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Optical Flow

* Goal: Pixel motion from Image 1 to Image 2

Image credit: KITTI
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Example

* Goal: Pixel motion from Image | to Image H
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Why Optical Flow is Important?

* We live in a moving world

Image credit: giphy.com



Why Optical Flow is Important?

* Recognize actions in video

Image credit: Simonyan et al.



Why Optical Flow is Important?

* Velocity/depth of imperceptible air motion

Input Left

Input Right Depth of air

Video credit: Xue et al.



Optical Flow for Autonomous Driving

* Tracking motion of objects
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Optical Flow for Autonomous Driving

* Tracking motion of objects

Image credit: Geiger et al.



Optical Flow for Autonomous Driving

e Estimate the motion of the car itself

Image credit: Geiger et al.



How does it generate?

* Motion of the object + Motion of the camera
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Image credit: S. Seitz.



Motion Field

* The motion field is the projection of the 3D scene
motion into the image.
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Image credit: S. Seitz.



Motion Field

* The motion field is the projection of the 3D scene
motion into the image.

* P(f) is a moving 3D point P(t+df)
- Velocity of scene point: V = P V

dP/dt _
* p(f) = (x(1),y(9)) I1s the

projection of P in the image

« Apparent velocity v in the
image: given by components
v, = dx/dt and v, = dy/dt

 These components are

known as the motion field of p(t+df)
the image o

Image credit: S. Seitz.




Why Optical Flow is Difficult?

* lllumination change

e Scale change

* Large Displacement

* Occlusion

* Transparent and reflective
* Repetitive structure

* Aperture problem

* Small objects

Image credit: KITTI
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Why Optical Flow is Difficult?

* lllumination change
* Scale change
* Large Displacement
7

* Occlusion Perceived motion

* Transparent and reflective
* Repetitive structure

* Aperture problem

* Small objects

http://en.wikipedia.org/wiki/Barberpole illusion

Actual motion



http://en.wikipedia.org/wiki/Barberpole_illusion

Key Assumptions

* Consistency: Corresponding points look similar
* Small motion: Points do not move very far

* Smoothness: Motion is locally smooth and
consistent



Color Consistency

(z,y)
O\dlsplacement = (u,v)
(a+ uy +0)
I(X,y,t-1) 1(X,y,1)
* Brightness Constancy Equation:
(X, y, t=1) = 1 (X+U(x,y), Y +V(x,y) 1)
— ol

Can be written as: shorthand: I, = 5

(X, y, t=1) = (X, y,t) + I, -u(x,y) +1,-v(X, y)
N

Quizl: How do we get that?
Quiz2: When the approx. is good?

So, I,-u+l -v+1 =0



Horn—Schunck method

e So our data term is:
Eaata = Y (L(w,y) - ulw,y) + I,(x.y) - v(a,y) + Lz, y))"

r,y
* And we expect motion should be smooth:

Eregularization = A Z( HVU(I: f_i}) H2 T HVE(I: f_i}') HZ)

T,y

* Can be solved by Euler-Lagragian Equation:

41 _ o L(L@" + 7" + I) pr g L(LE 4+ LT+ L)
r:]:'—l—f*;"-—l—fs ' ﬂ.2_|_4r£_|_15




Variation models

* Essentially design continuous optimization model:

1{'[11‘}1 Eda.ta(u: V) + /\Eregularization(ur V)

* But it will generate over-smooth the result:

Image credit: Liu et al.



Variation models

* Essentially design continuous optimization model:

IEI\P Eda.ta(u: V) + )\Eregularization(u: V)

* So people try different smoothness penalty
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Quiz3: Why some prior works better? Image credit: Sun et al.



Variation models

* Essentially design continuous optimization model:

151&1 Eda.ta,(u: V) T )\Eregulariza‘uion(u: V)

* So people try different smoothness penalty
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Image credit: Sun et al.



Two tricks in Sun et al.

* Coarse-to-fine: handle large displacement
* Median filtering: “de-noise” intermediate result

- — refine +— MF«— warp +— -
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Image credit: Sun et al.



Two tricks in Sun et al.

e Coarse-to-fine
* Median filtering

E=Ens+vy, > (ulz,y) —ul@,y) + v(z,y) - o', y)])
.Y (z' y'eN(z,y))

L1 distance of u,v between neighboring pixels

 Total variation (TV-L1) / Nonlocal TV-L1

* Although convex, minimization is not trivial
 Many PhD students (>100) have suffered from this
e Sun et al. used auxiliary variable for minimization
 Latest best method is called Primal-dual method

C Zach 2007 A Chambolle and T Pock 2011



Anisotropic weight

* Weighting the penalty by color/spatial distance







Quantitative Results

* Flow metric:
e Outlier percentage (> 3 pixel)
* End point error

Method Out-Noc (%) Out-All (%) Avg-Noc Avg-All
(pixel) (pixel)
HS 19.92 28.86 5.8 [1.7
Classic+NL 24.64 33.35 9.0 16.4
HSP 14.77 24.08 4.0 9.0
Classic+NL-FastP 12.42 22.27 2 7.8
Classic+NLP 10.60 20.66 2 7.2
Classic++P 10.16 20.29 2.6 7.1




Summary of Variation Models

e Data term + smoothness term

* MAP Inference for continuous Markov random field
* Some tricks help

* Choosing a better smoothness term

* Further extensions:
* Adopting state-of-the-art optimizers
* Learning high-order smoothness regularization



What we haven’t covered?

e Data term!

Edata — Z(II(I: U) ) ?.l-(;IT? U) N Iy(JT: U) ) "U('J_T? (Ef) + It(I? U))Z
Yy
* Underlying assumption:
e Gaussian observation noise
* Color consistent across images
* None of them are perfect

* Try to warp the image with GT flow and compute the
empirical distribution of the errors

 We also need a robust data term



LDOF (Brox & Malik)

* We might need robust data term:

p(x) = Vx2 + €2
e Features should be more invariant than color:
* HOG, SIFT, DAISY, Census, Walsh-Hamardard

* Maybe track sparse features?
* No need to work on ambiguous regions (smooth, line)
* We track sparse matching and propagate.
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LDOF (Brox & Malik)

* Global Energy:
E(W) — Eﬂ:ﬂlar(wr) T ’T"Egradient.(w) -+ f:]E51nODth(wr)
_|_.':jEmat.t:h (“’T- “’rl) T Edesc (Wl }
* HOG-like / geometric blur

 What's difficult?

* Descriptor matching results are sparse
* The solution space is discrete

* What's proposed?
* Auxiliary descriptor matching variable w_1
* Only compute matching energy for sparse points
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LDOF (Brox & Malik)

* Matching Energy:

Ematen (W) = | o(x)p(x)V (|w(:{) — w1(){)|2) dx. (95)

* Whether there is a feature matching

* Flow should be close to feature matching result

* Optimization:
* Discrete feature matching firstly
e Continuous flow secondly
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Quantitative Results

* Flow metric:

e Average angular error

Warping only (3 = 0) | Regions | HOG GB
Dimetrodon 1.82 1.74 1.85 1.95
Grove?2 2.09 2.25 2.68 2.79
Grove3 5.59 6.55 6.38 6.35
Urban?2 2.28 3.05 2.64 3.15
Urban3 3.99 5.76 5.07 5.19
RubberWhale 3.77 3.84 3.94 4.14
Hydrangea 2.32 2.36 244 | 2.54
Venus 5.19 7.37 6.45 6.52
Average 3.38 4.11 393 | 4.08




Qualitative Results




End-to-end Learning

Convolutional neural
network!

* Classification
* Detection

* Segmentation
* Boundary

* Stereo

* Action

* Depth

* Enhancing



End-to-end Learning

e Classification
* Detection
* Segmentation

* Boundary

@ O rz * Stereo
@ * Action
] * Depth

* Enhancing

* Flow? Not yet



End-to-end Learning

* Two choice:
 Stack them together
* Adding a correlation layer

FlowNetSimple




End-to-end Learning

* Difficulties:
* OQutput is per-pixel prediction (proved to work)
* [t is about matching between images
* Lack of labeled data (critical!)
* Difficult to transfer knowledge from other tasks/dataset

* Solutions:
* Full convolutional architecture + up-sampling layer
* Stack channels / Correlation layer
* Trained on Synthetic data
* Fine-tuned on Sintel, transfer to real-world datasets



Flying datasets

* Dataset configuration
* Flying chair rendered with 3D shapes
e Background: static image with affine transform
* Add some noise
* Rendering out flow result

E



Qualitative Results

Images Ground truth EpicFlow FlowNetS FlowNetC
EPE: 13.62 |

R

EPE: 32.56 EPE: 20.82 EPE: 26.63

A
EPE: 24.98 EPE: 35.33 EPE: 46.68
EPE: 0.33 EPE: 0.89 EPE: 0.71

EPE: 5.45 EPE: 8.11 EPE: 7.12

:




Qualitative Results




Quantitative Results

Method Sintel Clean Sintel Final KITTI Middlebury train ~ Middlebury test | Chairs Time (sec)
train test train test train test | AEE AAE AEE AAE test CPU GPU
EpicFlow [30] 227 412 | 3.57 6.29 | 347 3.8 | 0.31 3.24 0.39 3.55 2.94 16 -
DeepFlow [35] 3.19 538 | 440 T7.21 | 4.58 5.8 | 0.21 3.04 0.42 4.22 3.53 17 -
EPPM |[3] - 6.49 - 8.38 - 9.2 - - 0.33 3.36 - - 0.2
LDOF [6] 419 756 | 6.28 9,12 | 13.73 124 | 0.45 4.97 0.56 4.55 3.47 65 2.5
FlowNetS 450 742 | 545 843 | 8.26 - 1.09 13.28 - - 2.71 - 0.08
FlowNetS+v 3.66 645 | 4.76 7.67 | 6.50 - 0.33 3.87 - - 2.86 - 1.05
FlowNetS+ft (3.66) 6.96 | (4.44) 7.76 | 7.52 9.1 | 0.98 15.20 - - 3.04 - 0.08
FlowNetS+ft+v || (2.97) 6.16 | (4.07) L22 | 6.07 7.6 | 0.32 3.84 0.47 4.58 3.03 - L.05
FlowNetC 431 T7.28 | 58T 8Kl | 9.35 - 1.15 15.64 - - 2.19 - 0.15
FlowNetC+v 3.57 627 | 525 801 | 7.45 - 0.34 3.92 - - 2.61 - 1.12
FlowNetC+ft (3.78) 6.85 | (5.28) &8.51 | 8.79 - 0.93 12.33 - - 2.27 - 0.15
FlowNetC+ft+v || (3.20) 6.08 | (4.83) 7.88 | 7.31 - 0.33 3.81 0.50 4.52 2.67 - 1.12




