clusters, we can make
soft assignments. One cluster may have a responsibility of .7 for a datapoint
and another may have a responsibility of .3.

I Allows a cluster to use more information about the data in the refitting
step.

I What happens to our convergence guarantee?
I How do we decide on the soft assignments?
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Soft K-means Algorithm

Initialization: Set K means {mk} to random values

Repeat until convergence (until assignments do not change):

I Assignment: Each data point n given soft ”degree of assignment” to
each cluster mean k , based on responsibilities

r
(n)
k =

exp[−βd(mk , x(n))]∑
j exp[−βd(mj , x(n))]

I Update: Model parameters, means, are adjusted to match sample
means of datapoints they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k
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Questions about Soft K-means

How to set β?

What about problems with elongated clusters?

Clusters with unequal weight and width
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A Generative View of Clustering

We need a sensible measure of what it means to cluster the data well.

I This makes it possible to judge different models.
I It may make it possible to decide on the number of clusters.

An obvious approach is to imagine that the data was produced by a
generative model.

I Then we can adjust the parameters of the model to maximize the
probability that it would produce exactly the data we observed.
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