CSC2515 Fall 2015
Introduction to Machine Learning

Lecture 7: Continuous Latent
Variable Models

All lecture slides will be available as .pdf on the course website:

http://www.cs.toronto.edu/~urtasun/courses/CSC2515/
CS5C2515 Winterl5.html

Many of the figures are provided by Chris Bishop
from his textbook: “Pattern Recognition and Machine Learning"



Mixture models and Distributed Representations

* One problem with mixture models: each observation
assumed to come from one of K prototypes

» Can think of as graphical model with K binary hidden
variables

But constraint that only one active (responsibilities sum
to one) limits representational power

Alternative: Distributed representation, with several
latent variables relevant to each observation

» Can be several binary/discrete variables, or continuous



Example: continuous underlying variables

- What are the intrinsic latent dimensions in these two
datasets?

segegeeese

How can we find these dimensions from the data?




Principal Components Analysis

PCA: most popular instance of second main class of
unsupervised learning methods, projection
methods, aka dimensionality-reduction methods

Aim: find small number of “directions” in input
space that explain correlations in input data; re-
represent data by projecting along those
directions

Data is assumed to be continuous: linear
relationship between data and learned
representation



PCA: Common tool

» Handles high-dimensional data - if data has thousands of
dimensions, can be difficult for classifier to deal with

» Often can be described by much lower dimensional
representation

+ Useful for

- Visualization

- Preprocessing

- Modeling - prior for new data
- Compression



PCA: Intuition

Assume start with N data vectors,
of dimensionality D

Aim to reduce dimensionality -
linearly project (multiply by matrix)
to much lower dimensional space,

M <« D

Search for orthogonal directions in
space w/ highest variance - project
data onto this subspace

Structure of data vectors is
encoded in sample covariance




Finding principal components

To find the principal component directions, we
center the data (subtract the sample mean from
each variable)

Calculate the empirical covariance matrix:
1 ud — N7
C=— Y (X, -x)(x,-X
NEI( ;= X)(X, = X)

Find the M eigenveé‘rors with largest eigenvalues
of C - these are the principal components

Assemble these eigenvectors into a DxM matrix U

We can now express D-dimensional vectors x by
projecting them to M-dimensional z: z = UT x



Standard PCA

Algorithm: to find M components underlying D-
dimensional data

- select the top M eigenvectors of C (data covariance matrix):
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- U: orthogonal, columns = unit-length eigenvectors (UTU =UUT™=1)

- A eigenvalue = variance in direction of eigenvector
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Applying PCA to faces
* Run PCA on 2429 19x19 grayscale images (CBCL data)

»+ Compresses the data: can get good reconstructions with
only 3 components

FediSsint Mes

di T ot b - L{': EH

+ PCA for pre-processing: can apply classifier to latent
representation -- PPCA w/ 3 components obtains 79%

accuracy on face/non-face discrimination in test data vs.
76.8% for m.o.G with 84 states

» Can also be good for visualization



Applying PCA to faces: Learned basis
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Applying PCA to digits

nstructed with 2 bas reconstructed with 10 bases
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PCA: Details & Derivations

PCA can be viewed as finding a low-dimensional
hyperplane on which to project the data

Ideally this projection will preserve information in the
data while reducing dimensionality

Idea: first basis vector of the hyperplane points in the
direction of maximum variance of data

The second basis vector points in the direction of
maximum variance given that it is orthogonal to first

Each subsequent basis vector, or principal
component, is the direction of maximum
variance that is orthogonal to all previous
principal components



Standard PCA: Variance Maximization

Start with one dimension
Aim: maximize projected variance: find w; that maximizes
| -
var(z,) = — E (W, x. -w, x)° =w, Cw,
N =1 B N
where C is the data covariance, sample mean x = Exi /N

Constrain | |w,||=1, via Lagrange multipliers - find that
optimal w; = u;, the first eigenvector of C (eigenvector
with maximal eigenvalue), and w;"Cw; = A,

Can extend to multiple dimensions - maximize |Cov(Z)|, find
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Standard PCA: Extending to higher dimensions

» Can consider forming components sequentially: find
variance-maximizing directions orthogonal to previous
ohes

Equivalent to Gaussian approximation to data
* Think of Gaussian as football (hyperellipsoid)

- Mean is center of football
- Eigenvectors of covariance matrix are axes of football
- Eigenvalues are lengths of axes

* PCA can be thought of as fitting the football to the
data: maximize volume of data projections in M-
dimensional subspace

Alternative formulation: minimize error, equivalent to
minimizing average distance from datapoint to its
reconstruction from its projection in subspace



Standard PCA: Error minimization

Data points represented by projection onto M-dimensional
subspace, plus some distortion:

Objective: minimize distortion w.r.t. U, (reconstruction
error of X,)
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The objective is minimized when the D-M components are
eigenvectors of S with Jowest eigenvalues ! > same result



Return to Graphical Model View

- Last time we discussed Hidden cause

latent variable models

- The latent variables in

mixture models are
multinomials (referring
to cluster identity).

- Today we've been

considering continuous
latent variables Visible
effect



Dimensionality Reduction vs. Clustering

Training continuous latent variable models often called
dimensionality reduction, since there are typically many
fewer latent dimensions

Examples: Principal Components Analysis, Factor
Analysis, Independent Components Analysis

» Continuous causes often more efficient at representing
information than discrete

For example, if there are two factors, with about 256
settings each, we can describe the latent causes with
two 8-bit numbers

+ If we try to cluster the data, we need 216 ~= 10° numbers



Generative View

* Each data example generated by first selecting a point
from a distribution in the latent space, then generating a
point from the conditional distribution in the input space

- Mixture models have multinomial latents

For continuous latents, and inputs, now looking at simple
models: Gaussian distributions in both latent and data
space, linear relationship betwixt

» This view underlies Probabilistic PCA, Factor Analysis



p(z) = N(z|0,1)

Probabilistic PCA

» Probabilistic, generative view of data
- Assumptions:
- underlying latent variable has a Gaussian distribution

- linear relationship between latent and observed variables
- isotropic Gaussian noise in observed dimensions

p(x|z) = .,"\""(X‘WZ-{—,LL,O2I)

X =Wz + i+




Probabilistic PCA: Marginal data density
Columns of W are the principal components, o 1s sensor noise
Product of Gaussians 1s Gaussian: the joint p(z.x), the marginal
data distribution p(x) and the posterior p(z|x) are also Gaussian
MarOinal data density (predictive distribution):

= [ p(z)p(x|z)dz = N (x|p, WW? + 1)
Can derive by completing square in exponent, or by just
computing mean and covariance given that it 1s Gaussian:

Flx] = Elu+Wz+¢€] =pu+ WE|z] + Ele]
= u+WO0+0=pu
C = Cov[x] = E[(z— p)(z— p)']

El(p+Wz+e—p)(p+Wz+e—p)!]
E[(Wz+ e)(Wz + ¢)!]
WW! + 521



Probabilistic PCA: Joint distribution

Joint density for PPCA (x 1s D-dim., z 1s M-dim):

Z Z 0 I/ W'
])(X):N(X | u 9 WWWT‘|‘U—)I)

— where cross-covariance terms from: C

Covl[z,x] = E[(z— 0)(x— )T = Blz(u + Wz + ¢ — )7

Elz(Wz + )11 = W’

Note that evaluating predictive distribution involves inverting C:
reduce O(D?) to O(M?) by applying matrix inversion lemma:

Cl=0"1-0>WWI!W +7%I)"'W!



Probabilistic PCA: Posterior distribution

» Inference in PPCA produces posterior distribution over latent z
* Derive by applying Gaussian conditioning formulas (see 2.3 in

book) to joint distribution S
) X1y ar( 1l ] ~11 ~12
X Xo| ' p2f " [221 222
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\
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p(zlx) = N(z|m,V) Vi =11 — Z1955, Lo
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* Mean of inferred z 1s projection of centered x — linear operation
« Posterior variance does not depend on the mnput x at all!



Standard PCA: Zero-noise limit of PPCA

Can derive standard PCA as limit of Probabilistic PCA (PPCA) as
o’ — 0.

ML parameters W™ are the same

Inference 1s easier: orthogonal projection
lim,2_.0 WH(WW?! + o2W1)~1 = (WIW)~tw!

Posterior covariance 1s zero



Probabilistic PCA: Constrained covariance

Marginal density for PPCA (x 1s D-dim., z 1s M-dim):
p(x|0) = N (x|, WW1 + 521)

— where 0 =W, u, o

Effective covariance 1s low-rank outer product of two long skinny
matrices plus a constant diagonal matrix

WT
Cov[x] | — |W —+ 21

So PPCA 1s just a constrained Gaussian model:
— Standard Gaussian has D + D(D+1)/2 effective parameters
— Diagonal-covariance Gaussian has D+D, but cannot capture correlations
— PPCA: DM + 1 — M(M-1)/2, can represent M most significant correlations



Probabilistic PCA: Maximizing likelihood

L(()’ X) = l|og p(X|9) — Z log P(Xn.|9)
1
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Fit parameters (0 = W, u, o) to max likelihood: make model
covariance match observed covariance; distance 1s trace of ratio
Sufficient statistics: mean ;= (1/N)2. x, and sample covariance S
Can solve for ML params directly: A% column of W is the M/®
largest eigenvalue of S times the associated eigenvector; 02 1s the
sum of all eigenvalues less than M™ one



Probabilistic PCA: EM

Rather than solving directly, can apply EM
Need complete-data log likelihood

log p(X, Z|j, W,0%) = > [log p(x,|2,) + log p(z,,)]
E step: compute expectation of complete log likelihood with

respect to posterior of latent variables z, using current parameters —
can derive E[z,] and E[z,z '] from posterior p(z|x)

n le
M step: maximize with respect to parameters W and o>

[terative solution, updating parameters given current expectations,
expectations give current parameters

Nice property — avoids direct O(ND?) construction of covariance
matrix, mstead imnvolves sums over data cases: O(NDM); can be
implemented online, without storing data



Probabilistic PCA: Why bother?

+ Seems like a lot of formulas, algebra to get to similar
model to standard PCA, but...

* Leads to understanding of underlying data model,
assumptions (e.g., vs. standard Gaussian, other
constrained forms)

Derive EM version of inference/learning: more efficient

» Can understand other models as generalizations,
modifications

* More readily extend to mixtures of PPCA models
* Principled method of handling missing values in data
» Can generate samples from data distribution



Factor Analysis

Can be viewed as generalization of PPCA

Historical aside — controversial method, based on attempts to
interpret factors: e.g., analysis of IQ data identified factors related
to race
Assumptions:

— underlying latent variable has a Gaussian distribution

— linear relationship between latent and observed variables

— diagonal Gaussian noise 1n data dimensions
p(z) N (2|0, 1)
p(x|z) N (x|Wz + p, ¥)

W: factor loading matrix (D x M)

¥ : data covariance (diagonal, or axis-aligned; vs. PCA’s spherical)



Factor Analysis: Distributions

As in PPCA, the joint p(z,x), the marginal data distribution p(x)
and the posterior p(z|x) are also Gaussian

Marginal data density (predictive distribution):

= [ p(z)p(x|z)dz = N(x|p, WW! + &)
Joint density:

Azl o lz] [0 [ W'
Pl [x]) el [x} | Lu} | {W WW ' + \If])

Posterior, derived via Gaussian conditioning

p(z|x) = N(z/m,V)
m = W/ (WWI 4+ @) 1(x - p)
V = I-WIWww! + o) 1w



Factor Analysis: Optimization

* Parameters are coupled, making it impossible to solve for
ML parameters directly, unlike PCA

* Must use EM, or other nonlinear optimization

- E step: compute posterior p(z|x) - use matrix inversion
to convert D x D matrix inversions to M x M

M step: take derivatives of expected complete log
likelihood with respect to parameters



Factor Analysis vs. PCA: Rotations

In PPCA, the data can be rotated without changing anything:
multiply data by matrix Q, obtain same fit to data

po<— Qu
W +— QW
vV «— v

But the scale 1s important

PCA looks for directions of large variance, so 1t will grab large
noise directions




Factor Analysis vs. PCA: Scale

In FA, the data can be re-scaled without changing anything
Multiply x; by a;: i < Ol

\Ui < OziQ\UZ’

But rotation in data space 1s important

sssss




Factor Analysis : Identifiability

 Factors in FA are non-identifiable: not guaranteed to
find same set of parameters - not just local minimum
but invariance

- Rotate W by any unitary Q and model stays the same -
W only appears in model as outer product WWT

* Replace W with WQ: (WQ)(WQ)"'=W(Q QT) WT =
wwT

* S0 no single best setting of parameters

- Degeneracy makes unique interpretation of learned
factors impossible



Independent Components Analysis (ICA)

ICA is another continuous latent variable model, but it
has ab/ron-éaussian and factorized prior on the latent
variables

Good in situations where most of the factors are small
most of the time, do not interact with each other

Example: mixtures of speech signals
/.:;;:1Ziif;.~ :,.,j!' ‘t‘w-t’!‘,} ’ FWW,” mw* T
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» Learning problem same as before: find weights from
factors to observations, infer the unknown factor
values for given input

- ICA: factors are called "sources”, learning is "unmixing”
g g



|CA Intuition

Since latent variables assumed to be independent, trying to find
limear transformation of data that recovers independent causes
Avoid degeneracies 1n Gaussian latent variable models: assume
non-Gaussian prior distribution for latents (sources)

Often we use heavy-tailed source priors, e.g.,

p(z) = mcosh(z;) — m(exp(z;)+exp(—z;))

Learned basis vectors




ICA Details

« Simplest form of ICA has as many outputs as sources (square)
and no sensor noise on the outputs:

p(z) = |]p(z)
k
Vz

X

e Leaming in this case can be done with gradient descent (plus
some “‘covariant” tricks to make updates faster and more stable)

o Ifkeep V square, and assume 1sotropic Gaussian noise on the
outputs, there 1s a ssmple EM algorithm

* Much more complex cases have been studied also: non-square,
time delays, ete.



Summary of Latent Factor Methods

Aim to find low-dimensional subspace that captures
essential properties of data

Assumes that even though data is high-dimensional,
there are some small number of continuous underlyin
(latent) factors, whose variability accounts for variations
in observations

Example: latent factors underlying images are lighting,
object identities, pose, efc.

Different methods vary in terms of their assumptions
about these factors, and how the observations relate to
the factors



