CSC2515 Winter 2015
Introduction to Machine Learning

Combining Models

All lecture slides will be available at:
http://www.cs.toronto.edu/~urtasun/courses/CSC2515/CSC2515 Winter15.html

Many of the figures are provided by Chris Bishop
from his textbook: "Pattern Recognition and Machine Learning”



Ensemble methods

Typical application: classification

Ensemble of classifiers is a set of classifiers whose individual
decisions combined in some way to classify new examples

Simplest approach:
1. Generate multiple classifiers
2. Each votes on test instance
3. Take majority as classification

Classifiers different due to different sampling of training data, or
randomized parameters within the classification algorithm

Aim: take simple mediocre algorithm and transform it into a super
classifier without requiring any fancy new algorithm



Ensemble methods: Summary

Differ in training strategy, and combination method

1. Parallel training with different training sets: bagging

2. Sequential training, iteratively re-weighting training
examples so current classifier focuses on hard examples:
boosting

3. Parallel training with objective encouraging division of labor:
mixture of experts

Notes:
* Also known as meta-learning

* Typically applied to weak models, such as decision stumps
(single-node decision trees), or linear classifiers



Variance-bias tradeoff?

Minimize two sets of errors:

1. Variance: error from sensitivity to small fluctuations in the
training set

2. Bias: erroneous assumptions in the model

Variance-bias decomposition is a way of analyzing the
generalization error as a sum of 3 terms: variance, bias and
irreducible error (resulting from the problem itself)



Why do ensemble methods work?

Based on one of two basic observations:

1. Variance reduction: if the training sets are completely
independent, it will always helps to average an ensemble
because this will reduce variance without affecting bias (e.g.,
bagging) -- reduce sensitivity to individual data pts

2. Bias reduction: for simple models, average of models has
much greater capacity than single model (e.g., hyperplane
classifiers, Gaussian densities). Averaging models can reduce
bias substantially by increasing capacity, and control variance
by fitting one component at a time (e.g., boosting)



Ensemble methods: Justification

Ensemble methods more accurate than any individual
members:

« Accurate (better than guessing)
 Diverse (different errors on new examples)

Independent errors: prob kof N classifiers (independent
error rate €) wrong:

N
P(#errrors = k) = ( A )8k(1 —e)V

Probahility

Probability that majority vote
wrong: error under distribution .|
where more than N/2 wrong

L
5 10 15
Number of classifiers in emmor



Ensemble methods: Netflix

Clear demonstration of the power of ensemble methods

Original progress prize winner (BellKor) was ensemble of 107
models!

“Our experience is that most efforts should be concentrated in
deriving substantially different approaches, rather than
refining a simple technique.”

“We strongly believe that the success of an ensemble approach
depends on the ability of its various predictors to expose
different complementing aspects of the data. Experience
shows that this is very different than optimizing the
accuracy of each individual predictor.”



Bootstrap estimation

Repeatedly draw n samples from D

For each set of samples, estimate a statistic

The bootstrap estimate is the mean of the individual estimates
Used to estimate a statistic (parameter) and its variance

Bagging: bootstrap aggregation (Breiman 1994)



Bagging

Simple idea: generate M bootstrap samples from your original
training set. Train on each one to gety,, and average them

1

M
Vo (X) = o 2umat Ym0

For regression: average predictions

For classification: average class probabilities (or take the
majority vote if only hard outputs available)

Bagging approximates the Bayesian posterior mean. The more
bootstraps the better, so use as many as you have time for

Each bootstrap sample is drawn with replacement, so each one
contains some duplicates of certain training points and leaves
out other training points completely



Boosting (AdaBoost): Summary

Also works by manipulating training set, but classifiers trained
sequentially

Each classifier trained given knowledge of the performance of
previously trained classifiers: focus on hard examples

Final classifier: weighted sum of component classifiers



Making weak learners stronger

e Suppose you have a weak learning module (a “base
classifier”) that can always get 0.5+epsilon correct when
given a two-way classification task

— That seems like a weak assumption but beware!

e (Can you apply this learning module many times to get a
strong learner that can get close to zero error rate on the
training data?

— Theorists showed how to do this and it actually led to

an effective new learning procedure (Freund & Shapire,
1996)



Boosting (ADAboost)

First train the base classifier on all the training
data with equal importance weights on each case.

Then re-weight the training data to emphasize the
hard cases and train a second model.

- How do we re-weight the data?
Keep training new models on re-weighted data

Finally, use a weighted committee of all the
models for the test data.

- How do we weight the models in the
committee?



How to train each classifier

input: x, output: y(x)&{l,-1}
target: re{l,—-1},

m

weilght on case n for classifierm: w,

Cost function for classifier m :

J = ﬁw,’f [ym (x,) = tn]= E weighted errors
n=1

1 if error,
O if correct



How to weight each training case for classifier m

J m weighted error
Let Em = m rate of classifier
2
n

1 This is the quality of the

Let a = In — gm ¢ classifier. It is zero if the
m classifier has weighted error
Em rate of 0.5 and infinity if the

classifier is perfect

w'o=w" exp{ a, [ym(xn);étn]}



How to make predictions using a committee of
classifiers

 Weight the binary prediction of each classifier by
the quality of that classifier:

\

[ M
YM(X) = Sign E o ym(x)
= /



An alternative derivation of ADAboost

Just write down the right cost function and optimize
each parameter to minimize it -- stagewise
additive modeling (Friedman et. al. 2000)

N
E = expi — ¢ X <« the exponential loss
nE—l p{ n Jm(Xp) } for classifier m

real-valued prediction

[=m
fm(x) - 2 E 04 yl(x) <+ by committee of
2 /=1 models up tom



Learning classifier m using exponential loss

N
E =N expi-t, f,(x,)}
n=1

l =m [=m—-1

1 1
Jm(X) = 5 4y (X) =5y Yy (X) + 5 > a1y(X)
[=1 [=1

N
1
Erelevant = ECXP{—fn fm—l(xn) _Etn Uy Vm (Xn)}

Ew exp{ lna ym(x)}



Re-writing the part of the exponential loss that
is relevant when fitting classifier m

N
Erelevant = E W;’fln eXp{_tn Tm ym (Xn) }
n=1

wrong unmodifiable

t t

multiplicative constant wrong cases



Input:

AdaBoost algorithm

 Training set examples {x,,t.}, n=1,2,....N; t e {-1,+1}

WeakLearn: learning procedure, produces classifier y(x)

Initialize example weights: w,"(x) = 1/N
For m=1:M

Ym(X) = WeakLearn({x},t,w) — fit classifier to training
data, minimizing welghted error function:

N m
error rate: £ _Enl W'y (x )=t ]

classifier coefficient: =llog{(1_g )/ g}

update data weights: ~ w"*' = w” exp{-a t y (x )}/ Z""

Final model: Z" = zn W eXpi=a,t,y,(X,);

Y™ (x) =sign(y" (x)) = Slgn(zm=1 @, Y, (X))



AdaBoost example
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An impressive example of boosting

e Viola and Jones created a very fast face detector that can be
scanned across a large image to find the faces.

e The base classifier/weak learner just compares the total
intensity in two rectangular pieces of the image.

— There is a neat trick for computing the total intensity in
a rectangle in a few operations.

e So its easy to evaluate a huge number of base classifiers and
they are very fast at runtime.

- The algorithm adds classifiers greedily based on their
quality on the weighted training cases.



AdaBoost in face detection
Famous application of boosting: detecting faces in images
Two twists on standard algorithm

1) Pre-define weak classifiers, so optimization=selection
2) Change loss function for weak learners: false positives less

costly than misses

|
f




AdaBoost face detection results




AdaBoost: Maximizing margin?

Many attempts to explain AdaBoost’ s tendency to not overfit -
even though apparent complexity of classifier grows each
round, test error tends not to go up

margin(x,) =1¢, am v, (X )/ Em_ a,

* Magnitude: strength of agreement of classifiers
* Sign: weight combination produces correct prediction

Bound on generalization error not dependent on number of
rounds
d
o’ )

Pr[y (x,) =t ]=<Pr[margin(x) < 8]+ O(

Depends on minimum margin: other algorithms directly
maximizes this

Appears to produce higher margins distribution yet worse test ,
error



Ensemble learning: Boosting and Bagging

e Experts cooperate to predict output

Y(X) = Y 2.y, (x)
y(x) i
< -

Y (X)

y(x)

25



Mixture of Experts

Gating network encourages specialization (local
experts) instead of cooperation

Y(x) = Y £,(x)y,(x)
)’1(X) i

g, (x)

y(x)

Gating
Network 26




Mixture of Experts: Summary

. Cost function designed to make each expert estimate
desired output independently

. Gating network softmax over experts: stochastic selection
of who is the true expert for given input

. Allow each expert to produce distribution over outputs



Cooperation vs. Specialization

Consider regression problem

To encourage cooperation, can train to reduce discrepancy
between average of predictors with target

1 >
E = (t_M;ym)

This can overfit badly. It makes the model much more
powerful than training each predictor separately.

Leads to odd objective: consider adding models/experts
sequentially - if its estimate for t is too low, and the average
of other models is too high, then model m encouraged to
lower its prediction



Cooperation vs. Specialization

To encourage specialization, train to reduce the average of
each predictor’s discrepancy with target

E = ﬁ;(t—ym)z

use a weighted average: weights are probabilities of picking
that “expert” for the particular training case.

E - %;gmm(r—ym(x»z

Gating output is softmax of z = Ux

g, (X) = exp(z, (X))/ ¥ exp(z,, (X))



Derivatives of simple cost function

e Look at derivatives to see what cost function will do

E - ﬁ;mx)(r—ym(x»z

e For gating network, increase weight on expert when its
error less than average error of experts

% _ %gmu)(r—ym(x»
£ 1

7 Mgm(x)[(t - ¥.(X))" - E]



Mixture of Experts: Final cost function

e (Can improve cost function by allowing each expert to
produce not just single value estimate, but distribution

e Resultis a mixture model

p(y| MOE) = ¥ g, (x)N(y1y,(x),%)

—log p(t IMOE) = —lonézgm(x)exp(— lt-y (X) 1> /2)

e (Gradient: Error weighted by posterior probability of the
expert

9E _ _, g (x)exp(=llt—y (x)IF /2)
Jy Y g, (Xexp(=lr-y, (X)IF /2)

(-, (X))



Mixture of Experts: Summary

1. Cost function designed to make
each expert estimate desired

_ docis
output independently bgﬁfﬁy of decision
expert 1 boundary of

gating net

2. Gating network softmax over
experts: stochastic selection of
who is the true expert for given

. t decision
mpu boundary of
expert 2
3. Allow each expert to produce use expert 2 use expert 1

distribution over outputs on this side on this side




Ensemble methods: Summary

Differ in training strategy, and combination method
* Parallel training with different training sets

1. Bagging (bootstrap aggregation) - train separate models
on overlapping training sets, average their predictions

2. Cross-validated committees — disjoint subsets of training
sets
* Sequential training, iteratively re-weighting training
examples so current classifier focuses on hard examples:
boosting

* Parallel training with objective encouraging division of labor:
mixture of experts

Notes:

* Differ in: training strategy; selection of examples; weighting
of components in final classifier



What are the base classifiers?

Popular choices of base classifier for boosting and
other ensemble methods:

— Linear classifiers
— Decision trees

34



Decision Trees: Non-linear regression or
classification with very little computation

e The ideais to divide up the input space into a
disjoint set of regions and to use a very simple
estimator of the output for each region

— For regression, the predicted output is just the
mean of the training data in that region.

e But we could fit a linear function in each region

— For classification the predicted class is just the
most frequent class in the training data in that
region.

e We could estimate class probabilities by the
frequencies in the training data in that region.

35



A very fast way to decide if a datapoint lies

We make the decision
boundaries orthogonal to
one axis of the space and
parallel to all the other Oa
axes.

— This is easy to
illustrate in a 2-D
space

Then we can locate the
region that a datapoint €5
lies in using a number of
very simple tests that is
logarithmic in the

number of regions.

In a region




An axis-aligned decision tree

37



Decision Trees

* Internal nodes test attributes.
* Branching is determined by attribute value.
* Leaf nodes are outputs (class assignments).

In general, a decision tree can represent any
binary function.

38
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Example: Classifying Oranges and Lemons
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Decision Trees

[ width > 6.5cm? ]

Yes No

[ height>9.5cm?] [ height > 6.0cm? ]
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Decision Tree: Decision Boundary

We could view the “decision boundary” as being
the composition of several simple boundaries.

101
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Decision Trees: QOutline

* Choose a category in which to descend at each level.
* Condition on earlier (higher) choices.

* Generally, restrict only one dimension at a time.

* Declare an output value when you get to the bottom.

In the orange/lemon example, we only split each
dimension once, but that is not required.

How do you construct a useful decision tree?

42



Constructing Decision Trees

Many variations (CART, ID3, C4.5) but share basic approach:
recursively partition space by greedily picking the best test from a
fixed set of possible tests at each step

At each level, one must choose:
1) Which variable to split.
2) Possibly where to split it.

We need to decide on the set of possible tests
Consider splits at every coordinate of every point in the training data
(i.e. all axis-aligned hyper-planes that touch datapoints)

We need a measure of how good a test is (" purity”)
Regression: resulting sum-squared error over all partitions.
For classification it is a bit more complicated.

We can use the mutual information to automate the process, and
determine these selections. 43



Entropy of a Joint Distribution

Not
Cloudy Cloudy
Raining | 24/100 1/100
R’\.’°.* 25/100 | 50/100
Glnlng

H(X,Y) = =) ) p(z,y)log,p(z,y)
zeX yey

24 24 1 1 25 25 50 50

2% g, 22— 22 op, 22— 2 e, 2
100 %2700 100 22100 100 82100 ~ 100 “©2 100

1.56 bits

Q



Specific Conditional Entropy

Not
Cloudy Cloudy
Raining | 24/100 1/100
R’\.’°." 25/100 | 50/100
Glnlng

What is the entropy of cloudiness, given that it is raining?

HX|Y=y) = —) plx|y)logyz|y)
rzeX
24 24 1 1

~ 95 1082 5 — 55 1082 o
0.24 bits

Q



(Non-Specific) Conditional Entropy

Not
Cloudy Cloudy
Raining | 24/100 1/100
R'\."’.* 25/100 | 50/100
al nlng

The expected conditional entropy:

HX|Y) = Y p@HX|Y =y)
yeY

= =) p(y) ) plz|y)logy(z|y)

yey zeX



(Non-Specific) Conditional Entropy

Not
Cloudy Cloudy
Raining | 24/100 1/100
Not | 55,100 | 50/100
Ramlng

What is the entropy of cloudiness, given the knowledge
of whether or not it is raining?

HX|Y) = Y py)HX|Y =y)
yeyY
1 L 3 -
= ZH(clouds | is raining) + ZH(cIouds | not raining)

0.75 bits

Q



Information Gain

*Treat frequencies of classes in each partition as
probabilities and compute the entropy.
*Choose attribute based on how much information we

would gain from the decision
Not

Cloudy Cloudy
Raining | 24/100 | 1/100

R'\."’.* 25/100 | 50/100
Glnlng

How much information about cloudiness do we get
by discovering whether it is raining?
IGX|Y) = HX)—H(X|Y)
~ 0.25 bits

Also called information gain in X due to Y. *



When should we stop adding nodes?

 Sometimes, the error stays constant for a while as
nodes are added and then it falls

— So we cannot stop adding nodes as soon as the
error stops falling.

e [ttypically works best to fit a tree that is too large
and then prune back the least useful nodes to

balance complexity against error
- We could use a validation set to do the pruning.

49



Advantages & disadvantages of decision trees

e They are easy to fit, easy to use, and easy to interpret as a
fixed sequence of simple tests.

e They are non-linear, so they work much better than linear
models for highly non-linear functions.

e They typically generalize less well than non-linear models
that use adaptive basis functions, but its easy to improve
them by averaging the predictions of many trees

50



Random/Decision Forests

e Definition: Ensemble of decision trees

e Algorithm:
— Divide training examples into multiple training sets
(bagging)
— Train a decision tree on each set (can randomly
select subset of variables to consider)

— Aggregate the predictions of each tree to make
classification decision (e.g., can choose mode vote)

51



Toy Forest Classification Demo

6 classes in a 2 dimensional feature space.
Split functions are lines in this space.

Number of Categories (2- 20)

U

[ Generate New Examples

]

Max Depth (2-10)
U
Number of Trees (1-100)

U

[ Leam Forest

@ Tree Classffication
U

() Forest Classffication




Toy Forest Classification Demo

Number of Categories (2- 20)

U

[ Generate New Examples ]

Max Depth (2-10)
U
Number of Trees (1-100)

U

[ Leam Forest

@ Tree Classffication

Forest Classffication

With a depth 2 tree, you cannot separate all six classes.



Toy Forest Classification Demo

a-) Demo . L=nLc

B Number of Categories (2- 20)

U

[ Generate New Examples ]

Max Depth (2-10)

U

Number of Trees (1-100)

U

[ Leam Forest

@ Tree Classffication

U

() Forest Classffication

With a depth 3 tree, you are doing better, but still cannot separate all six classes.




Toy Forest Classification Demo

Number of Categories (2- 20)

U

[ Generate New Examples ]

Max Depth (2-10)
U
Number of Trees (1-100)

0

[ Leam Forest ]

@ Tree Classffication

U

(©) Forest Classffication

With a depth 4 tree, you now have at least as many leaf nodes as classes,
and so are able to classify most examples correctly.



Toy Forest Classification Demo

Nombes of Categores (2-20)
0

Generate New Examples
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Forest Classifcation
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Forest Classification
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Different trees within a forest can give rise to very different decision boundaries,
none of which is particularly good on its own.



Toy Forest Classification Demo

EED S  ae  da AT

Number of Categories (2- 20)

U

[ Generate New Examples l

Max Depth (2-10)
U
Number of Trees (1-100)

U

Leam Forest l

Tree Classffication

@ Forest Classffication

But averaging together many trees in a forest can result in decision boundaries
that look very sensible, and are even quite close to the max margin classifier.
(Shading represents entropy — darker is higher entropy).



