CSC 411: Lecture 19: Reinforcement Learning

Urtasun & Zemel (UofT)

Raquel Urtasun & Rich Zemel

University of Toronto

Nov 30, 2015

CSC 411: 19-Reinforcement Learning Nov 30, 2015 1/24

@ Learn to play games

@ Reinforcement Learning

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015

Playing Games: Atari

|| Download from
4% Dreamstime.com

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning

Playing Games: Super Mario

|| Download from
4% Dreamstime.com

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning

Reinforcement Learning Resources

@ RL tutorial — on course website

® Reinforcement Learning: An Introduction, Sutton & Barto Book (1998)

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 5/ 24

@ Learning algorithms differ in the information available to learner

» Supervised: correct outputs
» Unsupervised: no feedback, must construct measure of good output
> Reinforcement learning

@ More realistic learning scenario:

» Continuous stream of input information, and actions
» Effects of action depend on state of the world
» Obtain reward that depends on world state and actions

> not correct response, just some feedback

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015

Formulating Rein Learning

World described by a discrete, finite set of states and actions
@ At every time step t, we are in a state s;, and we:

» Take an action a; (possibly null action)
> Receive some reward ry;1
» Move into a new state s,

Decisions can be described by a policy
» a selection of which action to take, based on the current state
@ Aim is to maximize the total reward we receive over time

@ Sometimes a future reward is discounted by ~,_1, where k is the number of
time-steps in the future when it is received

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 7/ 24

@ Make this concrete by considering specific example

@ Consider the game tic-tac-toe:

» reward: win/lose/tie the game (+1/ —1/0) [only at final move in given
game]
» state: positions of X's and O’s on the board
» policy: mapping from states to actions
> based on rules of game: choice of one open position

» value function: prediction of reward in future, based on current state

@ In tic-tac-toe, since state space is tractable, can use a table to represent
value function

Nov 30, 2015 8 /24

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning

RL & Tic-Tac-Toe

@ Each board position (taking into account symmetry) has some probability

@ Simple learning process:

> start with all values = 0.5

» policy: choose move with highest
probability of winning given current
legal moves from current state

» update entries in table based on
outcome of each game

» After many games value function will
represent true probability of winning
from each state

@ Can try alternative policy: sometimes select moves randomly (exploration)

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015

Acting Under Uncertainty

@ The world and the actor may not be deterministic, or our model of the world
may be incomplete

@ We assume the Markov property: the future depends on the past only
through the current state

@ We describe the environment by a distribution over rewards and state
transitions:
/ /
P(sty1 =5 rey1 =r'lst = s,a;: = a)

@ The policy can also be non-deterministic:

P(a; = a|s; = s)

@ Policy is not a fixed sequence of actions, but instead a conditional plan

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015

Basic Problems

@ Markov Decision Problem (MDP): tuple (S, A, P,v) where P is

P(sty1 =5, ry1 =r'|ss =s,a; = a)

@ Standard MDP problems:

1. Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

2. Learning: Only have access to experience in the MDP, learn a
near-optimal strategy

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 11 /24

Example of Standard MDP Problem

.
[0

r(s,a) (immediate reward)

1. Planning: given complete Markov decision problem as input, compute policy
with optimal expected return

2. Learning: Only have access to experience in the MDP, learn a near-optimal
strategy

We will focus on learning, but discuss planning along the way

Urtasun & Zemel (UofT)

CSC 411: 19-Reinforcement Learning Nov 30, 2015

12 /24

Exploration vs. Exploitation

@ If we knew how the world works (embodied in P), then the policy should be
deterministic

> just select optimal action in each state

@ But if we do not have complete knowledge of the world, taking what appears
to be the optimal action may prevent us from finding better states/actions

@ Interesting trade-off:

» immediate reward (exploitation) vs. gaining knowledge that might
enable higher future reward (exploration)

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 13 /24

MDP Formulation

@ Goal: find policy 7 that maximizes expected accumulated future rewards
V7 (s;), obtained by following 7 from state s;:

V7 (st) re 4+ Yresr + Ve +

o0

i
E v Fe+i
i=0

@ Game show example:

» assume series of questions, increasingly difficult, but increasing payoff
» choice: accept accumulated earnings and quit; or continue and risk
losing everything

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 14 / 24

@ We might try to learn the function V (which we write as V*)

Vi(s) = max [r(s,a) + vV*((s,a))]

@ We could then do a lookahead search to choose best action from any state s:

7*(s) = arg max [r(s,a) +vV*(i(s, a))]

@ But there's a problem:

> This works well if we know §() and r()
» But when we don't, we cannot choose actions this way

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 15 / 24

@ Define a new function very similar to V*

Q(s,a) = r(s,a) +vV*(d(s, a))
@ If we learn @, we can choose the optimal action even without knowing 4!
7*(s) = argmax[r(s,a)+yV*((s,a))]
a

= argmax Q(s, a)
a

@ @ is then the evaluation function we will learn

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 16 / 24

0
;_o; - (i 20 :: 100 _bo (é)
Aj2 | A1 | AV Aj Aj iV
o o[¥ T00| Iy Ty |
81 90
:; :; T s 7 90 I 100
Q(s,a) values V*(s) values
V(s5)=0+y100+y70+...=90
—— —— G
A
|
— —

One optimal policy

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 17 / 24

Training Rule to Learn Q

@ @ and V™ are closely related:

Vi(s) = max Q(s, a)

@ So we can write @ recursively:

Q(st;ar) = r(se,ar) +yV*(0(st, ar))
= r(s,a)+7 max Q(st41,2")

@ Let @ denote the learner's current approximation to @

@ Consider training rule
Q(s,a) « r(s,a) + ymax Q(s', a')
a/

where s’ is state resulting from applying action a in state s

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015

Q Learning for Deterministic World

@ For each s, a initialize table entry @(5, a)« 0
@ Start in some initial state s
@ Do forever:

Select an action a and execute it

Receive immediate reward r

Observe the new state s’

Update the table entry for Q(s, a) using Q learning rule:

vV vy VvYy

Q(s,a) « r(s,a) + v max Q(s',d)

> s+ s

@ If we get to absorbing state, restart to initial state, and run thru "Do
forever” loop until reach absorbing state

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015

Updating Estimated Q

@ Assume the robot is in state s;; some of its current estimates of Q are as
shown; executes rightward move

R G .
iG] G
|81 |81
\J = \J
aright
initial state: s, next state: S,

N

Q(517 aright) — r+ Y m§X ©(52a a/)
a

« r+0.9max{63,81,100} + 90
a

@ Notice that if rewards are non-negative, then @ values only increase from 0,
approach true Q

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 20 / 24

Q Learning: Summary

@ Training set consists of series of intervals (episodes): sequence of (state,
action, reward) triples, end at absorbing state

@ Each executed action a results in transition from state s; to s;; algorithm
updates Q(s;, a) using the learning rule

@ Intuition for simple grid world, reward only upon entering goal state — @
estimates improve from goal state back

1.
2.
3.

All Q(s, a) start at 0

First episode — only update Q(s, a) for transition leading to goal state
Next episode — if go thru this next-to-last transition, will update
Q(s, a) another step back

Eventually propagate information from transitions with non-zero reward

throughout state-action space

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 21 /24

Q Learning: Exploration/Exploitation

@ Have not specified how actions chosen (during learning)

Can choose actions to maximize Q(s, a)

Good idea?

Can instead employ stochastic action selection (policy):

exp(k@(s, a;))
> exp(kQ(s, a)))

P(ails) =

@ Can vary k during learning

» more exploration early on, shift towards exploitation

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015

Non-deterministic Case

@ What if reward and next state are non-deterministic?

@ We redefine V, Q based on probabilistic estimates, expected values of them:

Vi(s) = E[rt+’7rt+1+’y2rt+2+"']

E[Z 'Yirt+i]
i=0

and

Q(s,a) = E[r(s,a) +vV7(d(s,a))]
= E[r(s,a)+~ Z p(s’|s, a) max Q(s',a")]

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015

Nondeterministic Case: Learning Q

@ Training rule does not converge (can keep changing Q even if initialized to
true @ values)

@ So modify training rule to change more slowly
Q(sa a) — (1 - an)@nfl(sa a) + CY,,[I’ + Y m&/]X anl(sl, al)]
a

where s’ is the state land in after s, and a’ indexes the actions that can be

taken in state s’)

I visits, (s, a)

where visits is the number of times action a is taken in state s

Urtasun & Zemel (UofT) CSC 411: 19-Reinforcement Learning Nov 30, 2015 24 / 24

	Introduction

