Support Vector Machines
CSC411 Tutorial
November 10,2015

Tutor: Renjie Liao

Many thanks to Jake Snell, Yujia Li and Kevin Swersky for much of the following material.

Brief Review of SVMS

out[40]: | Click here to toggle on/off the raw code. |

Out[48]:

Geometric Intuition

margin

out[57]:

Margin Derivation

Margin Derivation
Compute the distance d,, of an arbitrary point x,, in the (+) class to the separating hyperplane.

wT<xn—d i>+b=0

n
[Iwll
T wlw
wx,—d,—— +b=0
, [[wll
w x, +b=d,Ilwll
wlix, +b
d, = ——
[Iwll

Ifwelett, € {1, —1} denote the class of x,,, then the distance becomes

t,(w'x, + b)

d., =
" [Iwll
1 , . .
We cansetd,, = —— for the point x,, closest to the decision boundary, leading to the problem:
1
max ——
[Twll

st.t,wlx,+b)>1, forn=1...N

SVM Problem

T
t,(w' x, +b
Butscalingw — xwandb — kb doesn'tchanged, = n &).

lIwll

or equivalently:
1
min —|lwll®
2

s.t.t,wlx, +b)>1, forn=1...N

Non-linear SVMs

Foralinear SYM, y(x) = w' x + b.

We can just as well work in an alternate feature space: (x) = w! ¢(x) + b.

http://i.imgur.com/WuxyO.png

Out[29]:

Input Space Feature Space

Non-linear SVMs

http://www.youtube.com/watch?v=31iCbRZPrzA

Out[31]:

SVM with polynomial kernel visualization

https://www.youtube.com/watch?v=3liCbRZPrZA

SVMs vs Logistic Regression

Logistic Regression

out[32]: [<matplotlib.lines.Line2D at 0x109413090>]

1.0

0.8=

0.6=

0.4}

0.2}=

0.0

Logistic Regression

e Train to maximize likelihood

N
L(w) = H oW’ x, + by (1
n=1

— oWl x,, + b))}

e Assign probability to each outcome e |inear decision boundary
Py = 1lx) = s(w x + b) y=Iw'x+b>0]

SVMs

out[33]:

SVMs

e Enforce amargin of separation
yaWlx, +b) > 1, forn

=1...N

e Linear decision boundary
y=Iw'x+b>0]

e Trainto find the maximum margin
1
Imn?MW
s.t. 2y, — Dw!'x, +b) > 1, forn
=1...N

Comparison

e Logistic regression wants to maximize the probability of the data.
» The greater the distance from each point to the decision boundary, the better.

e SVMs want to maximize the distance from the closest points to the decision boundary.
= Doesn't care about points that aren't support vectors.

A Different Take

Consider an alternate form of the logistic regression decision function:

. { 1 if P(y = 1lx) > P(y = Olx)
Y 0O otherwise
P(y = 1lx) < exp(w’ x + b)
Py =0Ix) « 1

A Different Take

Suppose we don't actually care about the probabilities. All we want to do is make the right
decision.

We can put a constraint on the likelihood ratio, for some constantc > 1:

PG = 1k,)
PGy =0x,) = ¢

A Different Take

Take the log of both sides:
log P(y = 1lx,) — log P(y = Olx,,) > logc

Recalling that P(y = 1lx,) « exp(w!x, + b)and P(y = Olx,,) x 1:

wix, +b—-0>logc
wlix, +b > logc

But c is arbitrary,sosetits.t.log c = 1:

wlix, +b>1

A Different Take

Sonowwe have (2y, — 1)(w! x,, + b) > 1, for n = 1 ... N.But this may not have a unique
solution, so put a quadratic penalty on the weights to make the solution unique:

1
in —lwll?
min 2 w

s.t. 2y, — DWix, +b)> 1, forn=1...N

By asking logistic regression to make the right decisions instead of maximizing the probability of
the data, we derived an SVM.

Likelihood Ratio

The likelihood ratio drives this derivation:
_Po=10 _ exp(w’ x + b)
~ P(y=0k) 1

= exp(wa + b)

Different classifiers assign different costs to r.

LR Cost

1
Choose cost(r) = log (1 + —)
r

out[34]: <matplotlib.text.Text at 0x109348810>

5 | cosT{r;} = log(1 + 1/r)

LR Cost
log (1 + %) = log (1 + exp(—(wa + b)))
1
ST+ exp(—(wTx + b))
= —log o(w' x + b)

Minimizing cost(r) is the same as minimizing the negative log-likelihood objective for logistic
regression!

SVM with Slack Variables

If the data is not linearly separable, we can introduce slack variables.
1 N
- 2
min 2IIwII +C n_zl E,

s.t. 2y, — Dwix, +b)>1-¢,, forn=1...N
and &, >0, forn=1...N

SVM with Slack Variables

out[58]:

SVM Cost

Choose cost(r) = max(0, 1 — log(r)) = max(0, 1 — W' x + b))

out[59]: <matplotlib.text.Text at 0x109d2f£d90>

6 Iccrs’r[r) = max(g,__ll_-Eg‘(E:!}

cost(r)

Plotted in terms of r

out[607]: <matplotlib.legend.Legend at 0x10a5a8910>

oy 1 T — i
| — SVM Cost
4

cost(r)

Plotted in terms of wix + b

out[61]: <matplotlib.legend.Legend at 0x10a6e8950>

— LR Cost
— SVM Cost

I I i

n

-y

]
1

cost(w™T x + b)
L#3]
—

-
1

/

Exploiting the Connection between LR and SVMs

Kernel Trick for LR

In the dual form, the SVM decision boundary is

N
Y& = w'p) +b =) at,Kx,x,) +b =0

n=1

We could plug this into the LR cost:

N
log <1 + exp (— Z a,t,K(x, x,) — b))
n=1

Multi-class SVMS

Recall multi-class logistic regression

exp(w!x + b;)

Py = ilx) =
0= i) 2 expwi x + by)

Multi-class SVMS

Suppose that we just want the decision rule to satisfy

P& = i) >c, fork £ i
P(y = klx)

Taking logs as before,
Wlx+b;)—Wlx+b)>1, fork #i

Multi-class SVMS

Now we have the quadratic program for multi-class SVMs.

1
in —lIwll?
min 2 w

S.t. (W) X, + by) — (WX, +b;) > 1, forn=1...N,k#y,

LR and SVMs are closely linked

e Both can be viewed as taking a probabilistic model and miminizing some cost associated
with the likelihood ratio.

e This allows use to extend both models in principled ways.

Which to Use?

Logistic regression

e Gives calibrated probabilities that can be interpreted as confidence in a decision.
e Unconstrained, smooth objective.
e Can be used within Bayesian models.

SVMs

* No penalty for examples where the correct decision is made with sufficient confidence,
which can lead to good generalization.

e Dual form gives sparse solutions when using the kernel trick, leading to better
scalability.

