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Dimensionality Reduction

We have some data X < RV*P
D may be huge, etc.

We would like to find a new representation c RVXK
where K << D.

® For computational reasons.

® To better understand (e.g., visualize) the data.
® For compression.
[

We will restrict ourselves to linear transformations for
the time being.



Example

® |n this dataset, there are only 3 degrees of freedom:
horizontal and vertical translations, and rotations.

® Yet each image contains 784 pixels, so X will be 784
elements wide.
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Abstract Visualization
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What is a Good
Transformation?

® (Goalis to find good directions u
that preserves “important” aspects of the
data.
e Inalinearsetting: 2z =zlu i
® This will turn out to be the
top-K eigenvalues of the
data covariance.

® Two ways to view this:
1. Find directions of maximum variation >

2. Find projections that
minimize reconstruction error




Principal Component Analysis
(Maximum Variance)
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where the sample mean and covariance are given by:
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Finding u
* We want to maximize  ui Suy

subject to |ui]] =1
(since we are finding a direction)

® Use lagrange multiplier d@ express this as

ui Sup + a1 (1 — ui up)




Finding u-
® Take derivative and setto O

Su1 — 1U1q =0

Su1 =1U1q

® So u1is an eigenvector of S with eigenvalue o1

® |n fact it must be the eigenvector with maximum
eigenvalue, since this minimizes the objective.




Finding u2

maximize us Sus

subject to ||lus|| =1
usup =0
Lagrange form: ugSug + as(1 — 'U/CQF'UQ) — Bugul
0

Finding B: =Suy — sy — Bu; =0
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:>C¥1-0—042-0—ﬁ-1=




Finding u2

maximize us Sus

subject to ||lus|| =1
usup =0 0
Lagrange form: ugSug + as(1 — 'U;CQF’UQ) — ﬁu%lv
0

Finding a,: 3—u2 =Suy — agug =0

— Suo = aoUs

So a, must be the second largest eigevalue of S.




PCA Iin General

® \We can compute the entire PCA solution by just
computing the eigenvectors with the top-k eigenvalues.

® These can be found using the singular value
decomposition of S.




® How do we choose the number of components?
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Mumnber of eigenvectors

Number of eigenvectors

®* Look at the spectrum of covariance, pick K to capture most of the
variation.

® More principled: Bayesian treatment (beyond this course). o




Demo

® Eigenfaces
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Principal Component Analysis
(Minimum Reconstruction Error)

® We can also think of PCA as minimizing the reconstruction
error of the compressed data.

N

mimize = —— 3 ||z — &l
minimize = N Ty — Tp

n=1

* We will omit the details for now, but the key is that we define
some K-dimensional basis such that:

z = Wax + const

® The solution will t_urn out to be the same as the minimum
variance formulation.




Reconstruction

® PCA learns to represent vectors in terms of sums of
basis vectors.

® Forimages, e.g.,

+ a3




PCA for Compression

D=1 D=5 D=10

D=50 D=100 D=200
321x481 image, D is the number of basis vectors used




Relation to Neural Networks

® An autoencoder is a neural network whose outputs are
it's own inputs. The goal is to minimize reconstruction
error.




Autoencoders

Define: z =g(W)
t =g(V2)
| X
_ T a2
Goal: minimize I nz::l ||z — Zn|

If g is linear: mlnlmlze— Z |2n — VW[

n=1

In other words, the optimal solution is PCA.




Autoencoders

® What if g is not linear?

® Then we are basically doing nonlinear PCA.

® Some subtleties (see Bishop) but in general you can
take the above statement as fact.










