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@ Key Concepts:

> Logistic Regression
> Regularization
» Cross validation
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Logistic Regression

@ An alternative: replace the sign(-) with the sigmoid or logistic function

@ We assumed a particular functional form: sigmoid applied to a linear
function of the data
y(x)=o0 (wa + Wo)

where the sigmoid is defined as

1
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@ The output is a smooth function of the inputs and the weights
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Logistic Regression

@ We assumed a particular functional form: sigmoid applied to a linear
function of the data
y(x)=o (wa + WO)

where the sigmoid is defined as

1

o(z) = 1+ exp(—2)

One parameter per data dimension (feature)

Features can be discrete or continuous

Output of the model: value y € [0,1]

This allows for gradient-based learning of the parameters: smoothed
version of the sign(-)

vV vyVvYy
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Shape of the Logistic Function

@ Let's look at how modifying w changes the function shape

@ 1D example:

wy==2,w =1

y = o (wix + wp)

wy=0,m =1
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@ Demo
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Probabilistic Interpretation

@ If we have a value between 0 and 1, let's use it to model the posterior
1

p(C=0lx) =o(w'x+wp) with o(z)= 1+exp(—2)

Substituting we have
1

P(C = 0x) = 1+exp(—wTx— wp)

@ Supposed we have two classes, how can | compute p(C = 1|x)?
@ Use the marginalization property of probability

p(C =1Jx)+ p(C =0[x) =1
@ Thus (show matlab)

1 —wTx—
p(C=1lx)=1— _ exp(—w'x — wp)
1+exp(—wix—wp) 1+exp(—wTx— wp)
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Conditional likelihood

@ Assume t € {0,1}, we can write the probability distribution of each of our
training points p(t™), .. t(V)|x(1) ... x(N))

@ Assuming that the training examples are sampled |ID: independent and
identically distributed

N
p(t® o M@ L (V)Y = Hp(t(i)\x(’))
i=1
@ We can write each probability as
)1 (i i)yt i)y1—t
p(tDxD) = p(C = 1) p(C = 0x D)1t
£

(i)

(1-p(C=0x))  p(C =0lx)

@ We might want to learn the model, by maximizing the conditional likelihood
N
mapr(t(’)|x(’))
i=1

@ Convert this into a minimization so that we can write the loss function
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N
p(tD, ... M50

cexMy = Hpt( x())

i

—

£0)

N .
II (1 —p(C =0|x" )) p(C = 0xM)1-t"

=

—

@ It's convenient to take the logarithm and convert the maximization into
minimization by changing the sign

N N
Liog(W) = Zt log(1—p(C = 0|x\), w) Z (1—tD) log p(C = 0[x), w)
i=1 i=1

@ Why is this equivalent to maximize the conditional likelihood?
@ Is there a closed form solution?

@ It's a convex function of w. Can we get the global optimum?
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Gradient Descent

mvjn Lw) = mvjn { Z D log(1 — p(C = 0|x”, w) Z(l — tD)log p(C = 0[x1”, )}

i=1

@ Gradient descent: iterate and at each iteration compute steepest direction
towards optimum, move in that direction, step-size A

Wj(t+l) - Wj(t) B )\M

@ But where is w?

p(C =0|x) =

1+ exp(—wTx — wp)

@ You can write this in vector form

ol(w) ol(w)

R

Vi(w) =

8w0 ’ awk
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Let's look at the updates

@ The log likelihood is

N N

Liog—loss(W) = — Z t0) log p(C = 1|x(i),w)—Z(1—t(i)) log p(C = O|x(i),w)

i=1 i=1
where the probabilities are

1 exp(—2z)

p(C:OIX,W):HTp(_Z) P(C = 1x,w) = 1+ exp(—2z)

and z=w'x+ wy

@ We can simplify

Z ) log(1 4 exp(—z)) + Z 020 4371 — t) log(1 + exp(—z"))
ZloglJrexp( 20 +Zt 20

£(w)

@ Now it's easy to take derivatives
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Uw) = > t020 + 3 log(1 + exp(—2z("))

i i

Now it's easy to take derivatives

Remember z = w”x + w

ol N G i exp(—z()
TN D, ) FPRTE )
ow; Z S A exp(—z())

1

What's x{7
And simplifying

g = 1 (20 pl€ = 1)

@ Don't get confused with indexes: j for the weight that we are updating and i
for the training example

@ Logistic regression has linear decision boundary

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 11 /16



Logistic regression vs least squares

logistic
/regression

1

least squarges
regression

If the right answer is 1 and the
model says 1.5, it loses, so it
changes the boundary to avoid
being “too correct” (tilts aways
from outliers)
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Regularization

We can also look at

p(wl{t}, {x}) oc p({t}/{x}, w) p(w)
with {t} = (t@, ... tM) and {x} = (xD), ... x(M)

We can define priors on parameters w

This is a form of regularization

Helps avoid large weights and overfitting

) w
max log | p Hp |x

What's p(w)?
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Regularized Logistic Regression

@ For example, define prior: normal distribution, zero mean and identity
covariance p(w) = N (0, al)

@ This prior pushes parameters towards zero

@ Including this prior the new gradient is

otw) L,

(t+1) (t)
w; —w -A ow, /

J

where t here refers to iteration of the gradient descent

@ How do we decide the best value of «?
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Use of Validation Set

@ We can divide the set of training examples into two disjoint sets: training
and validation

@ Use the first set (i.e., training) to estimate the weights w for different values
of

@ Use the second set (i.e., validation) to estimate the best «, by evaluating
how well the classifier does in this second set

@ This test how well you generalized to unseen data

@ The parameter « is the importance of the regularization, and it's a
hyper-parameter
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Cross-Validation

@ Leave-p-out cross-validation:

» We use p observations as the validation set and the remaining
observations as the training set.

» This is repeated on all ways to cut the original training set.

> |t requires CP for a set of n examples

@ Leave-1-out cross-validation: When p = 1, does not have this problem
@ k-fold cross-validation:

» The training set is randomly partitioned into k equal size subsamples.

» Of the k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining kK — 1 subsamples are
used as training data.

» The cross-validation process is then repeated k times (the folds).

» The k results from the folds can then be averaged (or otherwise
combined) to produce a single estimation
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