
CSC 411: Lecture 04: Logistic Regression

Raquel Urtasun & Rich Zemel

University of Toronto

Sep 23, 2015

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 1 / 16

Today

Key Concepts:

I Logistic Regression
I Regularization
I Cross validation

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 2 / 16

Logistic Regression

An alternative: replace the sign(·) with the sigmoid or logistic function

We assumed a particular functional form: sigmoid applied to a linear
function of the data

y(x) = σ
(
wTx + w0

)
where the sigmoid is defined as

σ(z) =
1

1 + exp(−z)

0

0.5

0

1

The output is a smooth function of the inputs and the weights

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 3 / 16

Logistic Regression

We assumed a particular functional form: sigmoid applied to a linear
function of the data

y(x) = σ
(
wTx + w0

)
where the sigmoid is defined as

σ(z) =
1

1 + exp(−z)

I One parameter per data dimension (feature)
I Features can be discrete or continuous
I Output of the model: value y ∈ [0, 1]
I This allows for gradient-based learning of the parameters: smoothed

version of the sign(·)

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 4 / 16

Shape of the Logistic Function

Let’s look at how modifying w changes the function shape

1D example:
y = σ (w1x + w0)

Demo

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 5 / 16

Probabilistic Interpretation

If we have a value between 0 and 1, let’s use it to model the posterior

p(C = 0|x) = σ(wTx + w0) with σ(z) =
1

1 + exp(−z)

Substituting we have

p(C = 0|x) =
1

1 + exp (−wTx− w0)

Supposed we have two classes, how can I compute p(C = 1|x)?

Use the marginalization property of probability

p(C = 1|x) + p(C = 0|x) = 1

Thus (show matlab)

p(C = 1|x) = 1− 1

1 + exp (−wTx− w0)
=

exp(−wTx− w0)

1 + exp (−wTx− w0)

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 6 / 16

Conditional likelihood

Assume t ∈ {0, 1}, we can write the probability distribution of each of our
training points p(t(1), · · · , t(N)|x(1), · · · x(N))

Assuming that the training examples are sampled IID: independent and
identically distributed

p(t(1), · · · , t(N)|x(1), · · · x(N)) =
N∏
i=1

p(t(i)|x(i))

We can write each probability as

p(t(i)|x(i)) = p(C = 1|x(i))t
(i)

p(C = 0|x(i))1−t(i)

=
(

1− p(C = 0|x(i))
)t(i)

p(C = 0|x(i))1−t(i)

We might want to learn the model, by maximizing the conditional likelihood

max
w

N∏
i=1

p(t(i)|x(i))

Convert this into a minimization so that we can write the loss function

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 7 / 16

Loss Function

p(t(1), · · · , t(N)|x(1), · · · x(N)) =
N∏
i=1

p(t(i)|x(i))

=
N∏
i=1

(
1− p(C = 0|x(i))

)t(i)
p(C = 0|x(i))1−t(i)

It’s convenient to take the logarithm and convert the maximization into
minimization by changing the sign

`log (w) = −
N∑
i=1

t(i) log(1−p(C = 0|x(i),w))−
N∑
i=1

(1−t(i)) log p(C = 0|x(i),w)

Why is this equivalent to maximize the conditional likelihood?

Is there a closed form solution?

It’s a convex function of w. Can we get the global optimum?

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 8 / 16

Gradient Descent

min
w

`(w) = min
w

{
−

N∑
i=1

t(i) log(1− p(C = 0|x(i),w))−
N∑
i=1

(1− t(i)) log p(C = 0|x(i),w)

}

Gradient descent: iterate and at each iteration compute steepest direction
towards optimum, move in that direction, step-size λ

w
(t+1)
j ← w

(t)
j − λ

∂`(w)

∂wj

But where is w?

p(C = 0|x) =
1

1 + exp (−wTx− w0)
p(C = 1|x) =

exp(−wTx− w0)

1 + exp (−wTx− w0)

You can write this in vector form

5`(w) =

[
∂`(w)

∂w0
, · · · , ∂`(w)

∂wk

]T
, and 4 (w) = −λ5 `(w)

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 9 / 16

Let’s look at the updates

The log likelihood is

`log−loss(w) = −
N∑
i=1

t(i) log p(C = 1|x(i),w)−
N∑
i=1

(1−t(i)) log p(C = 0|x(i),w)

where the probabilities are

p(C = 0|x,w) =
1

1 + exp(−z)
p(C = 1|x,w) =

exp(−z)

1 + exp(−z)

and z = wTx + w0

We can simplify

`(w) =
∑
i

t(i) log(1 + exp(−z(i))) +
∑
i

t(i)z(i) +
∑
i

(1− t(i)) log(1 + exp(−z(i)))

=
∑
i

log(1 + exp(−z(i))) +
∑
i

t(i)z(i)

Now it’s easy to take derivatives

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 10 / 16

Updates

`(w) =
∑
i

t(i)z (i) +
∑
i

log(1 + exp(−z (i)))

Now it’s easy to take derivatives

Remember z = wTx + w0

∂`

∂wj
=
∑
i

t(i)x
(i)
j − x

(i)
j ·

exp(−z (i))
1 + exp(−z (i))

What’s x
(i)
j ?

And simplifying

∂`

∂wj
=
∑
i

x
(i)
j

(
t(i) − p(C = 1|x(i))

)
Don’t get confused with indexes: j for the weight that we are updating and i
for the training example

Logistic regression has linear decision boundary

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 11 / 16

Logistic regression vs least squares

If the right answer is 1 and the
model says 1.5, it loses, so it
changes the boundary to avoid
being “too correct” (tilts away
from outliers)

logistic
regression

least squares
regression

33

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 12 / 16

Regularization

We can also look at

p(w|{t}, {x}) ∝ p({t}|{x},w) p(w)

with {t} = (t(1), · · · , t(N)), and {x} = (x(1), · · · , x(N))

We can define priors on parameters w

This is a form of regularization

Helps avoid large weights and overfitting

max
w

log

[
p(w)

∏
i

p(t(i)|x(i),w)

]

What’s p(w)?

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 13 / 16

Regularized Logistic Regression

For example, define prior: normal distribution, zero mean and identity
covariance p(w) = N (0, αI)

This prior pushes parameters towards zero

Including this prior the new gradient is

w
(t+1)
j ← w

(t)
j − λ

∂`(w)

∂wj
− λαw (t)

j

where t here refers to iteration of the gradient descent

How do we decide the best value of α?

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 14 / 16

Use of Validation Set

We can divide the set of training examples into two disjoint sets: training
and validation

Use the first set (i.e., training) to estimate the weights w for different values
of α

Use the second set (i.e., validation) to estimate the best α, by evaluating
how well the classifier does in this second set

This test how well you generalized to unseen data

The parameter α is the importance of the regularization, and it’s a
hyper-parameter

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 15 / 16

Cross-Validation

Leave-p-out cross-validation:

I We use p observations as the validation set and the remaining
observations as the training set.

I This is repeated on all ways to cut the original training set.
I It requires Cpn for a set of n examples

Leave-1-out cross-validation: When p = 1, does not have this problem

k-fold cross-validation:

I The training set is randomly partitioned into k equal size subsamples.
I Of the k subsamples, a single subsample is retained as the validation

data for testing the model, and the remaining k − 1 subsamples are
used as training data.

I The cross-validation process is then repeated k times (the folds).
I The k results from the folds can then be averaged (or otherwise

combined) to produce a single estimation

Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 16 / 16

	Introduction

