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Primer on Odometry

* What is Odometry?

e The Greeks invented it... “Route Measure”

e Estimating change in position over time

* What is Visual Odometry?

e Estimating the motion of a camera in real time

using sequential images (i.e., egomotion)

* The idea was first introduced for planetary rovers
operating on Mars — Moravec 1980
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Primer on Visual Odometry

* Camera Types

e Passive

e Monocular

e Stereo

e Omnidirectional
* Active

e Lidar

e Time-of-flight

e RGB-Depth
e Hybrid

Velodyne Lidar

+ Uses multiple sensors - ?
Mesa TOF Cam

Kinect RGB-D




Primer on Visual Odometry

* Monocular Visual Odometry

e A single camera = angle sensor

e Motion scale is unobservable

1
. . , / p
(it must be synthesized) \'A
Z
X

e Best used in hybrid methods C é‘

* Stereo Visual Odometry y  Perspective Camera Model
X Epipolar Constraint

e Solves the scale problem

e Feature depth between images <~Epipolar Plane P

p.
/| pipolar Line  Epipolar Line;

e Degenerates to the monocular case @ l - /

if only distant features are used

Tk, k-1

i Images from Scaramuzza and Fraundorfer, 2011 4
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Primer on Visual Odometry

* Monocular Visual Odometry

VO Problem Illustration

e A single camera = angle sensor

e Motion scale is unobservable
(it must be synthesized)

e Best used in hybrid methods

* Stereo Visual Odometry

e Solves the scale problem

e Feature depth between images

e Degenerates to the monocular case
if only distant features are used Image from Scaramuzza and Fraundorfer, 2011
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Primer on Visual Odometry

* Monocular Visual Odometry VO Pipeline

e A single camera = angle sensor

. . Image Sequence
e Motion scale is unobservable IT
(it must be synthesized) Feature Detection
e Best used in hybrid methods <
Feature Matching (or Tracking)

~~

Motion Estimation

* Stereo Visual Odometry

e Solves the scale problem 2-D-to-2-D | 3-D-to-3-D | 3-D-to-2-D

e Feature depth between images . 4

Local Optimization (Bundle Adjustment)

e Degenerates to the monocular case

] ' I from S d Fraundorfer, 2011
if only distant features are used mage from scaramuzza and rraundorier
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Primer on Visual Odometry

1) Capture new frame /;
2) Extract and match features between /,_; and /;
3) Compute essential matrix for image pair/,_,, I

4) Decompose essential matrix into R, and t;, and form T,
5) Compute relative scale and rescale t; accordingly

6) Concatenate transformation by computing C;, = C,_ T,
7) Repeat from 1).

Image from Scaramuzza and Fraundorfer, 2011

« Essential Matrix is computed from features correspondences using epipolar constraint
* The matrix has an unknown scale factor (problem with Monocular)
« Commonly solved with the Nister Five-Point Algorithm [2003] (solves using SVD)
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Primer on Visual Odometry

1) Capture two stereo image pairs jx_q, I, x_; and lj4, I,
2) Extract and match features between /;;,_; and /;;

3) Triangulate matched features for each stereo pair

4) Compute T, from 3-D features X;_; and X,

5) Concatenate transformation by computing
Ck = Ck1Tk

6) Repeat from 1).

Image from Scaramuzza and Fraundorfer, 2011
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Use Cases for Visual Odometry

* Motion estimation for vehicles

e Driver assistance

e Autonomy

* Point-Cloud Mapping

* VO to estimate the motion of a lidar during
the collection of a single scan

e Reduce rolling shutter effect

* Challenges

* Robustness to lighting conditions
e Lack of features / non-overlapping images

e Without loop closure the estimate still drifts
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Paper Review

Visual-Lidar Odometry and Mapping:
Low-drift, Robust, and Fast (Robotics Institute, CMU)

Paper by: Ji Zhang and Sanjiv Singh, ICRA 2015
Presented by Patrick McGarey
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General Problems

* Localization and mapping in degenerate environments is challenging

* e.g., lack of discrete/unique features, or poor lighting

Images from Zhang and Singh, 2015
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Problems with VO & 1.O

* VO requires moderate-good lighting
conditions

* VO fails when features are limited

* Lidar Odometry (LO) is limited
because of motion distortion

* LO inherently involves many variables
(the world is represented by points)

~ rolling shutter effectj

* LO depends on scan matching, which
fails in degenerate environments

Image from IEEE Spectr
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Motivation

* Estimate 6-DOF motion of a

camera/lidar rig ;
Hokuyu Lidar

* Collect spatially accurate 3D point
cloud of the environment

* Exploit complementary strengths
and weaknesses of a monocular
camera and lidar

Camera

* Be robust to (1) aggressive motion
and (2) intermittent feature dropouts

Image from Zhang and Singh, 2015
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Preview

Online Monocular-laser Integrated Mapping

The Field Robotics Center
At the Robotics Institute of Carnegie Mellon University

7 Video from Zhang and Singh, 2015
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Method V-LOAM

* Use VO at high frame-rate (60Hz) to estimate motion
* Use LO at low frequency (1Hz) to refine motion estimate

e Uses course point cloud from last iteration to provide depth to features
* Use improved VO motion to undistort point cloud

* Merge current point cloud into the global map

Lidar Odometry

w Sk
S™ Y (60Hz)
(1Hz)
: >
% Images from Zhang and Singh, 2015
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Method — Visual Odometry (VO)

* Course lidar data is used to add depth to high-rate images

e Camera motion is approximated as linear for the short distances between images

* 3 Types of features are generated, those with...
* no depth, depth from lidar, and depth from triangulation (i.e., StM)
* Solve equation with 6 unknowns using least squares

* Qutput high-frequency transform
Visual Odometry

Input Lidar | 60Hz Frameto | L

A Clouds ame Transformsy |:
g s o :
] B Nonlinear motion | C : i
a|w 'V : .
s|o of the sensors 2 . Features w/ and w/o Depth ;
S : £+ of visual odometry g Input . | |
o 3 Linear drift 5‘%>Time Images_gb Feature Tracking |1 ed Features 5

an Image from Zhang and Singh, 2015
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Method — Lidar Odometry (LO)
Steps

* 1) Sweep-to-Sweep: match 2 consecutive point clouds using ICP*

* Removes some distortion, *(ICP = Iterative Closest Point algorithm)

* 2) Sweep-to-Map: to the map add undistorted point cloud

e Along with the cloud, provide low-rate sensor poses
* 3) Using input from VO, output high-rate transforms and update map
 Removes more distortion

Lidar Odometry

Sweep to Sweep |Refined
»  Refinement Clouds

1Hz Sweep to Sweep Transforms| 1Hz Sweep to

Map Transforms:

rb Transform Integration >

' 1Hz Map
7 Outputs

60Hz Frame to Map
Transform Outputs

........................................................................

& Images from Zhang and Singh, 2015
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Input Lidar :
Clouds |

Method — Overall Pipeline VO+LO

Visual Odometry Lidar Odometry

60Hz Frame to k
ame Transforms

Sweep to Sweep |Refined

> 1Hz Map
-»  Refinement Clouds
1H

Outputs

Features w/ and w/o Depth

Map Transforms:
P . 60Hz Frame to Map

. Transform Outputs

|r|nnapgl§5 ﬂ) Feature Tracking

{’;‘n‘* gm-1 - ‘ om

Images from Zhang and Singh, 2015
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Results — Wide Angle vs. Fisheye Lenses

* Confirm Low Drift
* Fisheye drifts faster than wide angle for lack of features

* Incorporating LO results in equal performance

1 | I 1 [ I

— Wide angle, visual odom
Fisheye, visual odom

Wide angle, visual odom
+ lidar odom

Fisheye, visual odom
+ lidar odom

§g Institute for Acrospace Studies Images from Zhang and Singh, 2015
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Results — Fast (aggressive) vs. Slow Motion

Slow Fast
0 -
— Wide angle, slow
Fisheye, slow
—— Fisheye, fast
- * Wide angle didn’t
€ work in the stairs due
— to a lack of features,
10 so in this case Fisheye
S is the best lens choice
0
15 - A
-1 *@

R 157 — £1° B Slow
%1& Blrst | a0 10 Bl ast |-
£ Bl Overlap c B Overlap
g 5 | g 5
& g & 0
0 0.5 1 15 2 25 3 0 20 100 150 200
Linear speed (m/s) Angular speed (deg./s)

Images from Zhang and Singh, 2015
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Results — Light vs. Dark

* Robustness to feature dropouts

* Turn on and off the lights (for 2 seconds)

5l —Lighton |
1 — Light off
1 2
Lo o ol = 3 4
o I ache 2 Or B 4
T M Bk bicreporsossessrativemmtorsemcr rempy e s 1 A | | | l |
' 0 2 4 6 8

Translation
Correction {m)
Rotation
Correction (deg.)

0 10 20 30 40 50 60 10 20 30 40 50 60
Sweep No. Sweep No.

0

Images from Zhang and Singh, 2015
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Results — KITTI Benchmark

i Method . Setting | Code | Translation Rotation . Runtime | Environment
1 V-LOAM [ . 0.68% . 0.0015[degim] | 0.1s 4 cores @ 2.5 Ghz (C/C++)
3 Fhang and 5. Sinah: Visual-idar Odometry and Mapping: Low- Tift. Robust. and Fast IEEE International Conference on Robofics and Automation(ICRA) 2015, "
2 | LOAM el . 0.88%  0.0022[deg/m] 10s | 2 cores @ 2.5 Ghz (C/C++)
J. Ehang and S. Singh: LOAM: Tidar Ddﬂmetrv_..-' and Mapplng in Healtima. Hobofics: Science and Sj,.-'stems Conference [HSSJ 2014, T
3 SOFT 5@ . 088% | 0.0022[deg/m] | 01s 2 cores @ 2.5 Ghz (C/IC++)
T BASIE and T Perovié: Siaren olomelry hased on careful feahire selechon and Fackin ing. European u::unfe'r'éﬁié'é"ij'ﬁ"f&iEE{[I'é"ﬁ&iEEiE{EEMﬁjEEIE """""""""""""""""""""""""""""""""""
S Images from Zhang and Singh, 2015
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Updated Results

Online Odometry and Mapping with Vision and Velodyne

The Field Robotics Center
At the Robotics Institute of Carnegie Mellon University

Video from Zhang and Singh, 2015
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Paper Review

Stereoscan: Dense 3D
Reconstruction in Real-Time

Paper by: Geiger et al., IVS 2011
Presented by Patrick McGarey
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Problems

* The accuracy of real-time stereo VO is a function of image resolution,
meaning resolution is typically reduced to achieve faster performance

* Current stereo VO pipelines are computationally expensive, implying
that mobile and embedded systems must be fully dedicated to the task

(b) Feature tracking (5 frames, static camera)
Institute for Aerospace Studies Image from Geiger et al., 2011
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Method

* Perform 3D reconstruction in
real-time by leveraging

e Sparse features for efficient stereo
matching

e Multi-view reconstruction (recast 3D
points from last frame into scene)

Image from Geiger et al., 2011
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Method: Pipeline

* 1) Feature Matching: only a subset of features detected are used to
match in reduced search windows. (other CV tricks are employed)

* 2) Egomotion Estimation: minimize projection errors using EKF
* 3) Stereo Matching: uses ELAS method

e Efficient Large Scale Stereo Mapping, Geiger et al., 2010

* 4) 3D Reconstruction: cast prior 3D points into current frame and take
the mean pose of the combined 3D point and a new point on the image

(they do this to create consistent point clouds from large amounts of data)

S 0,5s time £ 5
I Ll _ -
Left image ( > ( >
Right image .
Egomotion Rt Rt Rt Rt Rt Rt Rt Rt
imati N B - N B — frame 2
estimation v
l l l x-><—>(—>(-x—>(—>(—x—x—)¢—)<’4—|mage plane — K )xxx
Stereo
matching — Vframe 1
- . Images from Geiger et al., 2011
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Results

Computational Time

Kitt et al. required inverting large matrices that grew linearly with features

—e—Kitt et al. 2010
—&— our method
—— our method (2 scales)

5000 10000 15000
Number of features

(a) Feature matching

H —=— our method

—e—Kitt et al. 2010

100 200

Number of features

300 400

Stage Time
Filter 6.0 ms
NMS 12 ms
Matching 1 | 2.8 ms
Matching 2 | 10.7 ms
Refinement 5.1 ms
Total time 36.6 ms
Stage Time
RANSAC 3.8 ms
Refinement 0.4 ms
Kalman filter | 0.1 ms
Total time 4.3 ms

(b) Visual odometry

Institute for Aerospace Studies

Image from Geiger et al., 2011
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Paper Review

Real-Time Stereo Visual Odometry for
Autonomous Ground Vehicles

Paper by: Howard, IROS 2008
Presented by Patrick McGarey

X

&
e
*}N‘ =

Institute for Aerospace Studies
8B B

%2 UNIVERSITY OF TORONTO

AAAAA



Problems

* Inertial sensors are prone to drift

* Wheel odometry is unreliable in
‘off-road’ terrain

* Historical Context

e At the time (2007-2008), Stereo VO was still a
newer topic of investigation

e Inlier detection was very slow T Image from NASA/JPL

e Stereo navigation had recently been used on the
MER Rovers

e The Curiosity rover was about to be launched
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Method

* Construct a VO pipeline that

e 1) Does not make assumptions of camera motion (no priors)

e 2) Works on dense disparity images in real time (prior methods were slow)

DARPA LAGR robot, 2008
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Method: Pipeline

* 1) Inputs: rectified, pre-filtered images
* 2) Feature Detection: detect corner features, assign 3D vals from disparity

e Used Harris corners and FAST features

* 3) Score Matrix: using sum of absolute differences generate feature scores

e [.ow score indicates match

* 4) Match Features: use local minima from score to generate features
e Improves on state-of-the-art computation : from cubic to squared complexity
* 5) Find Inliers: inforce rigid world constraint to reject unlikely features

* 6) Estimate Motion: minimize the reprojection error and output motion
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Results (VO vs. Wheel Odometry)

' ' ' ? ' ' ' Run 1 left 512x384
: ; : ; : Run 2 left 512x384 -~
20 =i PO, N O U AR ARSI TR Run 3 left 512x384 ------ ~
: : Run 4 left 512x384 -
E 1} s
= 5 : 5 RS :
0| .. \ = “-_-‘-:f_:':__;;_j:7"_5_.:;__?.:.?1.}—__-‘;:__;:-:’,.:.'..;.:.‘..;:.5."; ‘*'-:'.}_:._"_‘._:"f . ................... —
. i I | i | | |
-50 -40 -30 -20 -10 0 10 20 30 40 50
X (m)
VisOdom Encoders
Run  Src. Size Frames Dist.  Fail Time 2D RMS err. 3D RMS err. 2D RMS err. 3D RMS err.
1 left 256x192 2334  166m 10 48ms [ 0.462m (0.28%) | 0.484m (0.29%) [ Zo/om (L.oo%)] 3.356m (2.02%)
2 left 256x192 3936  335m 5 7.8ms | 0.960m (0.29%) | 1.501m (0.45%) 7.196m (2.15%) 8.415m (2.51%)
3 left 256x192 3467 360m 13 7.1ms | 1.323m (0.37%) | 1.742m (0.48%) | 12.053m (3.35%)] 13.689m (3.81%)
4 left 256x192 4114 406m 39 7.4ms | 2.015m (0.50%) | 3.038m (0.75%) | 16.349m (4.03%)}| 17.906m (4.41%)
1 right  256x192 2548  166m 1 7.2ms | 1.358m (0.82%) | 1.654m (0.99%) 2.575m (1.55%) 3.356m (2.02%)
2 right  256x192 4067 335m 0 7.0ms | 1.436m (0.43%) | 1.559m (0.47%) 7.196m (2.15%) 8.415m (2.51%)
3 right 256x192 3681 360m 5 8.6ms | 0.738m (0.21%) | 1.088m (0.30%) | 12.053m (3.35%)] 13.689m (3.81%)
4 right 256x192 4235 406m 11 85ms | 1.154m (0.28%) | 1.642m (0.40%) | 16.349m (4.03%)} 17.906m (4.41%)
1 left 512x384 2334  166m 0 17.7ms | 0.145m (0.09%) | 0.434m (0.26%) 2.575m (1.55%) 3.356m (2.02%)
2 left 512x384 3936  335m 3 209ms | 0.317m (0.09%) | 0.758m (0.23%) 7.196m (2.15%) 8.415m (2.51%)
3 left 512x384 3467 360m 5 16.1ms | 0.630m (0.18%) | 1.013m (0.28%) | 12.053m (3.35%)] 13.689m (3.81%)
4 left 512x384 4114 406m 13 22.8ms | 0.965m (0.24%) | 1.364m (0.34%) | 16.349m (4.03%)] 17.906m (4.41%)
1 right 512x384 2548  166m 1 19.0ms | 0.249m (0.15%) | 1.485m (0.89%) 2.575m (1.55%) 3.356m (2.02%)
2 right 512x384 4067 335m 1 14.6ms | 0.437m (0.13%) | 0.736m (0.22%) 7.196m (2.15%) 8.415m (2.51%)
3 right 512x384 3681 360m 0 172ms | 0.531m (0.15%) | 0.601m (0.17%) | 12.053m (3.35%)] 13.689m (3.81%)
% 4 right 512x384 4235 406m 8 13.Ims [ 0.534m (0.13%) | 1.033m (0.25%) | 16.349m (4.03%)] 17.906m (4.41%)
@ | Institute for Aerospace Studies Image from Howard, 2008
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Primer on Visual Odometry

1) Do only once:

1.1) Capture two frames /;_», I_;

1.2) Extract and match features between them

1.3) Triangulate features from /,_,, I;_;

2) Do at each iteration:

2.1) Capture new frame /,,

2.2) Extract features and match with previous frame /,_;
2.3) Compute camera pose (PnP) from 3-D-to-2-D matches
2.4) Triangulate all new feature matches between /, and /;_;
2.5) Iterate from 2.1).

& Image from Scaramuzza and Fraundorfer, 2011
@ | Institute for Aerospace Studies
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