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@ Classification — Bayes classifier
@ Estimate probability densities from data

@ Making decisions: Risk
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Classification

@ Given inputs x and classes y we can do classification in several ways. How?

(features) (class label)
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e.g:
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Discriminative Classifiers

@ Discriminative classifiers try to either:

> learn mappings directly from the space of inputs X" to class labels

{0,1,2,...,K}
(features) (class label)
X _—> Y
e.g:
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Discriminative Classifiers

@ Discriminative classifiers try to either:
> or try to learn p(y|x) directly

(features) (class probability)
X —>  pylx)
e.g:
« height elefant
* weight
* color
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Generative Classifiers

How about this approach: build a model of “how data for a class looks like"
@ Generative classifiers try to model p(x|y)

o Classification via Bayes rule (thus also called Bayes classifiers)

(prob. of features given label) (class label)
(": e, Y ;
Cp ) pxly) e—— oy
I} Py UL
" e.g:
« height elefant
* weight
* color
(7T bear
( /Lt #)
YO WY M1 A
S \ j Tries to model:
7.4 l = * How does data look like for a class?
= =< ¥V
o) Classification (How?)
Y. )
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Generative vs Discriminative

Two approaches to classification:

@ Discriminative classifiers estimate parameters of decision boundary/class
separator directly from labeled examples

> learn p(y|x) directly (logistic regression models)
> learn mappings from inputs to classes (least-squares, neural nets)

@ Generative approach: model the distribution of inputs characteristic of the
class (Bayes classifier)

> Build a model of p(x|y)
» Apply Bayes Rule
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Bayes Classifier

Aim to diagnose whether patient has diabetes: classify into one of two
classes (yes C=1; no C=0)

Run battery of tests on the patients, get x for each patient

Given patient’s results: x = [xg, X2, -+ ,Xq4] T we want to compute class
probabilities using Bayes Rule:
p(x|C)p(C
o(Che) — PEICR(O)
p(x)

More formally
Class likelihood x prior

osterior = -
P Evidence

How can we compute p(x) for the two class case?

p(x) = p(x|C = 0)p(C = 0) + p(x|C = 1)p(C =1)

@ To compute p(C|x) we need: p(x|C) and p(C)
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Classification: Diabetes Example

@ Let's start with the simplest case where the input is only 1-dimensional, for
example: white blood cell count (this is our x)

@ We need to choose a probability distribution p(x|C) that makes sense

60r

40+

%

o - . I l ==
15

\w e blood

Number of patients

Flgure Our example (showing counts of patients for input value): What distribution to

hoo
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

@ Our first generative classifier assumes that p(x|y) is distributed according to
a multivariate normal (Gaussian) distribution

@ This classifier is called Gaussian Discriminant Analysis

@ Let's first continue our simple case when inputs are just 1-dim and have a
Gaussian distribution:
1 X — 2
e (- 55)
V2no 20¢

@ Notice that we have different parameters for different classes

p(x|C) =

with 1 € R and 02 € R*

@ How can | fit a Gaussian distribution to my data?
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MLE for Gaussians

Let's assume that the class-conditional densities are Gaussian
1 exp (_(X - Mc)2>
V2ro 20'2C

@ How can | fit a Gaussian distribution to my data?

p(x|C) =

with 11 € R and 02 € R*

@ We are given a set of training examples {x(" (M} _;  y with t(") € {0,1}
and we want to estimate the model parameters {(uo,00), (141,01)}

@ First divide the training examples into two classes according to t("), and for
each class take all the examples and fit a Gaussian to model p(x|C)

@ Let's try maximum likelihood estimation (MLE)
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MLE for Gaussians

(note: we are dropping subscript C for simplicity of notation)

@ We assume that the data points that we have are independent and

identically distributed
N (n) _ )2
L (N Gt D
iR YA o 20’2

N
p(X(l)a"' 7X(N)|C) :HP(X(n)|C) = H
n=1 n=1

@ Now we want to maximize the likelihood, or minimize its negative (if you
think in terms of a loss)

| 1) ) | N 1 (X(n) _ #)2
logis = —Inp(, XN = —in [T 7 e (_T)
N n 2
- Z V2r0) Z —uf N ) ey )
= In(v2mo) + =5 In (2770 ) + 2 e

@ How do we minimize the function?
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Computing the Mean

délogfloss and délogfloss

o 2> and

@ (let's try to find a) Closed-form solution: Write
equal it to O to find the parameters y and o?

N 2 N () —p)? N () —p)?
aglog—loss _ 0 (E In (27“7 ) + Z"ZI 2‘72# ) _ d (Zn:l 202# )

ou ou du

- — i 2647 — ) Z(X - H) NM—ZLX(")
202

@ And equating to zero we have

dglog—loss —0= NM ZnN 1X
du o2
Thus
1 N
- — (n)
p= ks
N n=1
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Computing the Variance

@ And for o2

liog—toss
do? do?

N L, S
T 22702 T 2 e

N n

— ﬂ Zn:l(x( ) — /-”)2
202 204
@ And equating to zero we have
dliogioss _g_ N Spea (X = No? = 3 () — )

do? 202 204 2054

@ Thus:
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MLE of a Gaussian

@ In summary, we can compute the parameters of a Gaussian distribution in

closed form for each class by taking the training points that belong to that
class

/~ MLE estimates of parameters for a Gaussian distribution: )

()
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Posterior Probability

@ We now have p(x|C)
@ In order to compute the posterior probability:

p(x|C)p(C)

pCh) = P

p(x|C)p(C)
p(x|C = 0)p(C =0) + p(x|C = 1)p(C = 1)

given a new observation, we still need to compute the prior

@ Prior: In the absence of any observation, what do | know about the problem?
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Diabetes Example

zo
il —.I l_
0z E e
W

@ Doctor has a prior p(C = 0) = 0.8, how?

Number of patients
3

@ A new patient comes in, the doctor measures x = 48

@ Does the patient have diabetes?
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Diabetes Example

— P(x|C=0) (no diabetes)
— P(x|C=1) (diabetes)

30 40 50 60

@ Compute p(x = 48|C = 0) and p(x = 48|C = 1) via our estimated Gaussian
distributions

@ Compute posterior p(C = 0|x = 48) via Bayes rule using the prior (how can
we get p(C = 1|x = 48)7)

@ How can we decide on diabetes/non-diabetes?
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Bayes Classifier

@ Use Bayes classifier to classify new patients (unseen test examples)
@ Simple Bayes classifier: estimate posterior probability of each class
@ What should the decision criterion be?

@ The optimal decision is the one that minimizes the expected number of
mistakes
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Risk of a Classifier

@ Risk (expected loss) of a C-class classifier y(x):

R(y) = Ex:[L(y(x),t)]
/ZL t)p(x, t = c)dx

C

3 . et = ] e

X "e=1

@ Clearly, its enough to minimize the conditional risk for any x:

C

R(ylx) =Y L(y(x), t)p(t = c|x)

c=1
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Conditional Risk of a Classifier

@ We have assumed a zero-one loss:

Ly, ) = {‘1’ A
@ Conditional risk:
Rivb) = Z L{y(0). (e = clx)
- 5ﬁp<r=y(x)|x)+1-§p(r=c|x)
= ;p(t =clx)=1- p(ty= y(x)[x)

@ To minimize conditional risk given x, the classifier must decide
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Log-odds Ratio

@ Optimal rule y = arg max. p(t = c|x) is equivalent to

p(t = j|x)
& Iogm>0 Vj#c
@ For the binary case
y=1 & Iogw>0

p(t =0[x) ~

@ Where have we used this rule before?
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Gaussian Discriminant Analysis

@ Consider the 2-class case
@ Interesting: When o9 = o1, then the posterior takes the following form:
1
t= ]_ = —
(e =11%) = 1

where w is some appropriate function of ¢, ug, 11, 09, where we denoted the
prior with p(t) = ¢*(1 — ) =1 (Bernoulli distribution). Prove this!

@ In this case the GDA and Logistic Regression are equivalent

@ When would you choose one over the other?

@ GDA makes strong modeling assumptions (data has Gaussian distribution)
@ If data really had Gaussian distribution, then GDA will find a better fit

@ Logistic Regression is more robust and less sensitive to incorrect modeling
assumptions

[Credit: A. Ng]
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