CSC2515 Winter 2015
Introduction to Machine Learning

Lecture 5: Clustering, mixture
models, and EM

All lecture slides will be available as .pdf on the course website:

http://www.cs.toronto.edu/~urtasun/courses/CSC2515/
CSC2515_Winter15.html

Overview

Clustering with K-means, and a proof of
convergence

Clustering with K-medians
Clustering with a mixture of Gaussians

The EM algorithm, and a proof of convergence
Variational inference

Unsupervised Learning

Supervised learning algorithms have a clear goal: produce
desired outputs for given inputs

Goal of unsupervised learning algorithms (no explicit feedback
whether outputs of system are correct) less clear:

- Reduce dimensionality
— Find clusters

- Model data density

— Find hidden causes

Key utility

— Compress data

- Detect outliers

- Facilitate other learning

Major types

Primary problems, approaches in unsupervised learning fall into
three types:

1. Dimensionality reduction: represent each input case using a
small number of variables (e.g., principal components
analysis, factor analysis, independent components analysis)

2. Clustering: represent each input case using a prototype
example (e.g., k-means, mixture models)

3. Density estimation: estimating the probability distribution
over the data space

Clustering

e Grouping N examples into K clusters one
of canonical problems in unsupervised
learning

e Motivations: prediction; lossy
compression; outlier detection

e We assume that the data was generated
from a number of different classes. The
aim is to cluster data from the same class:-
together.

— How many classes?

0.6 T

— Why not put each datapoint into a separate
class?

0.4 T+

« What is the objective function that is

0.2 T

optimized by sensible clusterings?

The K-means algorithm

Assume the data lives in a Euclidean
space.

Assume we want K classes.

Initialization: randomly located
cluster centers

The algorithm alternates between
two steps:

Assignment step: Assign each
datapoint to the closest cluster.

Refitting step: Move each cluster
center to the center of gravity of the
data assigned to it.

. Assignments

./O
o\/.
O/. \o
o Refitted
°o * means
o . °0

K-means algorithm

[nitialization: Set K means {m,} to random values
Assignment: Each datapoint n assigned to nearest mean

k"™ =argmin, {d(m_,x")}
responsibilities:

rk(n) =1<:>k(n) =k

Update: Model parameters, means, are adjusted to match
sample means of datapoints they are responsible for:

(n) ¢ (1)
E X
n
(n)
n

Repeat assignment and update steps until assignments do not
change

m, =

Questions about K-means

e Why does update set m, to mean of assigned
points?

e Where does distance d come from?

e What if we used a different distance measure?
e How can we choose best distance?

e How to choose K?

e How can we choose between alternative
clusterings?

e Will it converge?

Hard cases - unequal spreads, non-circular spreads,
inbetween points

Why K-means converges

e Whenever an assignment is changed, the sum
squared distances of datapoints from their
assigned cluster centers is reduced.

e Whenever a cluster center is moved the sum

squared distances of the datapoints from their
currently assigned cluster centers is reduced.

o Test for convergence: If the assighments do not
change in the assighment step, we have converged
(to at least a local minimum).

K-means: Details

e Objective: minimize sum squared distance of
datapoints to their assigned cluster centers

E({m},{r}) =Y yr"

S.t.Erk(”) =1,VYn, " €{0,1},Vk,n
X

2
m, — x""

e Optimization method is a form of coordinate
descent (“block coordinate descent”)

- Fix centers, optimize assignments (choose
cluster whose mean is closest)

- Fix assignments, optimize means (average of
assigned datapoints)

Local minima

e There is nothing to
prevent k-means getting A bad local optimum

stuck at local minima.

e We could try many
random starting points «Oe

e We could try non-local

split-and-merge moves:
Simultaneously merge two
nearby clusters and split a
big cluster into two.

genes

Application of K-
Means Clustering

yeast microarray data

T

9.5

time

11.5

13.5 155

18.5 20.5

K-Means Clustering of Profiles

K-medioids

e K-Means: Choose number of clusters K:
algorithm’s primary aim is to strategically position
these K means

e Alternative: allow each datapoint to potentially act
as a cluster representative; algorithm assigns each
point to one of these representatives (exemplars)

K-medioids algorithm

Initialization: Set random set K of datapoints as medioids
Assignment: Each datapoint c assigned to nearest medioid
() : () "
kK =argmin, {d(x,,x")} =]k =k

Update: For each medioid kK, for each datapoint ¢, swap kand ¢
and compute total cost]

Select configuration with lowest cost

J{X}Ar}) = EE red(x',x,)

Repeat assignment and update steps until a551gnments do not
change

K-medioids vs. K-means

Both partition data into K partitions

Both can utilize various distance functions, but K-
medioids can pre-compute pairwise distances

K-medioids chooses datapoints as centers
(medioids/exemplars), while K-means allows the
means to be arbitrary locations = discrete vs.
continuous optimization

K-medioids more robust to noise and outliers

Soft k-means

Instead of making hard assignments of datapoints to
clusters, we can make soft assignments. One cluster
may have a responsibility of .7 for a datapoint and
another may have a responsibility of .3.

— Allows a cluster to use more information about the
data in the refitting step.

- What happens to our convergence guarantee?
- How do we decide on the soft assignments?

Soft K-means algorithm

[nitialization: Set K means {m,} to random values

Assignment: Each datapoint n given soft ‘degree of assignment’ to
each cluster mean k, based on responsibilities

() _ exp[-Bd(m,,x")]
¢ Ek'exp[—/}d(mk.,x(”))]

Update: Model parameters, means, are adjusted to match sample
means of datapoints they are responsible for:

(n) (1)
E r,X
n
(n)
n

Repeat assignment and update steps until assignments do not
change

Questions about soft K-means

e How to set 3?7
e What about problems with elongated clusters?

e (lusters with unequal weight and width

Latent variable models

e Adopt a different view of clustering, in terms of a model with
latent variables: variables that are always unobserved

e We may want to intentionally introduce latent variables to
model complex dependencies between variables without
looking at dependencies between them directly -- this can
actually simplify the model

e Form of divide-and-conquer: use simple parts to build complex
models (e.g., multimodal densities, or piecewise-linear
regression)

Mixture models

Most common example is a mixture model:
most basic form of latent variable model, with
single discrete latent variable
. Hidden cause

We have defined the hidden cause to be
discrete: a multinomial random variable
And the observation is Gaussian

The model allows for other distributions

Example: Bernoulli observations

Another example: Continuous hidden (latent)

variable - see next lecture Q Visible

effect

But these are only the simplest models: can add
many hidden & visible nodes, layers

Learning is harder with latent variables

e In fully observed settings, probability model is a product, so
the log likelihood is a sum, terms decouple:

(6; D)=y log p(x“y*|0)

= Ylogp(x“|6,)+ Y log p(y* |x°,6,)

o With latent variables, probability contains a sum so the log-
likelihood has all parameters coupled together

0(0; D) = Elogzp(xc,ZW)
= 2 long(z 16,)p(x" |2,6))

Direct learning in mixtures of Gaussians

We can treat likelihood as an objective function and try to
optimize it as a function of 6 by taking gradients (as we did
before, for example in neural networks)

If you work thru the gradients, you'll find that

8(((9) o7 afk(ﬁ) o r dlog p, (x]6,)
Z kT Z kT Y

In a mixture of Gaussians for example:

al(0)
oy

To use optimization methods (e.g., conjugate gradient), have
to ensure that parameters respect constraints -
reparametrize in terms of unconstrained values

—Zak'”k(x—uk)/@f

EM: An alternative learning approach

e Use the posterior weightings to softly label the data

e Then solve for parameters given these current weightings, and
recalculate posteriors (weights) given new parameters

e Expectation-Maximization is a form of bound optimization, as
opposed to gradient descent

o With respect to latent variables, guessing their values makes the
learning fully-observed

(0;D)=Ylog ¥ p(z|6.)p(x"|2,0,)
U6;D)= Y logp(x“z|6) =y log p(z|0,) +log p(x°|z,6,)

e Note: EM is not a cost function, such as cross-entropy; and EM is
not a model, such as a mixture-of-Gaussians

o With latent variables, probability contains a sum so the log-
likelihood has all parameters coupled together

Graphical model view of mixture models

Each node is a random variable

Blue node: observed variable (data,
aka visibles)

Red node: hidden variable [cluster
assignment]

The model defines a probability
distribution over all the nodes

The model generates data by
picking state for hidden node based
on prior

The distribution over leaf node
(data) is defined by its parent(s).

Y

Hidden cause

Visible
effect

The mixture of Gaussians generative model

e First pick one of the k Gaussians with a probability that is
called its “mixing proportion”.

e Then generate a random point from the chosen Gaussian.

e The probability of generating the exact data we observed is
zero, but we can still try to maximize the probability

density.
— Adjust the means of the Gaussians

— Adjust the variances of the Gaussians on each
dimension.

— Adjust the mixing proportions of the Gaussians.

Fitting a mixture of Gaussians

Optimization uses the
Expectation Maximization
algorithm, which alternates
between two steps:

E-step: Compute the posterior
probability that each Gaussian
generates each datapoint.

M-step: Assuming that the data
really was generated this way,
change the parameters of each
Gaussian to maximize the
probability that it would
generate the data it is currently
responsible for.

95

o
05

.05

.95

The E-step: Computing responsibilities

Prior for
Posterior for Gaussian i
e Inorder to adjust the Gaussian | |
parameters, we must | | | Bayes
first solve the inference 1x©) = p()p(x' i) = theorem
problem: Which pUlIx™) = p(x')

Gaussian generated each
datapoint?

— We cannot be sure, so
it's a distribution
over all possibilities.

Use Bayes theorem to

get posterior
probabilities

p(x‘)= p(Hp(x'’ 1)

p(i)=m, <= Mixing proportion

(c) 2
I =, |

2
i,d

d=D
1 20
p(x' 1) = e
1;1[N27mo,,

|

Product over all data dimensions

The M-step: Computing new mixing proportions

e Each Gaussian gets a
certain amount of
posterior probability for
each datapoint.

e The optimal mixing
proportion to use (given
these posterior
probabilities) is just the
fraction of the data that
the Gaussian gets
responsibility for.

Posterior for
Gaussian i

Data for
training

\ case C

c=N l

D, PIx?)

N
Number of

training cases

More M-step: Computing the new means

e We just take the center-of
gravity of the data that the
Gaussian is responsible

for. e
i1x)x
— Just like in K-means, . Zp()
except the data is W= ——
weighted by the M pi1x)

posterior probability of
the Gaussian.

— Guaranteed to lie in the
convex hull of the data

e Could be big initial jump

More M-step: Computing the new variances

e We fit the variance of each Gaussian, i, on each
dimension, d, to the posterior-weighted data

— Its more complicated if we use a full-covariance
Gaussian that is not aligned with the axes.

E p(i |X(C)) leff) —MZZW I&
2
O, = <
" Ep(ilx(c))

C

Visualizing a Mixture o7

0.65

of Gaussians

0.551

0.5}
075k 0.45f
0.7+ (f\ 0.4
0.65 , 0.35
06" 0.3f
055 @ 0.251
05F |\
0.4+

0.35

0.3

0.25 j

Mixture of Gaussians vs. K-means

EM for mixtures of Gaussians is just like a soft version of K-
means, with fixed priors and covariance

Instead of hard assignments in the E-step, we do soft
assignments based on the softmax of the squared distance
from each point to each cluster.

Each center moved by weighted means of the data, with
weights given by soft assignments

In K-means, weights are 0 or 1

How do we know that the updates improve things?

e Updating each Gaussian definitely improves the
probability of generating the data if we generate it
from the same Gaussians after the parameter
updates.

— But we know that the posterior will change
after updating the parameters.

e A good way to show that this is OK is to show that
there is a single function that is improved by both
the E-step and the M-step.

— The function we need is called Free Energy.

Deriving variational free energy

e We can derive variational free energy as the
objective function that is minimized by both steps

of the Expectation and Maximization algorithm
(EM).

Why EM converges

e Free energy F is a cost function that is reduced by both the E-
step and the M-step.

Cost =F = expected energy - entropy

e The expected energy term measures how difficult it is to
generate each datapoint from the Gaussians it is assigned to. It

would be happiest assigning each datapoint to the Gaussian
that generates it most easily (as in K-means).

e The entropy term encourages “soft” assignments. It would be
happiest spreading the assignment probabilities for each
datapoint equally between all the Gaussians.

The expected energy of a datapoint

e The expected energy of datapoint c is the average negative
log probability of generating the datapoint

- The average is taken using the probabilities of assigning
the datapoint to each Gaussian.

— Can use any probabilities we like - use some
distribution q (more on this soon)

probability of assigning parameters of Gaussian i

cto GaLIssian i / X /

E Eq(i | x')) (—log m,—log p(x'“ | Ml.,af))

[|

Location of
data- :
boint Gaussian datapoint ¢

The entropy term

e This term wants the assighment probabilities to be
as uniform as possible (max. entropy)

o [tfights the expected energy term.

entropy = —2 Eq(ilx(c))logq(ilx(c))

I

log probabilities are
always negative

The E-step chooses assignment probabilities that
minimize F (with parameters of Gaussians fixed)

e How do we find assignment probabilities for a datapoint
that minimize the cost and sum to 17

e The optimal solution to the trade-off between expected
energy and entropy is to make the probabilities be
proportional to the exponentiated negative energies:

energy of assigning ctoi = —logm, —log p(x'“ 1 u,,07)
optimal value of g(i|x'”) =« exp(—energy(c,i)) x m p(x'“ 1i)

e So using the posterior probabilities as assighment
probabilities minimizes the cost function!

M-step chooses parameters that minimize F
(with the assignment probabilities held fixed)

e This is easy. We just fit each Gaussian to the data weighted
by the assignment probabilities that the Gaussian has for

the data.

- The entropy term is unaffected (since it only depends
on the assignment probabilities)

- When you fit a Gaussian to data you are maximizing the
log probability of the data given the Gaussian. This is
the same as minimizing the energies of the datapoints
that the Gaussian is responsible for.

— If a Gaussian is assigned a probability of 0.7 for a
datapoint the fitting treats it as 0.7 of an observation.

e Since both the E-step and the M-step decrease the same
cost function, EM converges.

Summary: EM is coordinate descent in Free Energy

F(X(C))=Eq(ilx(c))(—logni—log p(X(C)Ii)) - Eq(ilx(c))(—logq(iIX(C)))

e Think of each different setting of the hidden and visible
variables as a “configuration”. The energy of the
configuration has two terms:

- The log prob of generating the hidden values

— The log prob of generating the visible values from the
hidden ones

e The E-step minimizes F by finding the best distribution over
hidden configurations for each data point.

e The M-step holds the distribution fixed and minimizes F by

changing the parameters that determine the energy of a
configuration.

Recap: EM algorithm

A way of maximizing likelihood for latent variable models

EM is general algorithm: finds ML parameters when the
original hard problem can be broken up into two easier pieces:

— Infer distribution over hidden variables (given current
parameters)

— Using this complete data, find the maximum likelihood
parameter estimates

Allows constraints to be enforced easily (versus Lagrange
multipliers in gradient descent)

Works fine if distribution over hidden variables easy to
compute

The advantage of using F to understand EM

e There is clearly no need to use the optimal
distribution over hidden configurations.

— We can use any distribution that is convenient
so long as:

e we always update the distribution in a way that
improves F

e We change the parameters to improve F given the
current distribution.

e Thisis very liberating. It allows us t]ustlfy all

sorts of weird algorithms: variational inferen

Ce

(

A trade-off between how well the model fits the
data and the accuracy of inference

approximating true
posterior posterior
parameters data distribution distribution

; | \ /

-F(q.0)= Y log p(d10)- KL(g(d)l p(d))

R |

Obr}:give How well the model The inaccuracy
function fits the data of inference

This makes it feasible to fit very complicated models, but the
approximations that are tractable may be poor.

