
CSC 411: Lecture 19: Reinforcement Learning

Raquel Urtasun & Rich Zemel

University of Toronto

Nov 30, 2015

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 1 / 24



Today

Learn to play games

Reinforcement Learning

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 2 / 24



Playing Games: Atari

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 3 / 24



Playing Games: Super Mario

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 4 / 24



Reinforcement Learning Resources

RL tutorial – on course website

Reinforcement Learning: An Introduction, Sutton & Barto Book (1998)

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 5 / 24



Reinforcement Learning

Learning algorithms differ in the information available to learner

I Supervised: correct outputs
I Unsupervised: no feedback, must construct measure of good output
I Reinforcement learning

More realistic learning scenario:

I Continuous stream of input information, and actions
I Effects of action depend on state of the world
I Obtain reward that depends on world state and actions

I not correct response, just some feedback

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 6 / 24



Formulating Reinforcement Learning

World described by a discrete, finite set of states and actions

At every time step t, we are in a state st , and we:

I Take an action at (possibly null action)
I Receive some reward rt+1

I Move into a new state st+1

Decisions can be described by a policy

I a selection of which action to take, based on the current state

Aim is to maximize the total reward we receive over time

Sometimes a future reward is discounted by γk−1, where k is the number of
time-steps in the future when it is received

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 7 / 24



Tic-Tac-Toe

Make this concrete by considering specific example

Consider the game tic-tac-toe:

I reward: win/lose/tie the game (+1/− 1/0) [only at final move in given
game]

I state: positions of X’s and O’s on the board
I policy: mapping from states to actions

I based on rules of game: choice of one open position

I value function: prediction of reward in future, based on current state

In tic-tac-toe, since state space is tractable, can use a table to represent
value function

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 8 / 24



RL & Tic-Tac-Toe

Each board position (taking into account symmetry) has some probability

Simple learning process:

I start with all values = 0.5
I policy: choose move with highest

probability of winning given current
legal moves from current state

I update entries in table based on
outcome of each game

I After many games value function will
represent true probability of winning
from each state

Can try alternative policy: sometimes select moves randomly (exploration)

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 9 / 24



Acting Under Uncertainty

The world and the actor may not be deterministic, or our model of the world
may be incomplete

We assume the Markov property: the future depends on the past only
through the current state

We describe the environment by a distribution over rewards and state
transitions:

P(st+1 = s ′, rt+1 = r ′|st = s, at = a)

The policy can also be non-deterministic:

P(at = a|st = s)

Policy is not a fixed sequence of actions, but instead a conditional plan

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 10 / 24



Basic Problems

Markov Decision Problem (MDP): tuple (S ,A,P, γ) where P is

P(st+1 = s ′, rt+1 = r ′|st = s, at = a)

Standard MDP problems:

1. Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

2. Learning: Only have access to experience in the MDP, learn a
near-optimal strategy

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 11 / 24



Example of Standard MDP Problem

1. Planning: given complete Markov decision problem as input, compute policy
with optimal expected return

2. Learning: Only have access to experience in the MDP, learn a near-optimal
strategy

We will focus on learning, but discuss planning along the way

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 12 / 24



Exploration vs. Exploitation

If we knew how the world works (embodied in P), then the policy should be
deterministic

I just select optimal action in each state

But if we do not have complete knowledge of the world, taking what appears
to be the optimal action may prevent us from finding better states/actions

Interesting trade-off:

I immediate reward (exploitation) vs. gaining knowledge that might
enable higher future reward (exploration)

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 13 / 24



MDP Formulation

Goal: find policy π that maximizes expected accumulated future rewards
V π(st), obtained by following π from state st :

V π(st) = rt + γrt+1 + γ2rt+2 + · · ·

=
∞∑
i=0

γ i rt+i

Game show example:

I assume series of questions, increasingly difficult, but increasing payoff
I choice: accept accumulated earnings and quit; or continue and risk

losing everything

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 14 / 24



What to Learn

We might try to learn the function V (which we write as V ∗)

V ∗(s) = max
a

[r(s, a) + γV ∗(δ(s, a))]

We could then do a lookahead search to choose best action from any state s:

π∗(s) = arg max
a

[r(s, a) + γV ∗(δ(s, a))]

But there’s a problem:

I This works well if we know δ() and r()
I But when we don’t, we cannot choose actions this way

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 15 / 24



Q Learning

Define a new function very similar to V ∗

Q(s, a) = r(s, a) + γV ∗(δ(s, a))

If we learn Q, we can choose the optimal action even without knowing δ!

π∗(s) = arg max
a

[r(s, a) + γV ∗(δ(s, a))]

= arg max
a

Q(s, a)

Q is then the evaluation function we will learn

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 16 / 24



Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 17 / 24



Training Rule to Learn Q

Q and V ∗ are closely related:

V ∗(s) = max
a

Q(s, a)

So we can write Q recursively:

Q(st , at) = r(st , at) + γV ∗(δ(st , at))

= r(st , at) + γmax
a′

Q(st+1, a
′)

Let Q̂ denote the learner’s current approximation to Q

Consider training rule

Q̂(s, a)← r(s, a) + γmax
a′

Q̂(s ′, a′)

where s ′ is state resulting from applying action a in state s

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 18 / 24



Q Learning for Deterministic World

For each s, a initialize table entry Q̂(s, a)← 0

Start in some initial state s

Do forever:

I Select an action a and execute it
I Receive immediate reward r
I Observe the new state s ′

I Update the table entry for Q̂(s, a) using Q learning rule:

Q̂(s, a)← r(s, a) + γmax
a′

Q̂(s ′, a′)

I s ← s ′

If we get to absorbing state, restart to initial state, and run thru ”Do
forever” loop until reach absorbing state

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 19 / 24



Updating Estimated Q

Assume the robot is in state s1; some of its current estimates of Q are as
shown; executes rightward move

Q̂(s1, aright) ← r + γmax
a′

Q̂(s2, a
′)

← r + 0.9 max
a
{63, 81, 100} ← 90

Notice that if rewards are non-negative, then Q̂ values only increase from 0,
approach true Q

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 20 / 24



Q Learning: Summary

Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

Each executed action a results in transition from state si to sj ; algorithm

updates Q̂(si , a) using the learning rule

Intuition for simple grid world, reward only upon entering goal state → Q
estimates improve from goal state back

1. All Q̂(s, a) start at 0
2. First episode – only update Q̂(s, a) for transition leading to goal state
3. Next episode – if go thru this next-to-last transition, will update

Q̂(s, a) another step back
4. Eventually propagate information from transitions with non-zero reward

throughout state-action space

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 21 / 24



Q Learning: Exploration/Exploitation

Have not specified how actions chosen (during learning)

Can choose actions to maximize Q̂(s, a)

Good idea?

Can instead employ stochastic action selection (policy):

P(ai |s) =
exp(kQ̂(s, ai ))∑
j exp(kQ̂(s, aj))

Can vary k during learning

I more exploration early on, shift towards exploitation

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 22 / 24



Non-deterministic Case

What if reward and next state are non-deterministic?

We redefine V ,Q based on probabilistic estimates, expected values of them:

V π(s) = E [rt + γrt+1 + γ2rt+2 + · · · ]

= E [
∞∑
i=0

γ i rt+i ]

and

Q(s, a) = E [r(s, a) + γV ∗(δ(s, a))]

= E [r(s, a) + γ
∑
s′

p(s ′|s, a) max
a′

Q(s ′, a′)]

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 23 / 24



Nondeterministic Case: Learning Q

Training rule does not converge (can keep changing Q̂ even if initialized to
true Q values)

So modify training rule to change more slowly

Q̂(s, a)← (1− αn)Q̂n−1(s, a) + αn[r + γmax
a′

Q̂n−1(s ′, a′)]

where s ′ is the state land in after s, and a′ indexes the actions that can be
taken in state s ′

αn =
1

1 + visitsn(s, a)

where visits is the number of times action a is taken in state s

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 24 / 24


	Introduction

