Support Vector Machines
CSC411 Tutorial
November 10,2015

Tutor: Renjie Liao

Many thanks to Jake Snell, Yujia Li and Kevin Swersky for much of the following material.



Brief Review of SVMS
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Geometric Intuition
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Margin Derivation




Margin Derivation
Compute the distance d,, of an arbitrary point x,, in the (+) class to the separating hyperplane.
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Ifwelett, € {1, —1} denote the class of x,,, then the distance becomes
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We cansetd,, = —— for the point x,, closest to the decision boundary, leading to the problem:
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SVM Problem
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Non-linear SVMs

Foralinear SYM, y(x) = w' x + b.

We can just as well work in an alternate feature space: (x) = w! ¢(x) + b.

http://i.imgur.com/WuxyO.png
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Input Space Feature Space



Non-linear SVMs

http://www.youtube.com/watch?v=31iCbRZPrzA
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SVM with polynomial kernel visualization



https://www.youtube.com/watch?v=3liCbRZPrZA

SVMs vs Logistic Regression



Logistic Regression
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Logistic Regression

e Train to maximize likelihood

N
L(w) = H oW’ x, + by (1
n=1

— oWl x,, + b))}

e Assign probability to each outcome e |inear decision boundary
Py = 1lx) = s(w x + b) y=Iw'x+b>0]



SVMs
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SVMs

e Enforce amargin of separation
yaWlx, +b) > 1, forn

=1...N

e Linear decision boundary
y=Iw'x+b>0]

e Trainto find the maximum margin
1
Imn?MW
s.t. 2y, — Dw!'x, +b) > 1, forn
=1...N



Comparison

e Logistic regression wants to maximize the probability of the data.
» The greater the distance from each point to the decision boundary, the better.

e SVMs want to maximize the distance from the closest points to the decision boundary.
= Doesn't care about points that aren't support vectors.



A Different Take

Consider an alternate form of the logistic regression decision function:

. { 1 if P(y = 1lx) > P(y = Olx)
Y 0O otherwise
P(y = 1lx) < exp(w’ x + b)
Py =0Ix) « 1



A Different Take

Suppose we don't actually care about the probabilities. All we want to do is make the right
decision.

We can put a constraint on the likelihood ratio, for some constantc > 1:

PG = 1k,)
PGy =0x,) = ¢




A Different Take

Take the log of both sides:
log P(y = 1lx,) — log P(y = Olx,,) > logc

Recalling that P(y = 1lx,) « exp(w!x, + b)and P(y = Olx,,) x 1:

wix, +b—-0>logc
wlix, +b > logc

But c is arbitrary,sosetits.t.log c = 1:

wlix, +b>1



A Different Take

Sonowwe have (2y, — 1)(w! x,, + b) > 1, for n = 1 ... N.But this may not have a unique
solution, so put a quadratic penalty on the weights to make the solution unique:

1
in —lwll?
min 2 w

s.t. 2y, — DWix, +b)> 1, forn=1...N

By asking logistic regression to make the right decisions instead of maximizing the probability of
the data, we derived an SVM.



Likelihood Ratio

The likelihood ratio drives this derivation:
_Po=10 _ exp(w’ x + b)
~ P(y=0k) 1

= exp(wa + b)

Different classifiers assign different costs to r.



LR Cost

1
Choose cost(r) = log (1 + —)
r
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LR Cost
log (1 + %) = log (1 + exp(—(wa + b)))
1
ST+ exp(—(wTx + b))
= —log o(w' x + b)

Minimizing cost(r) is the same as minimizing the negative log-likelihood objective for logistic
regression!



SVM with Slack Variables

If the data is not linearly separable, we can introduce slack variables.
1 N
- 2
min 2IIwII +C n_zl E,

s.t. 2y, — Dwix, +b)>1-¢,, forn=1...N
and &, >0, forn=1...N



SVM with Slack Variables
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SVM Cost

Choose cost(r) = max(0, 1 — log(r)) = max(0, 1 — W' x + b))

out[59]: <matplotlib.text.Text at 0x109d2f£d90>

6 Iccrs’r[r) = max(g,__ll_-Eg‘(E:!}

cost(r)




Plotted in terms of r
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Plotted in terms of wix + b
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Exploiting the Connection between LR and SVMs



Kernel Trick for LR

In the dual form, the SVM decision boundary is

N
Y& = w'p) +b =) at,Kx,x,) +b =0

n=1

We could plug this into the LR cost:

N
log <1 + exp (— Z a,t,K(x, x,) — b))
n=1



Multi-class SVMS

Recall multi-class logistic regression

exp(w!x + b;)

Py = ilx) =
0= i) 2 expwi x + by)



Multi-class SVMS

Suppose that we just want the decision rule to satisfy

P& = i) >c, fork £ i
P(y = klx)

Taking logs as before,
Wlx+b;)—Wlx+b)>1, fork #i



Multi-class SVMS

Now we have the quadratic program for multi-class SVMs.

1
in —lIwll?
min 2 w

S.t. (W) X, + by ) — (WX, +b;) > 1, forn=1...N,k#y,



LR and SVMs are closely linked

e Both can be viewed as taking a probabilistic model and miminizing some cost associated
with the likelihood ratio.

e This allows use to extend both models in principled ways.



Which to Use?

Logistic regression

e Gives calibrated probabilities that can be interpreted as confidence in a decision.
e Unconstrained, smooth objective.
e Can be used within Bayesian models.

SVMs

* No penalty for examples where the correct decision is made with sufficient confidence,
which can lead to good generalization.

e Dual form gives sparse solutions when using the kernel trick, leading to better
scalability.



