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Brief Review of SVMS
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Geometric Intuition
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Margin Derivation
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Margin Derivation
Compute the distance  of an arbitrary point  in the (+) class to the separating hyperplane.

If we let  denote the class of , then the distance becomes
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SVM Problem

But scaling  and  doesn't change .w → κw b → κb =dn
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Non-linear SVMs
For a linear SVM, .y(x) = x + bwT

We can just as well work in an alternate feature space: .(x) = ϕ(x) + by ̃ wT
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http://i.imgur.com/WuxyO.png



Non-linear SVMs

Out[31]: SVM with polynomial kernel visualization

http://www.youtube.com/watch?v=3liCbRZPrZA

https://www.youtube.com/watch?v=3liCbRZPrZA


SVMs vs Logistic Regression



Logistic Regression
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Logistic Regression

Assign probability to each outcome
 

Train to maximize likelihood

Linear decision boundary
P(y = 1|x) = σ( x + b)wT

(w) = σ( + b (1∏
n=1

N
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= I[ x + b ≥ 0]y ̂ wT



SVMs
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SVMs

Enforce a margin of separation
 

Train to find the maximum margin

 

Linear decision boundary

( + b) ≥ 1,  for nyn wT xn
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Comparison
Logistic regression wants to maximize the probability of the data.

The greater the distance from each point to the decision boundary, the better.

SVMs want to maximize the distance from the closest points to the decision boundary.
Doesn't care about points that aren't support vectors.



A Different Take
Consider an alternate form of the logistic regression decision function:

= {y ̂ 
1
0

if P(y = 1|x) ≥ P(y = 0|x)
 otherwise

P(y = 1|x) ∝ exp( x + b)wT

P(y = 0|x) ∝ 1



A Different Take
Suppose we don't actually care about the probabilities. All we want to do is make the right
decision.

We can put a constraint on the likelihood ratio, for some constant :c > 1

≥ c
P(y = 1| )xn

P(y = 0| )xn



A Different Take
Take the log of both sides:

log P(y = 1| ) − log P(y = 0| ) ≥ log cxn xn

Recalling that  and :P(y = 1| ) ∝ exp( + b)xn wT xn P(y = 0| ) ∝ 1xn

+ b − 0 ≥ log cwT xn
+ b ≥ log cwT xn

But  is arbitrary, so set it s.t. :c log c = 1

+ b ≥ 1wT xn



A Different Take
So now we have . But this may not have a unique
solution, so put a quadratic penalty on the weights to make the solution unique:

By asking logistic regression to make the right decisions instead of maximizing the probability of
the data, we derived an SVM.
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Likelihood Ratio
The likelihood ratio drives this derivation:

Different classifiers assign different costs to .

r = = = exp( x + b)
P(y = 1|x)
P(y = 0|x)

exp( x + b)wT

1
wT

r



LR Cost

Choose cost(r) = log (1 + )1
r
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LR Cost

Minimizing  is the same as minimizing the negative log-likelihood objective for logistic
regression!

log (1 + ) = log (1 + exp(−( x + b)))1
r

wT

= − log
1

1 + exp(−( x + b))wT

= − log σ( x + b)wT

cost(r)



SVM with Slack Variables
If the data is not linearly separable, we can introduce slack variables.
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SVM with Slack Variables
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SVM Cost
Choose cost(r) = max(0, 1 − log(r)) = max(0, 1 − ( x + b))wT
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Plotted in terms of r
Out[60]: <matplotlib.legend.Legend at 0x10a5a8910>



Plotted in terms of x + bwT
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Exploiting the Connection between LR and SVMs



Kernel Trick for LR
In the dual form, the SVM decision boundary is

y(x) = ϕ(x) + b = K(x, ) + b = 0wT ∑
n=1

N

αn tn xn

We could plug this into the LR cost:

log (1 + exp (− K(x, ) − b))∑
n=1

N

αn tn xn



Multi-class SVMS
Recall multi-class logistic regression

P(y = i|x) =
exp( x + )wT

i bi

exp( x + )∑k wT
k bk



Multi-class SVMS
Suppose that we just want the decision rule to satisfy

≥ c,  for k ≠ i
P(y = i|x)
P(y = k|x)

Taking logs as before,
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Multi-class SVMS
Now we have the quadratic program for multi-class SVMs.
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LR and SVMs are closely linked
Both can be viewed as taking a probabilistic model and miminizing some cost associated
with the likelihood ratio.

This allows use to extend both models in principled ways.



Which to Use?
Logistic regression

Gives calibrated probabilities that can be interpreted as confidence in a decision.
Unconstrained, smooth objective.
Can be used within Bayesian models.

SVMs

No penalty for examples where the correct decision is made with sufficient confidence,
which can lead to good generalization.
Dual form gives sparse solutions when using the kernel trick, leading to better
scalability.


