
CSC 411: Lecture 10: Neural Networks I

Raquel Urtasun & Rich Zemel

University of Toronto

Oct 14, 2015

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 1 / 35

Today

Forward propagation

Backward propagation

Deep learning

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 2 / 35

Motivation Examples

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 3 / 35

Are you excited about deep learning?

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 4 / 35

Limitations of linear classifiers

Linear classifiers (e.g., logistic regression) classify inputs based on linear
combinations of features xi

Many decisions involve non-linear functions of the input

Canonical example: do 2 input elements have the same value?

0,1

0,0 1,0

1,1

output =1 output =0

The positive and negative cases cannot be separated by a plane

What can we do?

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 5 / 35

How to construct nonlinear classifiers?

Would like to construct non-linear discriminative classifiers that utilize
functions of input variables

Add large number of extra functions

I If these functions are fixed (Gaussian, sigmoid, polynomial basis
functions), then optimization still involves linear combinations of (fixed
functions of) the inputs

I Or we can make these functions depend on additional parameters →
need an efficient method of training extra parameters

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 6 / 35

Neural Networks

Many machine learning methods inspired by biology, brains

Our brains contain ∼ 1011 neurons, each of which communicates to ∼ 104

other neurons

Multi-layer perceptron, or neural network, is popular supervised approach

Defines extra functions of the inputs (hidden features), computed by neurons

Artificial neurons called units

Network output is linear combination of hidden units

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 7 / 35

Neural network architecture

Network with one layer of four hidden units:

output units

input units

Each unit computes its value based on linear combination of values of units
that point into it

Can add more layers of hidden units: deeper hidden unit response depends
on earlier hiddens

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 8 / 35

Neural Networks

We only need to know two algorithms

I Forward pass: performs inference
I Backward pass: performs learning

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 9 / 35

What does the network compute?
output units

input units

Output of network can be written as (with k indexing the two output units):

hj(x) = f (wj0 +
D∑
i=1

xivji)

ok(x) = g(wk0 +
J∑

j=1

hj(x)wkj)

Network with non-linear activation function f () is a universal aproximator
(esp. with increasing J)

Standard f : sigmoid/logistic, or tanh, or rectified linear (relu)

tanh(z) =
exp(z)− exp(−z)

exp(z) + exp(−z)
relu(z) = max(0, z)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 10 / 35

Example application

Consider trying to classify image of handwritten digit: 32x32 pixels

Single output units – it is a 4 (one vs. all)?

Use the sigmoid output function:

ok(x) =
1

1 + exp(−zk)

zk = wk0 +
J∑

j=1

hj(x)wkj

What do I recover if hj(x) = xj?

How can we train the network, that is, adjust all the parameters w?

If we have trained the network, how can we do inference?

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 11 / 35

Training multi-layer networks: back-propagation

Use gradient descent to learn the weights

Back-propagation: an efficient method for computing gradients needed to
perform gradient-based optimization of the weights in a multi-layer network

Loop until convergence:

I for each example n

1. Given input x(n) , propagate activity forward (x(n) → h(n) → o(n))
2. Propagate gradients backward
3. Update each weight (via gradient descent)

Given any error function E, activation functions g() and f (), just need to
derive gradients

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 12 / 35

Key idea behind backpropagation

We don’t have targets for a hidden unit, but we can compute how fast the
error changes as we change its activity

I Instead of using desired activities to train the hidden units, use error
derivatives w.r.t. hidden activities

I Each hidden activity can affect many output units and can therefore
have many separate effects on the error. These effects must be
combined

I We can compute error derivatives for all the hidden units efficiently
I Once we have the error derivatives for the hidden activities, its easy to

get the error derivatives for the weights going into a hidden unit

This is just the chain rule!

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 13 / 35

Computing gradient: single layer network

Error gradients for single layer network:

∂E

∂wki
=
∂E

∂ok

∂ok
∂zk

∂zk
∂wki

Error gradient is computable for any continuous activation function g(), and
any continuous error function

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 14 / 35

Gradient descent for single layer network

Assuming the error function is mean-squared error (MSE), on a single
training example n, we have

∂E

∂o
(n)
k

= o
(n)
k − t

(n)
k

Using logistic activations

o
(n)
k = g(z

(n)
k) = (1 + exp(z

(n)
k))−1

∂o
(n)
k

∂z
(n)
k

= o
(n)
k (1− o

(n)
k)

The error gradient is then:

∂E

∂wki
=

N∑
n=1

∂E

∂o
(n)
k

∂o
(n)
k

∂z
(n)
k

∂z
(n)
k

∂wki
=

N∑
n=1

(o
(n)
k − t

(n)
k)o

(n)
k (1− o

(n)
k)x

(n)
i

The gradient descent update rule is given by:

wki ← wki − η
∂E

∂wki
= wki − η

N∑
n=1

(o
(n)
k − t

(n)
k)o

(n)
k (1− o

(n)
k)x

(n)
i

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 15 / 35

Multi-layer neural network

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 16 / 35

Back-propagation: sketch on one training case

Convert discrepancy between each output and its target value into an error
derivative

E =
1

2

∑
k

(ok − tk)2;
∂E

∂ok
= ok − tk

Compute error derivatives in each hidden layer from error derivatives in layer
above. [assign blame for error at k to each unit j according to its influence
on k (depends on wkj)]

Use error derivatives w.r.t. activities to get error derivatives w.r.t. the
weights.

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 17 / 35

Gradient descent for multi-layer network

The output weight gradients for a multi-layer
network are the same as for a single layer
network

∂E

∂wkj
=

N∑
n=1

∂E

∂o
(n)
k

∂o
(n)
k

∂z
(n)
k

∂z
(n)
k

∂wkj
=

N∑
n=1

δ
(n)
k h

(n)
j

where δk is the error w.r.t. the net input for
unit k

Hidden weight gradients are then computed via back-prop:

∂E

∂h
(n)
j

=
∑
k

∂E

∂o
(n)
k

∂o
(n)
k

∂z
(n)
k

∂z
(n)
k

∂h
(n)
j

=
∑
k

δ
(n)
k wkj

∂E

∂vji
=

N∑
n=1

∂E

∂h
(n)
j

∂h
(n)
j

∂u
(n)
j

∂u
(n)
j

∂vji
=

N∑
n=1

(∑
k

δ
(n)
k wkj

)
f ′(u

(n)
j)x

(n)
i =

N∑
n=1

δ̄
(n)
j xn

i

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 18 / 35

Choosing activation and cost functions

When using a neural network as a function approximator (regressor) sigmoid
activation and MSE as loss function work well

For classification, if it is a binary (2-class) problem, then cross-entropy error
function often does better (as we saw with logistic regression)

E = −
N∑

n=1

t(n) log o(n) + (1− t(n)) log(1− o(n))

o(n) = (1 + exp(−z (n))−1

We can then compute via the chain rule

∂E

∂o
= o − t

∂o

∂z
= o(1− o)

∂E

∂z
=
∂E

∂o

∂o

∂z
= (o − t)o(1− o)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 19 / 35

Multi-class classification

For multi-class classification problems, use
the softmax activation

E = −
∑
n

∑
k

t
(n)
k log o

(n)
k

o
(n)
k =

exp(z
(n)
k)∑

j exp(z
(n)
j)

And the derivatives become

∂ok
∂zk

= ok(1− ok)

∂E

∂zk
=
∑
j

∂E

∂oj

∂oj
∂zk

= (ok − tk)ok(1− ok)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 20 / 35

Example Application

Now trying to classify image of
handwritten digit: 32x32 pixels

10 output units, 1 per digit

Use the softmax function:

ok =
exp(zk)∑
j exp(zj)

zk = wk0 +
J∑

j=1

hj(x)wkj

What is J ?

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 21 / 35

Ways to use weight derivatives

How often to update

I after a full sweep through the training data

wki ← wki − η
∂E

∂wki
= wki − η

N∑
n=1

(o
(n)
k − t

(n)
k)o

(n)
k (1− o

(n)
k)x

(n)
i

I after each training case
I after a mini-batch of training cases

How much to update

I Use a fixed learning rate
I Adapt the learning rate
I Add momentum

wki ← wki − v

v ← γv + η
∂E

∂wki

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 22 / 35

Deep Neural Networks

We only need to know two algorithms

I Forward pass: performs inference
I Backward pass: performs learning

Neural nets are now called deep learning. Why?

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 23 / 35

Why ”Deep”?

3

Supervised Learning: Examples

Ranzato

Denoising

“dog”

Classification

OCR

“2 3 4 5”

classific
ation

regression

stru
ctured

prediction

4

Supervised Deep Learning

Ranzato

Denoising

“dog”

Classification

OCR

“2 3 4 5”

[Picture from M. Ranzato]

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 24 / 35

Neural Networks

Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh,
max) to create complex non-linear functions

Note: a composite of linear functions is linear!

Example: 2 layer NNet (now matrix and vector form!)

x max(0,WT
1 x+ b1)

h1

max(0,WT
2 h1 + b2)

h2

WT
3 h2 + b3 y

I x is the input
I y is the output (what we want to predict)
I hi is the i-th hidden layer
I W i are the parameters of the i-th layer

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 25 / 35

Evaluating the Function

Assume we have learn the weights and we want to do inference

Forward Propagation: compute the output given the input

x max(0,WT
1 x+ b1)

h1

max(0,WT
2 h1 + b2)

h2

WT
3 h2 + b3 y

Fully connected layer: Each hidden unit takes as input all the units from the
previous layer

The non-linearity is called a ReLU (rectified linear unit), with x ∈ <D ,
bi ∈ <Ni the biases and W i ∈ <Ni×Ni−1 the weights

Do it in a compositional way,

h1 = max(0,W 1x + b1)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 26 / 35

Evaluating the Function

Assume we have learn the weights and we want to do inference

Forward Propagation: compute the output given the input

x max(0,WT
1 x+ b1)

h1

max(0,WT
2 h1 + b2)

h2

WT
3 h2 + b3 y

Fully connected layer: Each hidden unit takes as input all the units from the
previous layer

The non-linearity is called a ReLU (rectified linear unit), with x ∈ <D ,
bi ∈ <Ni the biases and W i ∈ <Ni×Ni−1 the weights

Do it in a compositional way

h1 = max(0,W 1x + b1)

h2 = max(0,W 2h1 + b2)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 27 / 35

Evaluating the Function

Assume we have learn the weights and we want to do inference

Forward Propagation: compute the output given the input

x max(0,WT
1 x+ b1)

h1

max(0,WT
2 h1 + b2)

h2

WT
3 h2 + b3 y

Fully connected layer: Each hidden unit takes as input all the units from the
previous layer

The non-linearity is called a ReLU (rectified linear unit), with x ∈ <D ,
bi ∈ <Ni the biases and W i ∈ <Ni×Ni−1 the weights

Do it in a compositional way

h1 = max(0,W 1x + b1)

h2 = max(0,W 2h1 + b2)

y = max(0,W 3h2 + b3)

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 28 / 35

12

Alternative Graphical Representation

Ranzato

hk1hk
max 0,W k1hk

hk1hk
W k1

h1
k

h2
k

h3
k

h4
k

h1
k1

h2
k1

h3
k1

w1,1
k1

w3,4
k1

hk hk1

W k1

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 29 / 35

Learning

x max(0,WT
1 x+ b1)

h1

max(0,WT
2 h1 + b2)

h2

WT
3 h2 + b3 y

We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

Collect a training set of input-output pairs {x, t}

Encode the output with 1-K encoding t = [0, · · · , 1, · · · , 0]

Define a loss per training example and minimize the empirical risk

L(w) =
1

N

∑
i

`(w, x(i), t(i))

with N number of examplesand w contains all parameters

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 30 / 35

Loss Functions

L(w) =
1

N

∑
i

`(w, x(i), t(i))

Probability of class k given input (softmax):

p(ck = 1|x) =
exp(yk)∑C
j=1 exp(yj)

Cross entropy is the most used loss function for classification

`(x, t,w) = −
∑
i

t(i) log p(ci |x)

Use gradient descent to train the network

min
w

1

N

∑
i

`(w, x(i), t(i))

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 31 / 35

Backpropagation

Efficient computation of the gradients by applying the chain rule

x max(0,W T
1 x + b1)

h1

max(0,W T
2 h1 + b2)

h2

W T
3 h2 + b3 y

∂`
∂y

p(ck = 1|x) =
exp(yk)∑C
j=1 exp(yj)

`(x, t,w) = −
∑
i

t(i) log p(ci |x)

Compute the derivative of loss w.r.t. the output

∂`

∂y
= p(c |x)− t

Note that the forward pass is necessary to compute ∂`
∂y

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 32 / 35

Backpropagation

Efficient computation of the gradients by applying the chain rule

x max(0,W T
1 x + b1)

h1

max(0,W T
2 h1 + b2) W T

3 h2 + b3

∂`
∂h2

y

∂`
∂y

We have computed the derivative of loss w.r.t the output

∂`

∂y
= p(c |x)− t

Given ∂`
∂y if we can compute the Jacobian of each module

∂`

∂W 3
=
∂`

∂y

∂y

∂W 3
= (p(c |x)− t)(h2)T

∂`

∂h2
=
∂`

∂y

∂y

∂h2
= (W 3)T (p(c |x)− t)

Need to compute gradient w.r.t. inputs and parameters in each layer

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 33 / 35

Backpropagation

Efficient computation of the gradients by applying the chain rule

x max(0,W T
1 x + b1) max(0,W T

2 h1 + b2)

∂`
∂h1

W T
3 h2 + b3

∂`
∂h2

y

∂`
∂y

∂`

∂h2
=
∂`

∂y

∂y

∂h2
= (W 3)T (p(c |x)− t)

Given ∂`
∂h2 if we can compute the Jacobian of each module

∂`

∂W 2
=

∂`

∂h2
∂h2

∂W 2

∂`

∂h1
=

∂`

∂h2
∂h2

∂h1

Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 34 / 35

28

Toy Code (Matlab): Neural Net Trainer
% F-PROP
for i = 1 : nr_layers - 1
 [h{i} jac{i}] = nonlinearity(W{i} * h{i-1} + b{i});
end
h{nr_layers-1} = W{nr_layers-1} * h{nr_layers-2} + b{nr_layers-1};
prediction = softmax(h{l-1});

% CROSS ENTROPY LOSS
loss = - sum(sum(log(prediction) .* target)) / batch_size;

% B-PROP
dh{l-1} = prediction - target;
for i = nr_layers – 1 : -1 : 1
 Wgrad{i} = dh{i} * h{i-1}';
 bgrad{i} = sum(dh{i}, 2);
 dh{i-1} = (W{i}' * dh{i}) .* jac{i-1};
end

% UPDATE
for i = 1 : nr_layers - 1
 W{i} = W{i} – (lr / batch_size) * Wgrad{i};
 b{i} = b{i} – (lr / batch_size) * bgrad{i};
end

Ranzato
Urtasun & Zemel (UofT) CSC 411: 10-Neural Networks I Oct 14, 2015 35 / 35

	Introduction

