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• What is Odometry?

• The Greeks invented it… “Route Measure”

• Estimating change in position over time

• What is Visual Odometry?

• Estimating the motion of a camera in real time 

using sequential images (i.e., egomotion)

• The idea was first introduced for planetary rovers 

operating on Mars – Moravec 1980
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Pathfinder landing, 1997



• Camera Types

• Passive

• Monocular

• Stereo

• Omnidirectional

• Active

• Lidar

• Time-of-flight

• RGB-Depth

• Hybrid 

• Uses multiple sensors

Primer on Visual Odometry
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UEye Camera

Point Grey Stereo Cam

Velodyne Lidar

Mesa TOF Cam
Kinect RGB-D

Bubl Omnicam



• Monocular Visual Odometry

• A single camera = angle sensor

• Motion scale is unobservable         

(it must be synthesized) 

• Best used in hybrid methods

• Stereo Visual Odometry

• Solves the scale problem

• Feature depth between images

• Degenerates to the monocular case 

if only distant features are used
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Epipolar Constraint

Perspective Camera Model
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Image from Scaramuzza and Fraundorfer, 2011

VO Problem Illustration
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VO Pipeline
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Image from Scaramuzza and Fraundorfer, 2011

• Essential Matrix is computed from features correspondences using epipolar constraint
• The matrix has an unknown scale factor (problem with Monocular)
• Commonly solved with the Nister Five-Point Algorithm [2003] (solves using SVD)
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Image from Scaramuzza and Fraundorfer, 2011



• Motion estimation for vehicles

• Driver assistance

• Autonomy

• Point-Cloud Mapping

• VO to estimate the motion of a lidar during 

the collection of a single scan

• Reduce rolling shutter effect

• Challenges

• Robustness to lighting conditions

• Lack of features / non-overlapping images

• Without loop closure the estimate still drifts

Use Cases for Visual Odometry
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Image from mirror.co.uk

Where am I ?

Image from NASA/JPL

Where are my features at ?



Visual-Lidar Odometry and Mapping:
Low-drift, Robust, and Fast (Robotics Institute, CMU)

Paper by: Ji Zhang and Sanjiv Singh, ICRA 2015

Presented by Patrick McGarey

Paper Review



• Localization and mapping in degenerate environments is challenging

• e.g., lack of discrete/unique features, or poor lighting

General Problems
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Images from Zhang and Singh, 2015 



• VO requires moderate-good lighting 
conditions

• VO fails when features are limited

• Lidar Odometry (LO) is limited 
because of  motion distortion

• LO inherently involves many variables 
(the world is represented by points)

• LO depends on scan matching, which 
fails in degenerate environments

Problems with VO & LO
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Image from swinburne.edu.my

Image from  IEEE Spectrum

rolling shutter effect



• Estimate 6-DOF motion of a 
camera/lidar rig

• Collect spatially accurate 3D point 
cloud of the environment

• Exploit complementary strengths 
and weaknesses of a monocular 
camera and lidar

• Be robust to (1) aggressive motion 
and (2) intermittent feature dropouts

Motivation
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Image from Zhang and Singh, 2015 

Hokuyu Lidar

Camera



• Develop a real-time slam method that is robust to lighting changes, has 
low drift and has reports pose updates at a high frequency

Preview
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Video from Zhang and Singh, 2015 



• Use VO at  high frame-rate (60Hz) to estimate motion

• Use LO at low frequency (1Hz) to refine motion estimate

• Uses course point cloud from last iteration to provide depth to features

• Use improved VO motion to undistort point cloud

• Merge current point cloud into the  global map

Method V-LOAM
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Images from Zhang and Singh, 2015 



• Course lidar data is used to add depth to high-rate images

• Camera motion is approximated as linear for the short distances between images

• 3 Types of features are generated, those with…

• no depth, depth from lidar, and depth from triangulation (i.e., SfM)

• Solve equation with 6 unknowns using least squares 

• Output high-frequency transform

Method – Visual Odometry (VO)
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Image from Zhang and Singh, 2015 



Steps

• 1) Sweep-to-Sweep: match 2 consecutive point clouds using ICP* 

• Removes some distortion, *(ICP = Iterative Closest Point algorithm)

• 2) Sweep-to-Map: to the map add undistorted point cloud

• Along with the cloud, provide low-rate sensor poses

• 3) Using input from VO, output high-rate transforms and update map

• Removes more distortion

Method – Lidar Odometry (LO)
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Images from Zhang and Singh, 2015 



Method – Overall Pipeline VO+LO
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Images from Zhang and Singh, 2015 



• Confirm Low Drift

• Fisheye drifts faster than wide angle for lack of features

• Incorporating LO results in equal performance 

Results – Wide Angle vs. Fisheye Lenses
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Results – Fast (aggressive) vs. Slow Motion
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Images from Zhang and Singh, 2015 

Slow Fast

* Wide angle didn’t 
work in the stairs due 
to a lack of features, 
so in this case Fisheye 
is the best lens choice



• Robustness to feature dropouts

• Turn on and off the lights (for 2 seconds)

Results – Light vs. Dark
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Images from Zhang and Singh, 2015 



Results – KITTI Benchmark
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Images from Zhang and Singh, 2015 



Updated Results
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Video from Zhang and Singh, 2015 



Stereoscan: Dense 3D 
Reconstruction in Real-Time

Paper by: Geiger et al., IVS 2011

Presented by Patrick McGarey

Paper Review



• The accuracy of real-time stereo VO is a function of image resolution, 
meaning resolution is typically reduced to achieve faster performance 

• Current stereo VO pipelines are computationally expensive, implying 
that mobile and embedded systems must be fully dedicated to the task

Problems
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• Perform 3D reconstruction in 
real-time by leveraging

• Sparse features for efficient stereo 

matching

• Multi-view reconstruction (recast 3D 

points from last frame into scene)

Method
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Image from Geiger et al., 2011 
H.S. in Carbonite, Star Wars



• 1) Feature Matching: only a subset of features detected are used to 
match in reduced search windows. (other CV tricks are employed)

• 2) Egomotion Estimation: minimize projection errors using EKF

• 3) Stereo Matching: uses ELAS method

• Efficient Large Scale Stereo Mapping, Geiger et al., 2010

• 4) 3D Reconstruction: cast prior 3D points into current frame and take 
the mean pose of the combined 3D point and a new point on the image 
(they do this to create consistent point clouds from large amounts of data)

Method: Pipeline

27
Images from Geiger et al., 2011 



Results

28
Image from Geiger et al., 2011 

Computational Time Odometry Result
Kitt et al. required inverting large matrices that grew linearly with features



Real-Time Stereo Visual Odometry for 
Autonomous Ground Vehicles

Paper by: Howard, IROS 2008

Presented by Patrick McGarey

Paper Review



• Inertial sensors are prone to drift

• Wheel odometry is unreliable in 
‘off-road’ terrain

• Historical Context

• At the time (2007-2008), Stereo VO was still a 

newer topic of investigation

• Inlier detection was very slow

• Stereo navigation had recently been used on the 

MER Rovers

• The Curiosity rover was about to be launched

Problems
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Image from NASA/JPL



• Construct a VO pipeline that

• 1) Does not make assumptions of camera motion (no priors)

• 2) Works on dense disparity images in real time (prior methods were slow)

Method
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DARPA LAGR robot, 2008



• 1) Inputs: rectified, pre-filtered images

• 2) Feature Detection: detect corner features, assign 3D vals from disparity

• Used Harris corners and FAST features

• 3) Score Matrix: using sum of absolute differences generate feature scores

• Low score indicates match

• 4) Match Features: use local minima from score to generate features

• Improves on state-of-the-art computation : from cubic to squared complexity

• 5) Find Inliers: inforce rigid world constraint to reject unlikely features

• 6) Estimate Motion: minimize the reprojection error and output motion

Method: Pipeline
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Results (VO vs. Wheel Odometry)
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Image from Howard, 2008
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Image from Scaramuzza and Fraundorfer, 2011
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