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TRACKING

I Tracking is the process of locating an object (or objects)
given a sequence of observations.

I Players during a match of basketball;
I Cars on a highway;
I Drone following target.

I Different approaches are used for Single Object Tracking

and Multiple Object Tracking.
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SINGLE OBJECT TRACKING

I Simplification of the general problem when we’re

concerned with just one target.

I Approaches are usually variations of a Hidden Markov
Model:

I Kalman Filter;
I KLT Feature Tracker;
I Mean-Shift Algorithm;
I ...

I Real-time performance and doesn’t require much data (if

at all) to train.
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SINGLE OBJECT TRACKING

Credit: http://bit.ly/2mpVrQ7
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MULTIPLE OBJECT TRACKING

I For the general case of tracking multiple objects we must
first decide how many of them we have, and then track. So
for each observation we have two stages:

1. Detection (covered last week)

2. Association

I Additionally, we may want to add a smoothing stage to

filter out noise created by the detection phase.
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MULTIPLE OBJECT TRACKING

Credit: Breitenstein et al., Online Multi-Person Tracking-by-Detection from a Single, Uncalibrated Camera
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CHALLENGES

I Variation in observation conditions:
I Lighting;
I Target pose;

I Target truncation;

I Target occlusion;

I Motion dynamics;
I Mobile observation platform;
I Fast moving targets;
I Target interactions;

I ...
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ASSOCIATION

I The association problem lies in, given a set of detections

X = [x0; x1; :::; xn], find a set of associations (trajectories)

T = [T1;T2; :::;Tk] where Tz = [xz
0; xz

1; :::; xz
m] such that

P(T jX ) is maximal.

I Because each trajectory should contain only a single object,

we also want to ensure non-overlap between trajectories,

or Tk \ Tl = ;;8k 6= l.

I We can formulate this as a Maximum a Posteriori (MAP)

optimization.
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ASSOCIATION AS A MAP

argmax
T

P(T jX ) =
Y

Ti2T

P(Ti)
Y

xj2X

P(xjjT )

I Here we have a prior over the trajectories P(Ti) and an

observation model P(xjjT ).
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ASSOCIATION AS A MAP

I Before we further define our objective function, we must
first decide what aspects we consider important for
tracking:

I Prefer high scoring detections to minimize false positives;
I Minimize fragmentation (prefer longer trajectories);
I Minimize ID switches;
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OBSERVATION MODEL

I To minimize false positives we can define our observation

model given a detection score �j as follows:

P(xijT ) =

8<
:
�j 9Tk 2 T ; xj 2 Tk

1 � �j otherwise

I If we introduce a discrete random variable yj to encode

true positives we can rewrite this as:

P(xijT ) = yj�j + (1 � yj)(1 � �j)
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TRAJECTORY PRIOR

I To incorporate the characteristics we want in our
trajectories. We propose a parametrization in terms of 3
additional discrete random variables.

1. ynewi encoding whether detection i is the beginning of a new

trajectory;

2. yendi encoding whether detection i is the ending of a

trajectory;

3. ylinki;j encoding whether detections i and j are the same

object.

http://www.cs.toronto.edu/�frossard 13/47

http://www.cs.toronto.edu/~frossard


INTRODUCTION ASSOCIATION FLOW MODEL LINEAR PROGRAM COSTS METRICS ONLINE CONTINUOUS NUMBERS

TRAJECTORY PRIOR

I We then formulate our prior as:

P(Tz) = P(ynewxz
0
)

k�1Y
j=0

P(ylinkxz
j ;x

z
j+1

)P(yendx
z
k
)
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TRAJECTORY POSTERIOR

I Putting it all together we get:

P(T jX ) =
Y

Tz2T

�
P(ynewxz

0
)

k�1Y
j=0

P(ylinkxz
j ;x

z
j+1

)P(yendx
z
k
)
�

�
Y

xj2X

yj�j + (1 � yj)(1 � �j)

I To ensure our non-overlap constraint is respected we

define:

ynewi +
X

j

ylinkj;i = yendi +
X

j

ylinki;j = yi
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FLOW MODEL

I We can express our posterior as a network flow model:

Credit: Nevatia et al, Global Data Association for Multi-Object Tracking

http://www.cs.toronto.edu/�frossard 16/47

http://www.cs.toronto.edu/~frossard


INTRODUCTION ASSOCIATION FLOW MODEL LINEAR PROGRAM COSTS METRICS ONLINE CONTINUOUS NUMBERS

FLOW MODEL

I We can express our posterior as a network flow model:

ynew

y

yend

ylink

Credit: Nevatia et al, Global Data Association for Multi-Object Tracking - Edited
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FLOW MODEL

I This way we can solve our MAP as a Max-Flow problem.
I Each flow path is a trajectory;
I Flow conservation guarantees no trajectory overlap;
I Amount of flow from s to t is the number of trajectories.
I Total cost of flow is the negative log-likelihood of the

trajectories’ hipothesis

I Global optimality can be guaranteed.
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SOLVING WITH MIN-COST FLOW

Input: Observation set X

1 Build flow graph G(X )

2 Start with flow 0, f (G) = 0

3 while f (G) = 0 can be augmented do

4 Augment f (G) by 1

5 Compute current cost with Min-Cost Flow

6 if current cost < optimal cost then

7 Store current cost as optimal cost

8 return global optimum
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LINEAR PROGRAM

I Our formulation can also be interpreted as an Integer

Program: We want to find integer assignments to our

random variables such that the negative log-likelihood is

minimized.

I Integer Programming is NP-Hard. However we can relax
our problem to a Linear Program.

I Total unimodularity guarantees that we will still find

integer solutions.
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LINEAR PROGRAM

Maximize:

X
xj2X

 
ynewxj

P(ynewxj
) + yendxj

P(yendxj
) + yj�j + (1 � yj)(1 � �j)

!

+
X

(xj;xk)2L

ylinkxj;xk
P(ylinkxj;xk

)

Subject To:

ynewxi
+

X
xk2L(xi)

ylinkxk;xi
= yendxi

+
X

xk2L(xi)

ylinkxi;xk
= yxi 8xi 2 X

I Where L denotes the set of detections that can be

associated, i.e. are from subsequent frames.
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FINDING THE PROBABILITIES

I So we have defined ways to solve the association problem,

however we still need to find ways to compute the

probabilities of our random variables, ie P(y), P(ylink),

P(ynew), P(yend).

I In the following we propose some ways to address this.
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DETECTION SCORE - P(y)

I This score can be either the output of the scorer on the

detector or a new network trained to classify true and false

positives.

I It’s important that this score is precise, otherwise you

might end up with many fragmentations or false positives.
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MATCHING SCORE - P(ylink)

I Many metrics can be used for this, among them we have:
I Bounding box overlap;
I Bounding box size;
I Color histogram similarity;
I Orientation cosine similarity;
I Position distance;
I ...

I As is the case for yj, a poor estimation of this cost may lead

to many ID switches.
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MATCHING SCORE - P(ylink)
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MATCHING SCORE - P(ylink)
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NEW/END SCORES - P(ynew) AND P(yend)

I The costs for P(ynew) and P(yend) are usually constants

estimated via the EM Algorithm.

I Not particularly important to be set on a per-detection

basis.
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METRICS

I Given a solution to the tracking problem, it’s in our

interest to have metrics to proper evaluate whether or not

the solution satisfies our expectations.

I The most widespread metrics for this purpose are the

CLEAR MOT and MT/ML metrics.
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MOTA

I MOTA - Multiple Object Tracking Accuracy:
I Accounts for errors in the trajectory configuration: misses,

false positives and mismatches.
I Gives a measure of how well the tracker is able to detect

object and keep consistent trajectories, regardless of the

precision with which the object detections are estimated.

MOTA =

P
t(mt; fpt;mmet)P

t gt

I Where mt, fpt, mmet and gt are, respectively, the number of

misses, false positives, mismatches and objects present at

time t.
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MOTP

I MOTP - Multiple Object Tracking Precision:
I Measures the total error in estimated position between

object-hypothesis pairs
I Evaluates the tracker’s ability of estimating object

positions, regardless of its skill of keeping consistent

trajectories.

MOTP =

P
i;t di

tP
t ct

I Where di
t is the distance between object oi and its

corresponding hypothesis at time t and ct is the number of

matches at time t.
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MT/ML

I MT - Mostly Tracked - evaluates the percentage of

trajectories that cover a ground-truth trajectory for more

than 80% of its length.

I ML - Mostly Lost - percentage of trajectories that cover a

GT trajectory for less than 20% of its length.

I PT - Partially Tracked - 1:0 � MT � ML.
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ONLINE TRACKING

I So far, our optimization scheme follows an offline setting:

Given an entire sequence of observations we find the RV

assignments with optimal cost.

I This approach doesn’t scale too well since as the length of

the sequence grows, so does the complexity of the LP.

I Furthermore, for real time applications (robotics,

autonomous driving, broadcasting, etc) we need the

tracking output with minimal delay.
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ONLINE TRACKING

I The min-cost flow approach has a complexity of
O(kn2m log n), where k is the number of objects, m the
number of edges and n the number of nodes in the graph.

I Even if we used a sliding window approach, this

complexity would still make the successive re-calculations

slow.

I Because our tracking graph is a DAG and we want
node-disjoint solutions, we can formulate our problem
using k shortest node-disjoint paths.

I This approach has a complexity of O(k(m + n log n)),

making it feasible for online applications.
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ONLINE TRACKING

Credit: Berclaz et al, Multiple Object Tracking using K-Shortest Paths Optimization
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TRACKING WITH KSP

Input: Observation set X

1 Build flow graph G(X )

2 Start with k = 0

3 while k can be augmented do

4 Augment k by 1

5 Compute current cost with KSP

6 if current cost < optimal cost then

7 Store current cost as optimal cost

8 return global optimum
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ONLINE TRACKING WITH KSP

I To transform our offline setting into online, we split the

sequence into smaller batches that we can efficiently

process.

I To enforce consistency between batches, we introduce an

overlap between each sequence, and make it such that the

inward flow of each node is equal to the outward flow in

the previous batch.
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ONLINE TRACKING WITH KSP
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Credit: Nevatia et al, Global Data Association for Multi-Object Tracking - Edited
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ONLINE TRACKING WITH KSP

I For implementation details and additional information

into bounded computation and memory we refer you to:

http://www.cs.toronto.edu/boundTracking/
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CONTINUOUS OPTIMIZATION

I So far we’ve only dealt with discrete assignments, ie we

either associate two detections or don’t.

I This doesn’t take into account higher order motion

features (speed, acceleration, etc), which will generally

produce jagged trajectories.
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CONTINUOUS OPTIMIZATION
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CONTINUOUS OPTIMIZATION

I However, we can do better by using prior knowledge of
the domain:

I Cars don’t change shape and have predictable motion

dynamics according to the road;
I The trajectory of a projectile (ball) can be reasonably

estimated given speed and acceleration;
I People usually move in the direction they are facing.
I ...

http://www.cs.toronto.edu/�frossard 39/47

http://www.cs.toronto.edu/~frossard


INTRODUCTION ASSOCIATION FLOW MODEL LINEAR PROGRAM COSTS METRICS ONLINE CONTINUOUS NUMBERS

CONTINUOUS OPTIMIZATION

1. We can encode that information as an additional cost in the

objective function and minimize using gradient descent. 1

2. We can use a filtering technique (Bayes, Kalman, Particle,

...) over each individual trajectory. 2

3. We can use Recurrent Neural Networks to estimate

smooth trajectories. 3

1
Milan et al., Multi-Target Tracking by Discrete-Continuous Energy Minimization

2
Thrun et al., Probabilistic Robotics

3
Milan et al., Online Multi-Target Tracking Using Recurrent Neural Networks
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CONTINUOUS OPTIMIZATION

1. We can encode that information as an additional cost in

the objective function and minimize using gradient

descent. 1

2. We can use a filtering technique (Bayes, Kalman, Particle,

...) over each individual trajectory. 2

3. We can use Recurrent Neural Networks to estimate

smooth trajectories. 3

1
Milan et al., Multi-Target Tracking by Discrete-Continuous Energy Minimization

2
Thrun et al., Probabilistic Robotics

3
Milan et al., Online Multi-Target Tracking Using Recurrent Neural Networks
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AUGMENTED OBJECTIVE FUNCTION

O(T ;YjX ) =
X
xj2X

 
ynewxj

P(ynewxj
jT ) + yendxj

P(yendxj
jT ) + yxjP(yxj jT )

!

+
X

(xj;xk)2L

ylinkxj;xk
P(ylinkxj;xk

jT )

+
X

Tj2T

P(TjjY)

I Notice that we add conditionals to our probabilities since

we’ll want to use the continuous information in our

discrete assignments and vice-versa.
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AUGMENTED OBJECTIVE FUNCTION

I With the P(TjjY) term we can model higher order
functions of our trajectories.

I Impose smooth shapes to trajectories, such as splines;
I Constrain their dynamic states to feasible ones;
I Filter out noise produced by low scoring detections;
I ...
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AUGMENTED OBJECTIVE FUNCTION

I Furthermore, we can exploit motion models to improve

our initial trajectory hypothesis

Credit: Milan et al., Multi-Target Tracking by Discrete-Continuous Energy Minimization
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OPTIMIZATION SCHEME

Input: Observation set X

1 repeat

2 Minimize O(T ;YjX ) wrt. Y via Max-Flow/LP/KSP

3 Minimize O(T ;YjX ) wrt. T via Gradient Descent

4 until convergence;

5 return global optimum
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SOME NUMBERS - KITTI DATASET

I Matching error rate:

ERROR RATE

METRIC MEAN POSITIVE NEGATIVE

Cosine Similarity 29.16% 19.02% 39.30%

Color Correlation 15.31% 20.21% 10.41%

BBox Size 6.31% 5.27% 7.35%

BBox Position 5.13% 5.86% 4.40%

BBox Overlap 2.46% 4.68% 0.23%
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SOME NUMBERS - KITTI DATASET

I Hungarian X Linear Program:

METHOD MOTA MOTP MT ML IDS FRAG FP

Hungarian 58.69% 84.26% 70.87% 6.80% 68 196 2880

LP 71.12% 85.24% 55.66% 12.94% 19 99 628
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SOME NUMBERS - KITTI DATASET

I Real X Ideal detections:

METHOD MOTA MOTP MT ML IDS FRAG FP

Real 71.12% 85.24% 55.66% 12.94% 19 99 628

Ideal 79.44% 89.27% 72.17% 6.15% 7 37 462
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