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@ Linear regression problem

» continuous outputs
» simple model

@ Introduce key concepts:

loss functions
generalization
optimization
model complexity
regularization
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Simple 1-D regression

@ Circles are data points (i.e., training examples) that are given to us
@ The data points are uniform in x, but may be displaced in y
t(x) =f(x)+e
with € some noise
@ In green is the "true" curve that we don't know

@ Goal: We want to fit a curve to these points
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Simple 1-D regression

@ Key Questions:

» How do we parametrize the model?
» What loss (objective) function should we use to judge the fit?
» How do we optimize fit to unseen test data (generalization)?
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Example: Boston Housing data

@ Estimate median house price in a neighborhood based on neighborhood
statistics

@ Look at first (of 13) attributes: per capita crime rate
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@ Use this to predict house prices in other neighborhoods

@ Is this a good input (attribute) to predict house prices?
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Represent the Data

@ Data is describe as pairs D = {(x(), t1)) ... (x(M) (M)}

> x is the input feature (per capita crime rate)
> tis the target output (median house price)

@ Here t is continuous, so this is a regression problem

@ Model outputs y, an estimate of t

y(x) = wo + wax

@ What type of model did we choose?
@ Divide the dataset into training and testing examples

» Use the training examples to construct hypothesis, or function
approximator, that maps x to predicted y
» Evaluate hypothesis on test set
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Noise

@ A simple model typically does not exactly fit the data — lack of fit can be
considered noise

@ Sources of noise:

» Imprecision in data attributes (input noise)
» Errors in data targets (mis-labeling)
» Additional attributes not taken into account by data attributes, affect

target values (latent variables)
» Model may be too simple to account for data targets

7/ 16
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Least-squares Regression

[ tn

Define a model

y(x) = wp + wix

Standard loss/cost/objective function measures the squared error between y
and the true value t

Lw) = Z[t(”) — (wo + wix(M))?

n=1

The loss for the red hypothesis is the sum of the squared vertical errors.

@ How do we obtain the weights w = (wp, wq)?
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Optimizing the Objective

@ One straightforward method: gradient descent
> initialize w (e.g., randomly)

> repeatedly update w based on the gradient

A=
W w w

@ ) is the learning rate

@ For a single training case, this gives the LMS update rule:

w o w A+ 2X(t — y(x(M))x("

@ Note: As error approaches zero, so does the update
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Optimizing Across Training Set

@ Two ways to generalize this for all examples in training set:

1. Batch updates: sum or average updates across every example n, then
change the parameter values

N
W w+ 2\ Z(t(") — y(x(M))x(™
n=1

2. Stochastic/online updates: update the parameters for each training
case in turn, according to its own gradients

» Underlying assumption: sample is independent and identically
distributed (i.i.d.)
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Multi-dimensional Inputs

@ One method of extending the model is to consider other input dimensions
y(x) = wo + wixi + waxo

@ In the Boston housing example, we can look at the number of rooms
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@ We can use gradient descent to solve for each coefficient, or use linear
algebra — solve system of equations
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Linear Regression

@ Imagine now we want to predict the median house price from these
multi-dimensional observations

@ Each house is a data point n, with observations indexed by j:
x(") = (Xgn), “ee ’X(dn)>

@ We can incorporate the bias wy into w, by using xo = 1, then

d
_ —wT
y=wy+ E WiXj = W X
j=1
@ We can then solve for w = (wp, wy, - -+ , wy). How?

@ What if our linear model is not good? How can we create a more
complicated model?
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Fitting a Polynomial

@ We can create a more complicated model by defining input variables that are
combinations of components of x

@ Example: an M-th order polynomial function

M
y(x,w) = wp + Z w;x!

=1
where x/ is the j-th power of x

@ We can use the same approach to optimize the values of the weights on
each coefficient

@ How do we do that?
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Which fit

from Bishop
1 M=0 !
S t
t
= UT © 0 0
ol 7
o
= § -1
0 1 0 z !

Urtasun & Zemel (UofT) CSC 411: 02-Regression Sep 16, 2015 14 /



Regularized least squares

@ Increasing the input features this way can complicate the model considerably

Goal: select the appropriate model complexity automatically

Standard approach: regularization

N
Uw) = Z[t(") — (wo + wix("M)]2 + aw"w

n=1

The penalty on the squared weights is known as ridge regression in statistics
@ Leads to modified update rule

N
w w220 (87 — y(xM))x(?) — aw]

n=1
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1-D regression illustrates key concepts

@ Data fits — is linear model best (model selection)?

» Simple models may not capture all the important variations (signal) in
the data: underfit

» More complex models may overfit the training data (fit not only the
signal but also the noise in the data), especially if not enough data to
constrain model

@ One method of assessing fit: test generalization = model's ability to predict
the held out data

@ Optimization is essential: stochastic and batch iterative approaches; analytic
when available
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