CSC2515 Winter 2015
Introduction to Machine Learning

Lecture 4: Neural Networks

All lecture slides will be available as .pdf on the course website:

http://www.cs.toronto.edu/~urtasun/courses/CSC2515/
CSC2515 Winter15.html

Limitations of linear classifiers

e Linear classifiers (e.g., logistic
regression) classify inputs based
on linear combinations of

Data Space
features x;

01 @ 01,1
e Many decisions involve non-

linear functions of the input

e (Canonical example: do 2 input Qutpy,
elements have the same value? O“tputt

Same: (1,1) > 1; (0,0) > 1

Diff: (1,0)=>0; (O1)>0 0 ®1,0

ey \

The positive and negative cases
cannot be separated by a plane ,

How to construct nonlinear classifiers?

e Would like to construct non-linear discriminative
classifiers that utilize functions of input variables

e Two approaches:
— Add infinite number of extra functions

e Need to address over-fitting

- Add finite but large number of extra functions

e [fthese functions are fixed (Gaussian, sigmoid, polynomial basis
functions), then the optimization still involves linear
combinations of (fixed functions of) the inputs

e Or we can make these functions depend on additional
parameters = need an efficient method of training extra
parameters

Neural networks

Many machine learning methods
inspired by biology, brains

Our brains contain ~101! D
neurons, each of which AT A sk &

[~ 4 -
communicates to ~10* other 'S 4" A A' ’I‘”"K Axon
neurons SBLE AR o AUt (outputs)

‘ ' ﬂ-ﬁ"\ “
Multi-layer perceptron, or neural .,& ' ,}

network, is a popular supervised

learning approach Cell Body
Defines extra functions of the
inputs (hidden features), Dendrite
computed by neurons (inputs)
Artificial neurons called units

2. Synapse

Network output is linear
combination of hidden units

Neural network architecture

e Network with one layer of four hidden units:

!

O hidden units

output units

O O O Input units

e Each unit computes value based on linear
combination of values of units that point into it

* Can add more layers of hidden units: deeper hidden
unit response depends on earlier hiddens

What does the network compute?

e Qutput of network can be written as follows, with k indexing

the two output units: .
output units

J

0u(X) = 8000 + D, 1y (0w, T hidden units
j=1
D

hi(x)=f(w;, + Exivji) A 50y input units

i=1
e Network with non-linear activation function f() is a
universal approximator (esp. with increasing J)
* Standard choice of activation function: sigmoid/logistic, or
tanh, or rectified linear (relu)

tanh(z) = (exp(z) - exp(-z))/(exp(z) + exp(-z))

relu(z) = max(0,z)

Example application

e (Consider trying to classify image of handwritten digit: 32x32
pixels

e Single output units - itis a 4 (one vs. all)?
e Use the sigmoid output function:

0, = :
1+exp(-z;)
J
Z =W + X B (X))
j=I

e (an train the network, that is, adjust all the parameters w, to
optimize the training objective, but this is a complicated
function of the parameters

Training multi-layer networks: back-propagation

Back-propagation: an efficient method for computing gradients
needed to perform gradient-based optimization of the weights
in a multi-layer network

Loop until convergence:

* For each example n
1) Input x™, propagate activity forward (x(™ - h™ - o)
2) Propagate gradients backward
3) Update each weight (via gradient descent)

Given any error function E, activation functions g() and f{), just
need to derive gradients

Key idea behind backpropagation

We don’t have targets for a hidden unit, but we can compute how
fast the error changes as we change its activity

Instead of using desired activities to train the hidden units,
use error derivatives w.r.t. hidden activities.

Each hidden activity can affect many output units and can
therefore have many separate effects on the error. These
effects must be combined.

We can compute error derivatives for all the hidden units
efficiently.

Once we have the error derivatives for the hidden
activities, its easy to get the error derivatives for the
weights going into a hidden unit.

Non-linear neurons with smooth derivatives

e For backpropagation, we need x. =h + Ey.w“
neurons (units) that have well- J J v
l

behaved derivatives.

— Typically they use the logistic y. = 1
function / - e_xj
— The outputis a smooth
function of the inputs and the 0X; -y 0X; _
weights. i ’J
Vi dy .
]0.5—— d]=yj(1_yj)
Xj I
0 | Its odd to express it
0 X . in terms of y. 10

Back-propagation: sketch on one training case

1. Convert discrepancy between
each output and its target value

into an error derivative. 1 2
E = 35 Z (Ok - tk)
oL

2. Compute error derivatives in
each hidden layer from error @ =0~
derivatives in layer above.
|assign blame for error at k to

each unit j according to its
influence on k (depends on w;;)]

3. Use error derivatives w.r.t.

activities to get error derivatives
w.r.t. the weights. % Q

The derivatives

O0E dy; OE
Ty T
X Xj oY) Yj
oE _ ox; 9F _ OE
oW ow;; 0x; s 0x

dx; OE OE
oL E = Y, —
8yl dy; 0x; . 0x ;

J J

12

Ways to use weight derivatives

e How often to update
— after each training case?
— after a full sweep through the training data?
— after a “mini-batch” of training cases?

W, <= W, — 772(0(71) t(n))Olgn)(l 0(”))xl.(”)

am%

e How much to update
- Use a fixed learning rate?
— Adapt the learning rate?

— Add momentum? aE
Wy <= Wy~

l

+ pAw,.(t=1)
aw% Phw(13

Choosing activation and cost functions

When using a neural network as a function approximator
(regressor) sigmoid activation and MSE work well

For classification, if it is a binary (2-class) problem, then cross-
entropy error function often does better (as we saw with
logistic regression)

E = -Y1"logo™ +(1-1")log(1-0")
{ OE
o™ — —=0-1
1+exp(-z") do
do _ o(1-0)
0z
%=%a—0= (o-1t)o(l1-0)

Some Success Stories

e Back-propagation has been used for a large
number of practical applications.

- Recognizing hand-written characters
- Recognize speech

- Predicting the next word in a sentence from the
previous words

— Autonomous vehicle control

- Recognizing objects in images

A basic problem in speech recognition

We cannot identify phonemes perfectly in noisy speech

— The acoustic input is often ambiguous: there are several
different words that fit the acoustic signal equally well.

People use their understanding of the meaning of the
utterance to hear the right word.

- We do this unconsciously
- We are very good at it

This means speech recognizers have to know which words
are likely to come next and which are not.

— Can this be done without full understanding?

16

The standard “trigram” method

e Take a huge amount of text and count the frequencies of all
triples of words. Then use these frequencies to make bets on

the nextwordinab ?

pwy =c|wy, =b,w; =a) count(abc)

pwy=d|wy, =b,wy =a) count(abd)

e Until very recently this was state-of-the-art.

- We cannot use a bigger context because there are too many
quadgrams
- We have to “back-off” to bigrams when the count for a
trigram is zero.
e The probability is not zero just because we didn’ t see one. 17

Why the trigram model is limited

Suppose we have seen the sentence
“the cat got squashed in the garden on friday”
This should help us predict words in the sentence
“the dog got flattened in the yard on monday”

A trigram model does not understand the similarities between
- cat/dog squashed/flattened garden/yard friday/monday

To overcome this limitation, we need to use the features of
previous words to predict features of the next word

— Using a feature representation and a learned model of how
past features predict future ones, we can use many more
words from the past history.

18

Softmax

Handling multiple classes:
the output units use a non-
local non-linearity:

y1 y2 y3 output
units

The cost function is the negative
log prob of the right answer

dy;

—=y; (=)

0X;

desired value

l
C = —Edjlogyj
J

9C _

0X;

2

J

dC 9 ;

dy; ox;

=y —d;

19

l

A neural net for predicting the next word

Softmax units (one per possible word)

i

Skip-layer
connections

/\ \output

Units that learn to pregict the output word from features of the input words

T

Learned distributed
encoding of word t-2

T

Learned distributed
encoding of word t-1

tTabIe look-up

Index of word at t-2

— Inputs —

ITabIe look-up

Index of word at t-1

An alternative

A single output unit that gives
a score for the candidate
word in this context

1

architecture

Use the scores from all candidate
words in a softmax to get error
derivatives that try to raise the score
of the correct candidate and lower the
score of its high-scoring rivals.

Units that discover good or bad combinations of features

L] T

T

Learned distributed Learned distributed Learned distributed
encoding of word t-2 encoding of word t-1 encoding of candidate
Index of Index of Index of
word at t-2 word at t-1 candidate

Try all candidate 4
words one at a time

Applying backpropagation to shape recognition

e People are very good at recognizing shapes
- Intrinsically difficult, computers are bad at it

e Some reasons why it is difficult:
- Segmentation: Real scenes are cluttered

— Invariances: We are very good at ignoring all sorts of
variations that do not affect shape

— Deformations: Natural shape classes allow variations
(faces, letters, chairs)

— A huge amount of computation is required
22

The invariance problem

e Our perceptual systems are very good at dealing
with invariances

- translation, rotation, scaling
- deformation, contrast, lighting, rate

e We are so good at this that its hard to appreciate
how difficultitis

— Its one of the main difficulties in making
computers perceive

- We still don’ t have generally accepted solutions

23

The replicated feature approach

e Adopt approach apparently used in monkey
visual systems

e Use many different copies of the same
feature detector.

- Copies have slightly different positions. have the same weight.

O

A
a

— Could also replicate across scale and
orientation.

e Tricky and expensive

— Replication reduces number of free
parameters to be learned.

o Use several different feature types, each
with its own replicated pool of detectors.

— Allows each patch of image to be
represented in several ways.

The red connections all

1

24

Backpropagation with weight constraints

It is easy to modify the
backpropagation algorithm
to incorporate linear
constraints between the
weights.

We compute the gradients as
usual, and then modify the
gradients so that they satisfy
the constraints.

— So if the weights started
off satisfying the
constraints, they will
continue to satisfy them.

To constrain: w;=Ww,

we need: Aw; =Aw,

) oE
compute. —— and —
aWI 8W2
oE OF
use + for wy and w,
aWI aW2

25

Le Net

e Yann LeCun and others developed a really good
recognizer for handwritten digits by using
backpropagation in a feedforward net with:

— Many hidden layers
— Many pools of replicated units in each layer.

— Averaging the outputs of nearby replicated
units.

— A wide net that can cope with several
characters at once even if they overlap.

e Demos of LENET at http://yann.lecun.com

26

Recognizing Digits

Hand-written digit recognition network
— 7291 training examples, 2007 test examples
— Both contain ambiguous and misclassified examples
— Input pre-processed (segmented, normalized)
e 16x16 gray level [-1,1], 10 outputs

L0332 - i1 oo
161 190548673650 3226h 14184
Yoo ¥ ° L3€97202992997225100%¢70 |
306444459101 061 S¢06L 10363
SN B EFEI (0L41110304725202007979966
89 | ADSLI0BSSFIIIIRTIIES460

gffﬂzz ’7ffﬁé Lol ¥7S01871129930%997078 4
01097075973319730155170%8

38¥60 Hifdo9 10783102aSS(E2-5143580101¢63
1 7871SN1(SSYC8559L0354605S
18255 10865030+75013140 ¢/

10 output units

layer H3
30 hidden units

layer H2
12 X 16=192

: H2.1
hidden units

layer H1
12 x 64 = 768
hidden units

Hi.1

256 Input units

cgoocce

--

nem W o A e v
CERNGENEERD®
b b8 SR AL AL G

LeNet: Summary

Main ideas:

e Local = global processing
fully connected e Retain coarse posn info

RO RS Main technique: weight sharing -
fully connected units arranged in feature maps
/ ~ 6000 links
Connections: 1256 units, 64,660
~ 40,000 links
fom 15 karnalS cxns, 9760 free parameters
D% 2:x.B

Results: 0.14% (train), 5.0%

¥ ~20,000 links (test)
#H from 12 kernels

vs. 3-layer net w/ 40 hidden units:
1.6% (train), 8.1% (test)

28

3 < A

2->8 3->5 6->5 7->3

The 82 errors made by LeNet5
9

?
3
a
A
3;15
0
“\ 2 2z

2->8 8->5% 4->9 7->2 T->2 6->5 9->7 6->1 5->6

. C WO »w
TS o> 8 LN5
mm “H mw mm (s o mm Mm > =
S5 O
%MSSEG =g 2
O - O QO = N O
09t gods P
. _ . o @)
ZE00aT ool
il vl gl Yl ~NIQ!
™ <t o N @ by
A A A A n A
Pl Il Tl @I NI
n/..ﬂ_ mo./w, _ml.r,m/
WENI0E L P05
~ o Y A ‘N A
0 N o o
TOIA! ©F e—1-81 vIN
N X ‘n
.r w 23?%8,..:
(o]
A
i
o
[ag]
>
6
(o 0]
>
9

&

x N A Y ‘A ‘A
A - A -

-y | ﬁxu - SR I v‘ | Gy) ‘7.
e 2 w® o)) = o] —

29

2->8

>9

A brute force approach

e LeNet uses knowledge about the invariances to design:
— the network architecture
— or the weight constraints
— or the types of feature

e Butits much simpler to incorporate knowledge of
invariances by just creating extra training data:

— for each training image, produce new training data by
applying all of the transformations we want to be
insensitive to

— Then train a large, dumb net on a fast computer.
— This works surprisingly well

30

Fabricating training data

Good generalization requires lots of training data,
including examples from all relevant input regions

Improve solution if good data can be constructed

Sharp Straight Sharp

Example: ALVINN Leh e il

Outpul Units 30 Output

Units

Input Retina

30x32 Sensor
Input Retina

31

ALVINN: simulating training examples

On-the-fly training: current video camera image as
input, current steering direction as target

But: over-train on same inputs; no experience going off-
road

Method: generate new examples by shifting images

Original Image
Replace 10 low-error & 5

A - NININ 20 it 5 new
V‘I N N i Key: relation between
\ Y\ g™/ |

/\
d\d
|\

l‘ l‘ input and output known!

Shifted and Rotated Images 32

Making backpropagation work for recognizing digits

e Using the standard viewing transformations, and
local deformation fields to get lots of data.

e Use many, globally connected hidden layers and
learn for a very long time

— This requires a GPU board or a large cluster
e Use the appropriate error measure for multi-class

categorization

- Cross-entropy, with softmax activation

e This approach can get 35 errors on MNIST!

Error Rate (%)

Test error (no distortions)

e
0.8 I
“~_Test error

(with distortions)

S
Training error (no distortions)

1 1 A 1 1 1 1 1 1 ’
0 10 20 30 40 S0 60 70 80 90 100

Training Set Size (x1000)

Fig. 6. Training and test errors of LeNet-5 achieved using training
sets of various sizes. This graph suggests that a larger training
set could improve the performance of LeNet-5. The hollow square
show the test error when more training patterns are artificially
generated using random distortions. The test patterns are not
distorted.

34

Overfitting

e The training data contains information about the
regularities in the mapping from input to output. But it also
contains noise

- The target values may be unreliable.

— There is sampling error. There will be accidental
regularities just because of the particular training cases
that were chosen

e When we fit the model, it cannot tell which regularities are
real and which are caused by sampling error.

- So it fits both kinds of regularity.
— If the model is very flexible it can model the sampling
error really well. This is a disaster.

35

Preventing overfitting

e Use a model that has the right capacity:
- enough to model the true regularities

- not enough to also model the spurious
regularities (assuming they are weaker)

e Standard ways to limit the capacity of a neural net:
— Limit the number of hidden units.
— Limit the size of the weights.

— Stop the learning before it has time to overtfit.

36

Limiting the size of the weights

Weight-decay involves adding

an extra term to the cost C=FE+ % E Wl’z
function that penalizes the !
squared weights. GC oF
- Keeps weights small = 7 AW
unless they have big aWi (9W

error derivatives.

when £ =0 w-=—1 o

C ow, A ow;

37

The effect of weight-decay

e [t prevents the network from using weights that it does not
need

— This can often improve generalization a lot.

— It helps to stop it from fitting the sampling error.

- It makes a smoother model in which the output changes
more slowly as the input changes.

e But, if the network has two very similar inputs it prefers to
put half the weight on each rather than all the weight on
one -2 other form of weight decay?

() ()
w/2 w/2 W, 0
A S G S

Deciding how much to restrict the capacity

e How do we decide which limit to use and how
strong to make the limit?

— If we use the test data we get an unfair
prediction of the error rate we would get on
new test data.

— Suppose we compared a set of models that gave
random results, the best one on a particular
dataset would do better than chance. But it
won’t do better than chance on another test set.

e S0 use a separate validation set to do model

selection.
39

Using a validation set

e Divide the total dataset into three subsets:

— Training data is used for learning the
parameters of the model.

- Validation data is not used for learning but is
used for deciding what type of model and what
amount of regularization works best

— Test data is used to get a final, unbiased
estimate of how well the network works. We
expect this estimate to be worse than on the
validation data

e We could then re-divide the total dataset to get
another unbiased estimate of the true error rate.

40

Preventing overfitting by early stopping

e [f we have lots of data and a big model, its very
expensive to keep re-training it with different

amounts of weight decay

e [tis much cheaper to start with very small weights
and let them grow until the performance on the
validation set starts getting worse

e The capacity of the model is limited because the
weights have not had time to grow big.

41

Why early stopping works

e When the weights are very
small, every hidden unit is in
its linear range.

() () outputs

— So a net with a large layer
of hidden units is linear.

—

— It has no more capacity

than a linear net in which o O O O O 0O

the inputs are directly
connected to the outputs!

O =

e Asthe weights grow, the O O
hidden units start using their inputs
non-linear ranges so the

capacity grows. 4

