
Optimization for Machine Learning

Elman Mansimov1

September 24, 2015

1
Modified based on Shenlong Wang’s and Jake Snell’s tutorials, with additional contents borrowed from Kevin

Swersky and Jasper Snoek



Contents

I Overview

I Gradient Descent



An informal definition of optimization

Minimize (or maximize) some quantity.



Applications

I Engineering: Minimize fuel consumption of an automobile

I Economics: Maximize returns on an investment

I Supply Chain Logistics: Minimize time taken to fulfill an order

I Life: Maximize happiness



Recap: Linear Regression

Want to predict house price based on some information about the
house (location, number of rooms, etc.) Assume that you have a
data for n houses.

I xi is a d dimensional vector of observations for house i
xi = (x1

i , x
2
i , ..., x

d
i ); X is a d × n matrix of all houses.

I y is a vector of the price of each house y = (y1, y2, ..., yn)
I y = WX, W is a 1× d dimensional matrix
I W that would result in a lowest error, i.e. smallest difference

between predicted price and real price.



More formally

Goal: find θ∗ = argminθf (θ), (possibly subject to constraints on θ).

I θ ∈ Rn: optimization variable

I f : Rn → R: objective function

Maximizing f (θ) is equivalent to minimizing −f (θ), so we can
treat everything as a minimization problem.



Optimization is a large area of research

The best method for solving the optimization problem depends on
which assumptions we want to make:

I Is θ discrete or continuous?
I What form do constraints on θ take? (if any)
I Is f “well-behaved”? (linear, differentiable, convex,

submodular, etc.)



Convex Functions

A function f is convex if for any two points θ1 and θ2 and any
t ∈ [0, 1],

f (tθ1 + (1− t)θ2) ≤ tf (θ1) + (1− t)f (θ2)



Convex Functions



Why do we care about convexity?

I Any local minimum is a global minimum.
I Which means that whatever solution we find would be the

best solution.
I This makes optimization a lot easier because we don’t have to

worry about getting stuck in a local minimum.



Overview of Optimization for Machine Learning

Often in machine learning we are interested in learning the
parameters θ of a model.
Goal: minimize some loss function

I For example, if we have some data (x , y), we may want to
maximize P(y |x , θ).

I Equivalently, we can minimize − logP(y |x , θ).
I We can also minimize other sorts of loss functions

log can help for numerical reasons



Naive Optimization Algorithm

I Try all posssible combinations of W until you find one that
has the lowest error (brute force).

I Doesn’t scale as you grow number of parameters and
dimensions.

I Need help from calculus.



Gradient Descent: Motivation

From calculus, we know that the minimum of f must lie at a point
where ∂f (θ∗)

∂θ = 0.

I Sometimes, we can solve this equation analytically for θ.
I Most of the time, we are not so lucky and must resort to

iterative methods.

Review

I Gradient: ∇θf = ( ∂f∂θ1
, ∂f∂θ2

, ..., ∂f∂θk )



Outline of Gradient Descent Algorithm

Where η is the learning rate and T is the number of iterations:

I Initialize θ0 randomly
I for t = 1 : T :

I δt ← −η∇θt−1 f (i.e. calculate the change for the θt)
I θt ← θt−1 + δt

The learning rate shouldn’t be too big (objective function will blow
up) or too small (will take a long time to converge)



Illustration of Learning Rates2

2
First image taken from Andrej Karpathy’s Stanford Lectures, second image taken from Wikipedia



Gradient Descent with Line-Search

Where η is the learning rate and T is the number of iterations:

I Initialize θ0 randomly
I for t = 1 : T :

I Finding a step size ηt such that f (θt − ηt∇θt−1 ) < f (θt)
I δt ← −ηt∇θt−1 f
I θt ← θt−1 + δt

Require a line-search step in each iteration.



Gradient Descent with Momentum

We can introduce a momentum coefficient α ∈ [0, 1) so that the
updates have “memory”:

I Initialize θ0 randomly
I Initialize δ0 to the zero vector
I for t = 1 : T :

I δt ← −η∇θt−1 f +αδt−1

I θt ← θt−1 + δt

Momentum is a nice trick that can help speed up convergence.
Generally we choose α between 0.8 and 0.95, but this is problem
dependent



Outline of Gradient Descent Algorithm

Where η is the learning rate and T is the number of iterations:

I Initialize θ0 randomly
I Do:

I δt ← −η∇θt−1 f
I θt ← θt−1 + δt

I Until convergence

Setting a convergence criteria.



Some convergence criteria

I Change in objective function value is close to zero:
|f (θt+1)− f (θt)| < ε

I Gradient norm is close to zero: ‖∇θf ‖ < ε
I Validation error starts to increase (this is called early stopping)



Checkgrad

I When implementing the gradient computation for machine
learning models, it’s often difficult to know if our
implementation of f and ∇f is correct.

I We can use finite-differences approximation to the gradient to
help:

∂f

∂θi
≈ f ((θ1, . . . , θi + ε, . . . , θn))− f ((θ1, . . . , θi − ε, . . . , θn))

2ε

Why don’t we always just use the finite differences approximation?

I slow: we need to recompute f twice for each parameter in our
model.

I numerical issues



Stochastic Gradient Descent

I Any iteration of gradient descent method requires that we
sum over the entire dataset to compute gradient.

I SGD idea: at each iteraton, sub-sample a small amount of
data (even just 1 point can work) and use that to estimate
the gradient. (typically use around 100 samples)

I Each update is noisy, but very fast!
I This is the basis of optimizing ML algorithms with huge

datasets (e.g., deep learning).



More on optimization

Convex Optimization by Boyd & Vandenberghe
Book available for free online at
http://www.stanford.edu/˜boyd/cvxbook/
Numerical Optimization by Nocedal & Wright
Electronic version available from UofT Library



Resources for MATLAB

I Tutorials are available on the course website at
http://www.cs.toronto.edu/˜zemel/inquiry/matlab.php



Resources for Python

I Official tutorial: http://docs.python.org/2/tutorial/
I Google’s Python class:

https://developers.google.com/edu/python/
I Zed Shaw’s Learn Python the Hard Way:

http://learnpythonthehardway.org/book/

NumPy/SciPy/Matplotlib

I Scientific Python bootcamp (with video!):
http://register.pythonbootcamp.info/agenda

I SciPy lectures: http://scipy-lectures.github.io/index.html



Questions?


