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Bottom-up perceptual grouping is an essential but often elusive component of com-

puter vision that occurs in support of object recognition. We base our analysis on Gestalt

grouping principles that range from low-level cues, which lack contextual scope but are

computationally attractive, to mid-level cues, which cover larger scope but are difficult

to incorporate in a computationally efficient manner. Our thesis begins with object

categorization as motivating context for perceptual grouping, highlighting the issues of

complexity and learning, and the importance of feature representation in handling vari-

ability. We then make inroads into bottom-up grouping in three steps. First, we focus on

the mid-level cue of symmetry, which we extend to handle curvature and taper. We make

effective use of symmetry to handle a wide range of input variability, and demonstrate

significant improvements from formulating symmetry-based grouping as an optimiza-

tion problem. Second, we develop an energy-based superpixel grouping framework that

has expressive power to accommodate multiple grouping cues that range from low-level

to mid-level, and from contour-based to region-based. We demonstrate the benefit of

combining multiple mid-level cues to eliminate false positives. Finally, we reformulate

bottom-up perceptual grouping as a prediction task to enable us to use the framework

of structured prediction to tackle grouping as a single, unified problem. We bring per-

formance to a level competitive with recent state-of-the-art baselines to close the gap

between bottom-up grouping and recognition.
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Chapter 1

Introduction

Perceptual grouping is an essential aspect of human vision that largely occurs behind

the scenes. Take a moment to consider Figure 1.1, which depicts a scene that helps to

reveal some of its inner workings. Although it is not difficult to identify the contents of

the scene, a first glance likely required significant attention before the objects emerged

from the brown and white patches. You may have noticed vertically symmetric figures

in the snow and grouped them together as legs, and followed the contours along the back

and neck, and all the way around before finally seeing an entire horse. The purpose

of this example is to illustrate the “bottom-up” grouping process, whereby regions and

contours are locally grouped by mid-level cues, like contour closure and symmetry, into

object parts and whole objects, and eventually into a global interpretation of the scene.

Since bottom-up grouping occurs without (but in support of) object recognition, the only

grouping cues that are involved are ones that are not specific to any particular object.

For example, a grouping cue that expects the shape of the side view of a horse plays

no role in a purely bottom-up process. This leads to the “top-down” counterpart in

object recognition, the process that occurs when you identify the horses. Despite the

importance of identifying objects, however, it is not our focus here. The focus of this

thesis is to take bottom-up cues—what humans already use successfully to make sense

1
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Figure 1.1: Demonstrating the bottom-up process of perceptual grouping.

of visual scenes—and give computers the same ability to take advantage of them.

Humans use bottom-up cues effortlessly, however it remains incredibly difficult to

implement them in a computer. Perceptual grouping is a sub-area of computer vision

that has been addressed by much prior work and has seen much progress (see Chapter

2). However, there remains a long path ahead that reflects the complexity of the issues

still to be addressed. In this thesis we will consider the following issues:

• Complexity: Seen computationally, perceptual grouping involves a search through

a space of possible scene interpretations. Using Figure 1.1 to illustrate, consider the

possible combinations of patches that one could have taken, and the possible turns

of contour one could have taken at each junction, and it quickly becomes clear that

we are dealing with a combinatorial search space of intractable size. Aside from
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developing an evaluative function that distinguishes good from bad interpretations,

we need a strategy to efficiently guide us to the best one or few interpretations.

• Variability: A good perceptual grouping system is robust to a wide range of

possible scene inputs. Such a system produces accurate interpretations not only for

the current scene at hand, but for almost all other scenes as well. For example, a

system that groups image elements by color alone may work well for many scenes of

horses, but will fail for the scene in Figure 1.1. It is difficult to achieve robustness

because there is a huge amount of variability in the range of possible inputs, and it

is all too easy to design a method that works well for only a subclass of scenes but

not others. We thus need grouping cues that capture properties at a broad enough

level, such as shape, without being sensitive to detailed properties that are specific

only to the example at hand.

• Learning: A perceptual grouping system that is designed in a fully manual way

may be most amenable to human interpretation, however the alternative of learn-

ing such a system from training data offers the benefit of directly optimizing for

accuracy. Specifically, when exposed to a set of scenes paired with their correct

interpretations, a perceptual grouping system that is able to automatically adjust

itself (via its parameters) to produce interpretations that better match the correct

ones is more likely able to achieve accuracy in a cost-effective way. Here, such

a system could remain independent of object categories throughout learning, and

would, for example, allow for navigation around the horses in Figure 1.1 without

needing to recognize them as horses.

We have illustrated above some basic issues that arise in designing a perceptual group-

ing system. Before we address them, however, we will review prior work that attempted

these same issues, which will allow us to form a foundation on which we can build and

advance.
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We begin with the important early work from the Gestalt school of psychology, which

produced the principles of perceptual grouping that capture regularities of 3D ob-

jects as they appear in a 2D image. Visual perception is governed by these principles

in the sense that we organize the elements of an image into groups (i.e., figure-ground

segmentations) according to these principles. Wertheimer, 1923 [51] produced such a list

of grouping principles:

proximity tendency to group elements that are near each other

similarity tendency to group elements that are like each other

continuity tendency to form smooth contours

common fate tendency to group elements with the same motion

closure tendency to close gaps along boundaries

symmetry tendency to group elements that are symmetric to each other

Recognizing that these principles, even when combined, may not uniquely constrain the

image’s interpretation, Koffka, 1935 [21] proposed the concept that “of several geomet-

rically possible organizations that one will occur which possesses the best, simplest and

most stable shape. This is, of course, nothing but our law of prägnanz”.

In addition, Wertheimer also proposed the principle of familiarity, which applies

when elements can be grouped into a recognizable, meaningful whole.

familiarity tendency to group elements that are familiar together

As already mentioned, we draw an important distinction between familiarity and the

other principles. Specifically, our thesis is not concerned with the high-level cue of famil-

iarity associated with the top-down process, but focuses on grouping with low-level and

mid-level cues like proximity, similarity, closure, and symmetry.
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Of the cues above, of particular interest are mid-level cues, which grasp larger spatial

scope and thus offer greater context, yet are harder to implement for tasks like figure-

ground segmentation. Like other cues, mid-level cues capture non-accidental relations

between image elements that are exhibited by all objects. They are less specific than

a high-level object model, yet more discriminative than low-level cues like appearance

similarity and contour continuity. There are two mid-level cues of interest to us. Clo-

sure [28, 47] is a regularity that favors regions that are enclosed by strong boundaries.

Bottom-up approaches to finding closure vary in the types of cues used, and may include

continuity and convexity. Symmetry [77, 84, 114] is a ubiquitous and powerful regu-

larity with scope that spans entire objects or their parts. Perceptual grouping literature

contains varied symmetry representations like the medial axis transform [10], generalized

cylinders [9], superquadrics [90], and geons [8]. Later approaches applied symmetry to-

ward cluttered and occluded image domains, and fall into filter-based and contour-based

grouping approaches. The challenge of managing scene complexity is reflected in both

closure and symmetry approaches to grouping.

More recent developments saw a rise in the use of low-level cues, especially pairwise

color affinities, in the form of image segmentation algorithms [103, 32], while mid-level

cues remained relatively difficult to implement. However, even bottom-up segmentation

lost much of its appeal when machine learning algorithms rapidly advanced and spread,

leveraging training data to optimize performance, and hugely benefiting object detection.

Classifiers took fixed-length feature representations for which bounding boxes were con-

venient, and the community adopted the sliding window framework, in which classifiers

were evaluated at every bounding box location. By performing an exhaustive but fea-

sible bottom-up search of all possible bounding boxes, the adoption of sliding windows

effectively displaced the role of perceptual grouping in object recognition.

Although bounding boxes are an effective way to reduce the search space, they have

the disadvantage of being unable to capture boundary shape. As a result, the sliding
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window approach offers little support for shape-based recognition. To illustrate the

potential that is otherwise lost, we devote the entirety of Chapter 3 to a demonstration

of the advantage of shape features for recognition. By building a system on perceptually

grouped contours that are coarser than pixels yet sufficiently local, we learn and recognize

object categories without relying on expensive bounding box annotations or exhaustive

sliding windows.

The most recent developments have seen a comeback of bottom-up segmentation in

the form of region proposals. It was proposed that even if the image could not be

perfectly partitioned into the correct objects, one could still hypothesize a set of regions

that include them. By outputting multiple hypotheses, individual mistakes mattered

less, and hypotheses from the bottom-up stage could be disambiguated by a later stage

that had access to higher-level information. The framework thereby enabled one to

access the focus of attention provided by bottom-up segmentation without being limited

by segmentation errors. This development led to a recoupling of state-of-the-art object

detection with such variable-size region proposals [42], which arguably represents a return

of bottom-up grouping cues in support of recognition. It is therefore an exciting time for

perceptual grouping, in particular mid-level grouping cues, to make an impact on a wide

range of applications.

Having equipped ourselves with the background of the field, we can now supply the

issues listed above with the context in which they will be addressed:

• Complexity: In designing an approach to propose object locations in a way that

provides better spatial support than the sliding window approach, potential ulti-

mately lies in perceptual grouping. Current region proposal methods rely only on

low-level grouping cues to generate regions, however, low-level cues can only grasp

a small spatial context, and we need to turn to mid-level cues to improve the pre-

cision of the proposal set. If we can exploit cues like closure and symmetry, which

have greater grasp of the image contents, using methods like discrete optimization
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for combinatorial search, we can advance along this approach.

• Variability: We have shown that objects could vary in their appearance in many

ways including different surface markings and distinct subparts, and that a grouping

strategy as simple as one using color similarity alone is not enough. Similarly, we

have also seen that a color model is likely over-sensitive to the details of a particular

example and likely of little support for object categorization. Shape cues, however,

capture image properties at a broader level and are a more robust alternative to

appearance cues. There are, however, many distinct shape cues, such as the Gestalt

principles, each of which provides a different source of information. Due to the

wide variability in input, no single cue can always provide the best interpretation,

and thus the need arises to combine information from different cues. Such cue

integration will provide the potential to widen the domain of applicability beyond

examples limited to the dataset at hand.

• Learning: Recent focus on the complementary problem of object detection has

meant that once a perceptual grouping system is exposed to annotated training

data, the dominant learning paradigm consists of single-output frameworks such as

classification and structured prediction. In particular, there is a lack of methods

that capture the multiple-output structure of bottom-up grouping, such as region

proposals. Furthermore, previous perceptual grouping approaches tend to learn

only small system components at a time and independently of each other, such as

the pixel-wise probability estimates of contour maps or individual pairwise affinity

functions in energy minimization approaches. In contrast, the approach of learning

to group in the full image with multiple cues remains relatively unexplored. Until

we can express the whole system in a trainable form, we will not have learned to

do perceptual grouping.
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1.1 Thesis outline

In order to address the above issues within a fixed context, we will begin with a chap-

ter on object categorization. Chapter 3 introduces an object categorization framework,

specifically highlighting issues of using appearance and shape in feature representations.

By showing dramatic improvements from the use of shape features, the chapter illus-

trates the importance of feature representation in addressing the issue of variability. The

chapter also addresses the prohibitive cost of manual bounding box annotation during

learning by adopting automatic perceptual grouping, thus motivating the issue of com-

putational complexity. With the motivating context for how bottom-up and top-down

process might interact, we then proceed with the main outline of our thesis.

First, as summarized below in Section 1.2, we focus on symmetry, which is not only

a powerful grouping cue, but a powerful shape regularity that has long been exploited to

recover part structure without prior knowledge of scene content. We will address limita-

tions of prior work in robustness to common variations in symmetry, notably by adding

insensitivity to bending/tapering variations to widen the domain of applicability. We ad-

ditionally formulate an optimization problem that is solved by a dynamic programming

algorithm, resulting in an efficient search that makes fewer grouping errors than previous

work.

Next, as summarized in Section 1.3, we address the problem of combining mid-level

cues that are poorly or not integrated in previous work. Combining the cues of symmetry

and closure allows us to extend the domain of applicability beyond images of purely

symmetric objects or images purely of objects with closed boundaries. Additionally, we

model cue combination as a trainable parameter in a predictive model that covers the

full image. Thus, while other methods must manually design the combination or make

predictions for only small parts of the image at a time, we learn automatically and jointly

in the whole image.

Finally, as summarized in Section 1.4, we address the challenge of formulating a
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learning framework for bottom-up grouping. In particular, we consider models commonly

used for region proposal methods that produce multiple output hypotheses, such as

minimizing a parametric energy function using parametric maxflow. When viewed as

the output of a prediction function, it becomes clear that there are multiple outputs and

a corresponding lack of suitable learning models for this type of prediction. To address

the need for learning multiple-output models for bottom-up grouping, we will build on

existing structured prediction frameworks for single-output models such as the structured

support vector machine (S-SVM).

The text in Chapters 3, 4, 5, 6 is based on [61], [58], [59], [60], respectively.

1.2 Symmetric part detection

One of the most powerful indexing structures is a configuration of parts, in which a set

of spatially related parts from the same object is recovered without prior knowledge of

scene content. Such bottom-up recovery of generic parts can be traced back to the medial

axis transform (MAT) [10], generalized cylinders [9], superquadrics [90], and geons [8],

all representations that are grounded on symmetry, not only in its capacity as a grouping

cue, but also as a structure for part recovery.

We build on previous work [65] that leverages medial symmetry for segmenting an

image. Models of medial symmetry (e.g. the medial axis transform (MAT)) have proven

to be a powerful object representation, in particular owing to its ability to provide a

decomposition of the object into its parts. Despite its advantage in part modelling,

however, such models assume segmented input and lack the ability to handle unsegmented

images [106].

To this end, we provide a rigorous analysis of the link between maximally inscribed

discs and superpixels (from the MAT and a superpixel oversegmentation of the image,

respectively) as proposed in [65]. As shown in Figure 1.2, grouping the superpixels that
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Figure 1.2: Our representation of symmetric parts: On the left, the shape of the runner’s
body is transformed into its medial axis (red), a skeleton-like structure that decomposes
the shape into branch-like segments, e.g. the leg. The leg’s shape is swept out by a
sequence of discs (green) lying along the medial axis. On the right, the shape of the same
leg is composed from superpixels that correspond to the sequence of discs.

compose an object part (e.g. a runner’s leg) corresponds to tracing the maximal discs

that sweep out the symmetric part.

While [65] outperformed previous approaches, it suffered from some limitations. First,

we improve robustness by accommodating common forms of variability of symmetric parts

appearing in diverse environments. While a straight medial axis was previously assumed,

we introduce features that are insensitive to bending and tapering, thereby extending the

domain of applicability to a wider class of inputs.

Additional value lies in allowing the grouping process to integrate disc hypotheses

from multiple scales, in contrast with the previous restriction that discs could only be

grouped when they came from the same scale.

Finally, we address limitations in the greedy nature of the grouping algorithm by
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deriving a superpixel grouping problem from the framework that is solved by dynamic

programming. Due to the correspondence between superpixels and maximal discs, the

problem is framed as finding optimal sequences of maximal discs that sweep out symmet-

ric parts. The new framework is demonstrated on two datasets, and shown to significantly

improve performance.

1.3 Multi-cue grouping

Bottom-up grouping has re-emerged in the form of region proposals [15, 116], which

typically start with a generation stage that uses a bottom-up grouping algorithm to

output a diverse set of proposals, which are then passed to a ranking stage where they are

evaluated by a trained scoring function. In doing so, region proposal methods forward

bottom-up ambiguity from the generation stage to the ranking stage in the form of

proposals, at which point stronger cues are available to reduce the ambiguity.

Typical methods like [15, 116], however, rely on only low-level appearance and con-

tour cues to generate proposals, and as a result must diversify their proposals in large

quantities to preserve recall. We present a complementary approach to diversification

that uses mid-level grouping cues to resolve ambiguity at an early stage to avoid the

need to generate proposals in excessive quantities.

By approaching the problem as figure-ground separation, we draw on a large body

of work in perceptual grouping. Mid-level cues capture non-accidental relations between

image elements that are exhibited by all objects. They are less specific than a high-level

object model, yet more discriminative than low-level cues like appearance similarity and

contour continuity.

Closure [28, 47] is a regularity that favors regions that are enclosed by strong contour

evidence along the boundary. There are many bottom-up approaches to finding closure

and involve different cues like continuity and convexity. A common way to formulate the
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: Given an input image as shown in (a), our method first oversegments into
superpixels in (b), which are to be grouped into regions based on a combination of
perceptual grouping cues. In this example, both the horse and the fence are relatively
homogeneous in color and exhibit contrasting boundaries, however the horse’s neck is
slightly darker than its torso. As shown in (c), low-level appearance alone oversegments
the horse at the neck where a large gap in contour is attempted. When including contour
closure in (d), the boundary correctly encloses the head, but elsewhere strays along the
fence. Conversely in (e), including symmetry without closure separates the fence from
the horse, but fails to enclose the head. With closure and symmetry together in (f), the
entire horse is correctly segmented.

problem is to find a cycle of graph edges in a very large space.

Symmetry [77, 84, 114] is a ubiquitous and powerful regularity with scope that spans

entire objects or their parts. Since the early days, perceptual grouping research has

produced numerous representations such as the medial axis transform [10], generalized

cylinders [9], superquadrics [90], and geons [8]. Later approaches applied symmetry

toward cluttered and occluded image domains, which are much more difficult to handle

due to increased noise in the background.

We combine low-level appearance with mid-level cues of symmetry and closure, which

are otherwise poorly or not integrated in previous work. As shown in Figure 1.3, mid-

level cue combination allows situational use of symmetry and closure, thereby extending

the domain of applicability beyond images of purely symmetric objects or images purely
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of objects with closed boundaries.

Additionally, we model cue combination as a trainable parameter in a predictive

model. Thus, while other methods must manually design the combination, we are able to

leverage powerful learning algorithms to obtain the best combination of cues. Specifically,

cues are combined by summing their respective energy terms in a parametric energy

function of the following form:

Eλ(y;w) =
∑

p

Uλ(yp;w) +
∑

p,q

V (yp, yq;w) (1.1)

To learn the parameters w of (1.1), we view the minimization of (1.1) (for all values of

parameter λ simultaneously) as the inference step of a structured prediction framework.

Grouping cues are combined into (1.1) which is learned as a whole, in contrast to previous

methods that learn energy terms independently from each other.

1.4 Learning to generate mid-level region proposals

In Chapter 6, we build on the previous chapter to address the challenge of formulating

bottom-up grouping as a learning problem. Specifically, we develop a new learning frame-

work that accurately captures the ambiguity of bottom-up grouping. Ambiguity is an

important characteristic of bottom-up grouping that defers the verification of hypotheses

to a later stage that has access to more information, such as object-level knowledge.

This is more generally known as the principle of least commitment, and is reflected in

the region proposals framework.

We will formulate a learning problem for and in the context of the parametric energy

model in Equation (1.1). In particular, we argue that it is important that the loss function

capture quality not based solely on a single answer, but based on the set of multiple output

hypotheses as a whole. This will require some innovation as conventional learning models

do not support the required problem structure.
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Diversification 

Learning 

Figure 1.4: Our approach takes an input image, partitions it into superpixels, and groups
superpixels into region proposals using a novel structured learning framework for para-
metric energy functions, called Parametric Min-Loss (PML). The parametric energy func-
tion combines mid-level cues with weights that are trained to generate multiple region
proposals. Finally, we diversify the energy function to generate a diverse set of region
proposals.

Specifically, a conventional loss function `(y, y) that measures the discrepancy between

a single prediction and the correct answer, such as that used in [111], is not directly

suitable for prediction functions that output multiple hypotheses. This includes our

model-output model of interest, namely, the prediction function that minimizes Eλ(y;w)

in y to yield a distinct solution for each value of λ. Consequently, approaches that train

Eλ(y;w) with a conventional loss function `, like [59], do not use the model in a way that

it was trained for.

To develop a suitable loss function, we take an approach similar to Multiple Choice

Learning (MCL) [45], which proposed a loss function L(Y, y) that captures the problem

structure by measuring the discrepancy between a set Y of output hypotheses and the
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correct answer, and implemented the loss L in the structured support vector machine (S-

SVM) framework. The resulting learning problem yielded a minimization problem in two

blocks of variables, in turn yielding a block-coordinate descent learning algorithm. In our

work, we follow this approach to derive a learning model for (1.1), and show that it yields

a block-coordinate descent learning algorithm that decomposes into simpler subproblems.

In the context of bottom-up grouping, our learning formulation apparently contradicts

the diversification component that drives the prototypical region proposal method: we

seek a single model with minimum weight, while diversification keeps all hypotheses

that are explored. On the contrary, we show that our learning formulation is not only

compatible with, but complementary to diversification. Specifically, the model (1.1), for

a particular setting of weights w, specifies a way using λ to diversify its outputs, and

thus learning enables us to choose the best way to diversify output hypotheses to include

the correct outputs.

Finally, we note that the learning model is developed for (1.1), a model that forms

the basis of many region proposal methods, and in particular supports the modelling of

grouping cues as component energy terms. Thus the learning framework is consistent with

perceptual grouping using grouping cues such as symmetry and closure. An illustration

of our full approach is provided in Figure 1.4.

1.5 Review of contributions

Our thesis contributions are supported by an initial chapter on object categorization:

• An object categorization framework that includes automatic perceptual grouping

throughout learning and detection, eliminating the dependence on expensive man-

ual annotations.

• Dramatic improvements from the use of shape features for object categorization

demonstrate the importance of feature representation in accommodating variability.
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As part of our main contributions, we proceed with our work on symmetric part

detection:

• A rigorous analysis of the link between maximally inscribed discs (of the MAT)

and superpixels (in a superpixel oversegmentation).

• A derivation of a superpixel grouping problem framed as finding optimal sequences

of maximal discs that sweep out symmetric parts, and efficiently solved by dynamic

programming.

• An improvement in robustness by accommodating common forms of variability of

symmetric parts, namely bending and tapering, that appear in diverse environ-

ments.

In our work in combining multiple mid-level grouping cues, we made the following

contributions:

• A method for combining mid-level cues of symmetry and closure, which were pre-

viously poorly or not integrated, and thus allows the domain of applicability to be

extended beyond purely symmetric objects or objects fully bounded by contours.

• Modelling cue combination as a trainable parameter in a predictive model that

jointly combines all cues, which allows the use of machine learning algorithms to

find the best combination of cues.

Our final contributions lie in our work in learning to generate bottom-up regions:

• Parametric Min-Loss (PML), a novel learning framework for the parametric energy

function (1.1) that uses a loss function to score multiple output hypotheses, enabling

us to correctly capture the structure of bottom-up grouping.

– An exposition in standard notation supports the application of PML to other

domains that use parameterized energy functions of the form (1.1).
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• An efficient diversification strategy suitable for the model, demonstrating that our

learning framework is not only compatible with, but complementary to the tech-

nique of diversification.

• An overall novel learning approach for perceptual grouping, demonstrated by mod-

elling mid-level grouping cues in the model (1.1) and achieving results comparable

with recent region proposal methods.



Chapter 2

Related Work

Approaches to bottom-up grouping differ not only in the type of perceptual cues they

use, but also how they are used to group elements together, and how they interact

with other cues. We begin with an overview of perceptual grouping cues in Section 2.1,

followed by contour-based methods in Section 2.2 which utilize geometric relations, then

region-based methods in Section 2.3 which emphasize photometric features, and finally

symmetry-based methods in Section 2.5 which are of interest due to their higher-order

scope.

2.1 Perceptual grouping cues

Scientists have long studied bottom-up grouping as a phenomenon of human vision.

To explain how we automatically focus on certain visual structures in a scene image

(whether still or moving), the Gestalt school identified sets of features common to those

structures. Wertheimer, 1923 [119] produced such a list: “proximity, similarity, uniform

density, common fate, direction, closure, good curve, past experience, habit”, which were

illustrated with monochrome drawings of shapes and patterns. The Gestaltists thus

hypothesized geometric cues, independent of specific objects, that are used to group

elements together. In an age before computers were widely available, their theory lacked

18
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an effective computational design.

Since the Gestaltists, a number of works have investigated an underlying principle for

these object-independent cues. Witkin & Tenenbaum, 1983 [122] argued that spatiotem-

poral coherence and regularity are reflected in these cues, and that they are non-accidental

occurrences that indicate an underlying cause. Suppose that we measure a feature s (e.g.,

parallelism), and consider the likelihoods P (s|obj), representing the relative frequency of

s in the world as caused by an object, and P (s|acc) in the world as occurring by acci-

dent. Since P (s|acc) is so low, the alternative explanation almost certainly holds, that

it arises from an object. Lowe, 1985 [75] notes that structures are themselves projected

from the 3D world, and thus viewpoint-invariance plays a role in the likelihood P (s|obj).

Uncertainty also arises from the fact that observed structures are never perfect (e.g.,

near-symmetry), yet there is a point when the resemblance is so rough that it is likely to

be disregarded as an instance of the structure (asymmetry).

Koffka, 1935 [52] proposed the concept that “of several geometrically possible orga-

nizations that one will occur which possesses the best, simplest and most stable shape.

This is, of course, nothing but our law of prägnanz.” This leads to another principle for

seeking one of alternative structures {σ1, σ2, . . .} to explain the same set x of elements.

The minimum description length (MDL) principle selects the simplest alternative with

respect to some uniform description of the alternatives. Modelling the probability that

x is explained as a particular structure as P (σ|x) ∝ P (x|σ)P (σ), the simplicity criterion

is expressed by the prior P (σ). While the MDL principle achieves the best trade-off

between goodness-of-fit and overfitting, it however does not provide a way to come up

with the description itself.

The Gestalt school spawned some key ideas of perceptual grouping, but lacked a

computational procedure. In addition, we must work with real images and tackle the

problem of measuring such geometric features, which is far from straightforward. Their

ideas, however, point forward to probability theory and optimization as ways to formulate
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and solve the problem.

2.2 Contour-based grouping

Many approaches use contours as a starting point for perceptual grouping. Coherent

objects in space project to bounded regions in images, suggesting that objects can be

segmented by finding their bounding contours. Typically, an initial stage computes an

indication of contour at each pixel. Even when restricted to contour pixels, the search

space is too large for exhaustive search, and most approaches use contour proximity and

continuity (curvilinearity) to group contour pixels together.

2.2.1 Contour pixel detection

The method of Canny, 1986 [13] uses a photometric model to derive an oriented edge

filter. Since the filter is not aware of alternate sources of edges such as illumination and

surface marking boundaries, the method is an edge detector. However, contour pixels

can be found among the detected edges. Modelling an ideal edge as a step function with

additive Gaussian sensor noise, the method uses signal-to-noise and localization criteria

to derive the filter. The method convolves the intensity image with a Gaussian-smoothed

derivative filter in x and y, and combines the results to obtain the intensity gradient at

each pixel. Non-maximum responses are suppressed along the orthogonal direction to

find peaks, and a technique called hysteresis thresholding is performed to form chains of

edgels using both adjacency and response level information. As an intensity gradient-

based method, the Canny detector has low recall where boundaries are faint, and low

precision where non-object boundaries are found, thus yielding fragmented and spurious

contours.

More sophisticated contour pixel detectors extract a richer set of features to compute

the response at each pixel. The Pb detector of Martin et al., 2004 [81] extracts brightness,
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color, and texture features in oriented neighbourhoods around each pixel by dividing a

disc into halves at multiple orientations. The features are combined into the probability

of boundary at each pixel, via parameters that are trained on a set of images annotated

with ground truth boundaries. This method uses wider-scoped features in comparison to

[13], and outperforms the latter on the BSDS benchmark. An improved method, gPb,

in Maire et al., 2008 [80] incorporates global spectral cues from a contour map derived

from solutions to a generalized eigenvalue problem for a modified affinity matrix.

2.2.2 Contour grouping

We now cover contour-finding methods that minimize an energy, typically over paths

defined on a graph. For example, the active contour framework of Kass et al., 1988 [50]

defines an energy function over splines (called snakes) that decomposes into low-order

derivative terms (for smoothness and curvature) and image feature terms (attraction to

intensity edges). The method requires the user to supply an initial snake, though multiple

initializations could be generated automatically from higher-level knowledge.

The global structural saliency method of Ullman and Sha’ashua, 1988 [117] places

a grid of vertices on image pixels and sparsely connects nearby vertices with an edge

weighted by a filter response. A saliency objective Φ over curves is defined to sum over

unary terms that favor high weights and binary terms that favor low curvature. The

algorithm iterates locally additive operations N times to maximize the curve of length

N ending at each edge, and to compute the curve saliency at each edge. While the

method is efficient, it requires the value of N to be supplied, and the objective Φ is

biased towards longer curves. The bias is removed by normalizing by curve length, as

done by the cost density objective in Felzenszwalb & McAllester, 2006 [34], for which a

dynamic programming algorithm computes the global minimum.

While the above methods are principled in combining multiple criteria such as contour

pixel strength and contour continuity into a single optimization objective, the objective
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Figure 5. Example results of finding curves in natural images from the Berkeley segmentation dataset. Our algorithm finds good interpre-
tations of these images using just a few smooth curves. Local edge detection methods tend to produce much more cluttered results.

Figure 6. Subpixel curves found in the elephant image. The rightmost picture shows the subpixel estimates around the tusk area. Note how
we get a good description of the image in terms of very few smooth curves.

obtained using PB alone.
In the Berkeley segmentation dataset our algorithm out-

performs edge detection using PB alone and the CRF model
in [13] in the low-recall/high-precision regime. All algo-
rithms have similar performance in the high-recall regime.
Note that the three algorithms perform better than classi-
cal edge detection methods. Although our results on this

dataset are reasonably good, we do not feel that the metric
used in this experiment is an appropriate measure of perfor-
mance for our algorithm. The metric depends only on which
pixels are marked as edges. Therefore it does not check that
the edges were grouped into meaningful curves. Construc-
tion of an appropriate empirical metric for multiple curve
detection remains an open problem.

6

Figure 2.1: Felzenszwalb & McAllester, 2006 [34]: Given a colour image, minimum cost
density curves are extracted.

does not guarantee that the contour solutions bound a region. Resulting contours are

likely to be open due to missing contour pixels and branching ambiguities. Nonetheless,

fragmented contours can still be grouped or identified by a higher-level process, for ex-

ample shape-based object recognition in Ferrari et al., 2006 [36], and object discovery in

Payet & Todorovic, 2010 [88].

2.2.3 Bounding contours

Graph-theoretic methods that detect bounding contours find cycles. The method of

Elder & Zucker, 1996 [28] fits tangent lines of maximal length to edgel chains, and forms

a graph of tangents where edges connect each tangent to the 6 best neighboring tangents,

and each edge is assigned a link likelihood based on rectilinear completion features. The

maximum likelihood cycle in the graph is found by an efficient solution to the shortest-

paths problem between an edge’s vertices for every edge. Cycles are found quickly,

however the objective is biased towards shorter cycles.

The spectral method of Zhu et al., 2007 [125] also uses shortest-paths to find closed

contours, but in an abstract space defined by the first complex eigenvectors of a modified

edgel affinity matrix. Representing the eigenvector’s entries on the complex plane, the

method looks for a circular structure among the entries that corresponds to a closed



Chapter 2. Related Work 23

contour.

A unique approach is taken by the convexity method of Jacobs, 1996 [47]. Directed

line segments are fitted to edgel chains, and gap line segments are inserted between

existing line segments. A backtracking algorithm explores promising extensions to paths

of line segments while enforcing a global convexity constraint over the line segments. As

a non-accidental cue, convexity encourages figure-ground separation even in the absence

of other cues. However, since not all objects appear convex, the method suffers from low

recall.

Jermyn & Ishikawa, 2001 [49] proposes a class of energy functions of cycles on graphs

that have efficient global solutions. The energy function takes a ratio form with a numer-

ator that encourages the boundary slope to be orthogonal to an underlying vector field,

normalized by the boundary length. A discrete minimization algorithm is given that

computes the global minimum in polynomial time, along with an alternative algorithm

of lower complexity for a denominator of restricted form. The method is optimal for a

general class of energies, however its effectiveness depends on reliable image features.

Contour continuity is a boundary regularity that influences contour grouping. As an

enclosure of a region, contour closure is an important grouping cue, but open contours

can also be used for higher-level processing. A drawback of contour-based methods,

however, is a reliance on an accurate contour map, which is difficult to obtain without

higher-level knowledge itself. Additionally, potentially useful information from the region

interior does not enter the grouping process at all.

2.3 Region-based grouping

While contour-based methods focus on geometric relations among contour pixels, region-

based methods exploit photometric relations among pixels to cluster them together. Typ-

ical approaches use colour and texture similarity, often in the form of pairwise affinities,
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to group pixels together.

2.3.1 Image partitioning

Feature vector clustering. Viewing an image of pixels as a set of feature vectors,

a clustering algorithm can be applied to obtain a partition into groups. For example,

the EM algorithm can be used to fit a mixture of K Gaussians to the feature vectors.

The method, however, is sensitive to initialization and requires K to be supplied. A

more flexible method called mean-shift in Comaniciu & Meer, 2002 [20] finds individual

densities without requiring K. A specified kernel function is used at each iteration to

weight nearby points for re-estimating the mean, and two points belong to the same

cluster if their mean-shift trajectories converge to the same mean. While the feature

space approach allows a range of powerful tools to be applied to segmentation, they are

not the best at expressing boundary criteria between segments.

Watershed transform. A graph-theoretic view of pixels as vertices encodes adja-

cency relations on edges which, for example, can be placed to connect each pixel to 4

or 8 neighboring pixels. The watershed transform computes a segmentation map from

an input map by viewing it as an elevation map. The transformation is computed by

finding pixels that locally minimize the elevation, and “flooding” the elevation surface

into disjoint basins that are eventually bounded by watersheds. In the linear-time im-

plementation of Vincent & Soille, 1991 [118], pixels are sorted and labelled in order of

increasing elevation. Each iteration at a given elevation preserves the property that all

pixels below the given height are already labelled by basin membership. New pixels are

enqueued to gradually expand the basin by letting pixels neighbouring existing basins

take on the same label, and pixels found to be equidistant from two minima are labelled

as watershed boundaries. Despite its efficiency, the transform will produce as many over-

segmented regions as the number of local minima in the elevation map, and thus its

effectiveness crucially relies upon the input map.
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Fig. 11. Watershed Transform. Left: Image. Middle Left: Boundary strength E(x, y). We regard E(x, y) as a
topographic surface and flood it from its local minima. Middle Right: This process partitions the image into catchment
basins P0 and arcs K0. There is exactly one basin per local minimum and the arcs coincide with the locations where
the floods originating from distinct minima meet. Local minima are marked with red dots. Right: Each arc weighted by
the mean value of E(x, y) along it. This weighting scheme produces artifacts, such as the strong horizontal contours
in the small gap between the two statues.

and spectral signals:

gPb(x, y, θ) =
�

s

�

i

βi,sGi,σ(i,s)(x, y, θ) + γ · sPb(x, y, θ)

(14)
We subsequently rescale gPb using a sigmoid to match
a probabilistic interpretation. As with mPb (10), the
weights βi,s and γ are learned by gradient ascent on the
F-measure using the BSDS training images.

3.4 Results
Qualitatively, the combination of the multiscale cues
with our globalization machinery translates into a re-
duction of clutter edges and completion of contours in
the output, as shown in Figure 9.

Figure 10 breaks down the contributions of the mul-
tiscale and spectral signals to the performance of gPb.
These precision-recall curves show that the reduction of
false positives due to the use of global information in
sPb is concentrated in the high thresholds, while gPb
takes the best of both worlds, relying on sPb in the high
precision regime and on mPb in the high recall regime.

Looking again at the comparison of contour detectors
on the BSDS300 benchmark in Figure 1, the mean im-
provement in precision of gPb with respect to the single
scale Pb is 10% in the recall range [0.1, 0.9].

4 SEGMENTATION

The nonmax suppressed gPb contours produced in the
previous section are often not closed and hence do not
partition the image into regions. These contours may still
be useful, e.g. as a signal on which to compute image
descriptors. However, closed regions offer additional

advantages. Regions come with their own scale estimates
and provide natural domains for computing features
used in recognition. Many visual tasks can also benefit
from the complexity reduction achieved by transforming
an image with millions of pixels into a few hundred or
thousand “superpixels” [67].

In this section, we show how to recover closed con-
tours, while preserving the gains in boundary quality
achieved in the previous section. Our algorithm, first
reported in [4], builds a hierarchical segmentation by
exploiting the information in the contour signal. We
introduce a new variant of the watershed transform
[68], [69], the Oriented Watershed Transform (OWT), for
producing a set of initial regions from contour detector
output. We then construct an Ultrametric Contour Map
(UCM) [35] from the boundaries of these initial regions.

This sequence of operations (OWT-UCM) can be seen
as generic machinery for going from contours to a hier-
archical region tree. Contours encoded in the resulting
hierarchical segmentation retain real-valued weights in-
dicating their likelihood of being a true boundary. For a
given threshold, the output is a set of closed contours
that can be treated as either a segmentation or as a
boundary detector for the purposes of benchmarking.

To describe our algorithm in the most general setting,
we now consider an arbitrary contour detector, whose
output E(x, y, θ) predicts the probability of an image
boundary at location (x, y) and orientation θ.

4.1 Oriented Watershed Transform
Using the contour signal, we first construct a finest
partition for the hierarchy, an over-segmentation whose
regions determine the highest level of detail considered.

Figure 2.2: Arbeláez et al., 2011 [4]: Given a colour image, the gPb contour map is
computed (in heat map colours) and the watershed transform run from the local minima
(red points).

The method of Arbeláez et al., 2011 [4] uses the watershed transform to produce a

hierarchical segmentation. The gPb detector [80] is used to compute the input, which

yields an oversegmentation into small watershed regions, which are then greedily merged.

Affinities between regions depend on contour strength, and are refined by enforcing ori-

entation consistency between contours and watershed arcs. The method produces a

hierarchy of nested segmentations ranging from fine to coarse scales.

Graph partitioning. Graph-theoretic approaches commonly solve a graph parti-

tioning problem to compute a segmentation. For example, a bipartition of vertices into

figure and ground segments can be computed by solving the source-sink minimum cut

problem in polynomial-time. The solution is efficient, but this approach requires the

source and sink vertices to be supplied by the user, though there are methods that auto-

matically propose source-sink pairs, e.g. using spectral embedding techniques in Estrada



Chapter 2. Related Work 26

et al., 2004 [30]. Since the cut cost is biased toward small regions, however, a disadvantage

of this approach is that it can lead to oversegmentation.

The normalized cut cost of Shi & Malik, 2000 [103] removes the bias and is approxi-

mately minimized by a spectral clustering algorithm. (There are faster approximations to

the intractable problem, such as the linear-time recursive coarsening method of Sharon

et al., 2000 [102], however the spectral approximation is more widely known.) The

generalized eigenvalue problem for a modified affinity matrix is solved, and the second

eigenvector is used to compute a bipartition, and resulting partitions are recursively

bipartitioned. The affinity matrix captures brightness, colour, and texture similarity be-

tween two elements, and has also been extended to account for the intensity gradient in

Leung & Malik, 1998 [64]. A pairwise affinity between two points is computed in terms

of the maximum response along the line joining the two elements. Curvilinear continu-

ity is incorporated by propagating scores along the contour and updating the affinities.

The framework is general and has a polynomial-time solution with appealing theoretical

properties, however the time complexity requires sparse affinities, limiting the scope over

which to compute perceptual cues.

An efficient O(N logN) method is proposed in Felzenszwalb & Huttenlocher, 2004

[32] that greedily merges elements together. The algorithm iterates through all edges in

sorted order, maintaining a forest of minimum spanning trees (MSTs). An edge joins

two MSTs only if its weight does not increase a “regularized” local variation of either

MST. The algorithm is fast, but the resulting partitions tend to undersegment objects

over faint boundaries.

Energy minimization. A general approach segments an image by assigning a label

y to each element x ∈ X that indicates its membership to a particular segment (y ∈ {1, 0}

in the case of figure-ground labeling), by minimizing an energy function f(Y ;X) that

maps each possible labeling Y of X to its energy. A common form decomposes f into

potential functions of up to two labels at a time, where each unary potential f(yi;xi)
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assigns a cost for labeling xi (e.g. via a discriminative classifier with colour features), and

each binary potential f(yi, yj;xi, xj) assigns a cost for combinations of neighboring labels

(e.g. to favour contrast-sensitive smoothness). Kolmogorov & Zabih, 2011 [54] showed

that when an energy of binary-valued labels decomposes into submodular potentials of

order 2 or 3, the energy can be globally minimized by solving source-sink minimum cut.

Efficient algorithms for other forms of energies exist, but a low-order decomposition is

generally needed to get an efficient solution, trading off the representational power of

higher-order potentials. While one can experiment with algorithms for denser connectiv-

ity and higher-order potentials, an alternative strategy is to label entire superpixels at a

time, not only reducing the number of labels but providing spatial scope for higher-level

cues.

2.3.2 Superpixel oversegmentation

While segmentation methods can quickly provide a compact representation of an image,

unfortunately, they are generally marred by over- and undersegmentation errors. These

errors reduce the suitability of the resulting segments for direct use as object hypotheses.

Segmentation methods, however, remain useful in the form of “superpixels”, which places

high importance on boundary recall, and thus will allow for as much oversegmentation

as needed in order to eliminate as much undersegmentation as possible. In other words,

even though precision is lowered by spurious boundaries, superpixels have the advantage

of potentially capturing all boundaries in an image.

Some of the above methods, such as Felzenszwalb & Huttenlocher, 2004 [32] and

Arbeláez et al., 2011 [4] are used to compute superpixels by biasing parameters toward

finer segments, while superpixel algorithms typically enforce compact, uniform size by

adapting one of the methods above. For example, the feature space clustering method

SLIC of Achanta et al., 2010 [1] is based on k-means; the graph-theoretic approach of

Ren & Malik, 2003 [95] is based on normalized cuts; and the region-growing method of
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2 Achanta et al.

Fig. 1. Image segmented using our algorithm into superpixels of (approximate) size 64,
256, and 1024 pixels. The superpixels are compact, uniform in size, and adhere well to
region boundaries.

the x, y pixel coordinates. A novel distance measure enforces compactness and
regularity in the superpixel shapes, and seamlessly accomodates grayscale as
well as color images. SLIC is simple to implement and easily applied in practice
– the only parameter specifies the desired number of superpixels. Experiments
on the Berkeley benchmark dataset [11] show that SLIC is significantly more
efficient than competing methods, while producing segmentations of similar or
better quality as measured by standard boundary recall and under-segmentation
error measures.

For many vision tasks, compact and highly uniform superpixels that respect
image boundaries, such as those generated by SLIC in Fig. 1, are desirable. For
instance, graph-based models such as Conditional Random Fields (CRF) can see
dramatic speed increases when switching from pixel-based graphs to superpix-
els [3, 7], but loose or irregular superpixels can degrade the performance. Local
features such as SIFT extracted from the image at superpixel locations become
less meaningful and discriminative if the superpixels are loose or irregular, and
learning statistics over cliques of two or more superpixels can be unreliable.
This effect can be seen when we compare the performance of SLIC superpixels
to competing methods for two vision tasks: object class recognition and medical
image segmentation. In both cases, our approach results in similar or greater
performance at a lower computational cost in comparison to existing methods.

2 Background

In this section, we briefly review existing image segmentation algorithms and
focus on their suitability for producing superpixels. Not all them were designed
for this specific purpose and may lack the ability to control the size, number, and
compactness of the segments, but we include them in our discussion nonetheless.
We broadly classify superpixel algorithms into graph-based and gradient-ascent-
based. Our survey, summarized in Table 1, considers the quality of segmentation,
and the ability of these algorithm to control the size and number of superpixels.

Figure 2.3: Achanta et al., 2010 [1]: Superpixels of increasing uniform size.

Levinshtein et al., 2009 [69] is based on geometric flow. Superpixels offer a compact,

“lossless” representation of an image that reduces the grouping complexity of further

processes.

2.4 Region proposals

Region proposals is a framework that, unlike the segmentation methods discussed above,

aims to produce multiple groupings (i.e., figure-ground segmentations) rather than a

single image partition. This can be motivated from the principle of least commitment,

which states that decisions should be delayed for as long as needed, so that when they are

taken their probability of correctness is maximized. In the context of bottom-up grouping,

one can argue that image partitioning requires a final decision to assign each pixel to a

unique segment without using higher-level information (e.g., an object category), thus

violating the principle. The correct approach would therefore be to produce multiple

groupings as a hypothesis set, and propagate these forward to a subsequent stage that
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Figure 2.4: Clarifying the difference from grouping hypotheses from segmentations: a)
in input image, b) a segmentation, and c) region proposals. Note that segmentation and
regprops both provide hypotheses of objects at different image locations, segmentation
forces a fully unambiguous bottom-up grouping of pixels, while regprops captures the
ambiguity inherent in bottom-up grouping by allowing groupings to overlap.

does have access to higher-level information (e.g., an object detector). See Figure 2.4 for

a visual comparison of region proposals and image partitioning.

Viewing region proposals as object hypotheses for recognition, we begin by broadening

our scope to include methods designed for sliding window detectors. Among these, the

objectness detector of Alexe et al. [2] computes low-level features on superpixels [32] to

score sampled image boxes. Selective search of Uijlings et al. [116] outputs boxes that

bound regions generated from agglomerative clustering of superpixels [32]. The method

accumulates a pool of regions over each step of region-merging until all regions are merged

together, and ensures diversity by pooling results over multiple color and texture feature

spaces. The method is very fast, yet is based on low-level appearance alone.

Arbelaez et al. [5] produces regions by merging superpixels of [4] over multiple scales.

The method considers a limited number of all pairs, triples, and quadruples of adjacent

superpixels. Our approach is different in that we operate on a single layer of compact

superpixels, and define a set of low-level and mid-level cues that quantify the likelihood

of grouping.

The shape sharing method of Kim & Grauman [51] matches part-level regions in a

given image to a bank of exemplars, which project object-level information back into

the image to help with segmentation. The category-independent proposals of Endres &

Hoiem [29] develops a CRF model to label superpixels based on segment seeds. The
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resulting region proposals are ranked using structured learning on grouping cues. The

energy potentials are pairwise and submodular, and inference is done by graph cuts.

While we use a similar procedure to generate regions, we combine mid-level cues at the

front-end without seeding from a fixed hierarchical segmentation.

The CPMC method of Carreira & Sminchisescu [15] generates regions directly from

the image rather than deriving them from a fixed segmentation. The method solves mul-

tiple parametric min-cut instances over color seeds. Regions are re-ranked by regressing

on overlap with region-scoped features, including mid-level features such as convexity

and eccentricity. The emphasis is on ranking rather than the front-end grouping, which

samples color seed models over millions of pixels. Our approach is qualitatively differ-

ent from the above methods as we focus on bottom-up grouping, however our mid-level

front-end is complementary to the ranking stage.

2.5 Grouping by symmetry

Contour- and region-based methods typically resolve ambiguity using low-level cues such

as contour continuity and colour and texture similarity. These cues, however, do not ac-

curately constrain the grouping problem on their own, and a large number of hypotheses

must be provided to achieve sufficient detection recall. It is thus interesting to pur-

sue higher-order cues, such as symmetry, which can verify the strength of lower-level

hypotheses without assuming object-specific knowledge.

Symmetry combines lower-level elements such as region and contour features, ideally

into part- or object-level scopes that lead directly to part or object representations. The

classic medial axis transform (MAT) in Blum, 1967 [10] composes an object from its

symmetric parts, and leads to powerful representations as surveyed in Siddiqi & Pizer,

2008 [106]. The higher-order scope of symmetry, however, while difficult to encode into a

computationally efficient framework, has been shown to improve performance in transfer



Chapter 2. Related Work 31

learning [110].

Notions of reflectional symmetry can be traced back to the MAT: in the set of maxi-

mally inscribed discs that defines the transform, each disc is tangent to a pair of points

on the shape’s boundary. While the MAT is an invertible transform that can serve as a

powerful shape representation [106], it suffers from high sensitivity to slight changes in

the boundary. A stable alternative to the MAT is offered by smoothed local symmetries

(SLS) in Brady & Asada, 1984 [12], in which a pair of corresponding boundary points is

related by a line segment. Common to these symmetry transforms, however, is the un-

realistic assumption that a closed region is already available for applying the transform.

Hence, these methods are not directly useful for detecting symmetry in real, cluttered

images. Nonetheless they are conceptually a part of different models for symmetry de-

tection, which we divide into three groups: 1) reflection axis models, 2) medial point

models, and 3) symmetric shape models.

2.5.1 Reflection axis models

The first type of symmetry model describes an axis of reflection that relates pairs of

elements across the axis. An element can be any local feature or a contour point. Hav-

ing generated a set of hypothetical pairs of available elements, each pair is then used as

evidence for a specific axis. As an example, Mohan & Nevatia, 1992 [84] finds symmetric

pairs of curves. After grouping edgels into curves, pairs are hypothesized by considering

all possible pairs, and using symmetry-based heuristics to prune out implausible pairs.

Each pair defines an axis, which is encoded as a node in a constraint satisfaction net-

work. Each node is weighted by the quality of the axis, and a global cost function is

formulated over the network for selecting a consistent set of axes. Similarly, Saint-Marc

et al., 1993 [97] uses a B-spline parameterization of curves to calculate symmetry from

each pair of curves, including skew symmetry axes. These approaches both work with

curves and therefore reduce grouping complexity and take advantage of their geometric
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Figure 2.5: Cham & Cipolla, 1995 [17]: Given an intensity image, tangent lines from all
oriented edgels are intersected, producing points on possible symmetry axes.

representation, but they depend on accurate bottom-up grouping of contours, a difficult

problem in itself.

Other methods work directly with contour points and find a sequence of point pairs

along the same axis. Cham & Cipolla, 1995 [17] use a voting framework in which each

pair of contour points (sampled from B-spline curves) assigns linear axis parameters and

an angle of skew to a local skewed symmetry field. An additional heuristic is applied using

a linear-time voting scheme for an axis based on intersecting tangent lines. While the

pruning heuristic is fast, it does not respond to parallel symmetry. Taking a different view,

Liu et al., 1998 [74] frames an optimization problem over sequences of pairs of edgels. All

possible pairs are captured as graph vertices, and edge weights favour smoothness along

the axis and boundary, axis perpendicularity, and gradient magnitude. The solution to

the shortest-paths problem is used to return an optimal sequence, however a manual

initialization is required.

An intermediate approach works with line segment approximations of contours. Ylä-

Jääski & Ade, 1996 [124] finds a sequence of line segment pairs (LSP) by defining a series

of pruning rules and agglomeratively grouping combinations of LSPs. Stahl & Wang,

2008 [109] similarly finds a sequence of trapezoids, defined by line segment pairs, and
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the product of the scaling Sij and distance Dij components
as follows [9]:

Mij = Sij ×Dij

= exp(
−|si − sj |

si + sj
)× exp(

−d2
ij

2max(dij)
) (4)

Feature point pairs of similar size and shorter distance
get higher weights than others. This 3D parameter space
distribution is convolved with a Gaussian kernel to build
the density plot. Local maximum points indicate dominant
axes. If the glide-reflection axis of input image is straight,
the voting in the 3D parameter space should be centered
around a point-like local maxima in (rij , φaxis).

Figure 6 shows the 3D parameter space examples of the
four cases of glide-reflection symmetries. Reflection is de-
tected near Tij = 0 (red circle of Figure 6 (a)). Glide-
reflection has single non-zero Tij value (red circle of Figure
6 (b)) while locally deformed glide-reflection has multiple
(two) non-zero Tij values (One is positive and the other is
negative in Figure 6 (c)). In Figure 6 (d), three local max-
imum locations on the Tij = 0 plane support a curved re-
flection axis connecting three local reflection symmetries.
These special cases form the basic building blocks for the
general curved glide-reflection symmetry case.

4. Curved Reflection Axis Detection
From an unsegmented image without any previous

knowledge, we need to extract all potential local corre-
sponding matches for glide-reflection symmetry. When the
glide-reflection axis is curved, the axis does not appear as
a single point in the 3D parameter space, as it does with a
straight axis case. A curved axis is considered as a sequence
of short straight glide-reflection axes having different yet
smoothly varying orientations and different translation T s.
Therefore, a curved axis can be estimated by a set of con-
tiguous points in the 3D parameter space. Based on the de-
tected local glide-reflection matches, our algorithm seeks a
set of local axes supporting a curved glide-reflection sym-
metry.

4.1. Axes Grouping in 3D Parameter Space

In real world images, multiple local straight glide-
reflection axes of different orientations and T s form a single
curved glide-reflection. Figure 7 (b) shows seven local axes
(yellow lines) supporting a curved axis detected by our al-
gorithm (Figure 7 (f)). First we analyze reflection symmetry
axes density in the 3D parameter space (Figure 7 (c)). We
find the local maximum points on this 3D parameter space
density which gives seven local axes. Each red circled set
of matching pairs in Figure 7 (c) corresponds to each local
axis shown in 7 (b). Note that they have two different types
of translation components (Ta and Tb) which can be clearly

(a)Input (b)Seven local axes

(c)3D parameter space (d) 2D (rij , φaxis) space

(e)2D density (f)Output

Figure 7: An example of curved glide-reflection axis de-
tection: Blue points in (b) are middle points of supporting
matched pairs for each local axis. Yellow lines are local
axes. 3D parameter space (c) shows each detected local
axis (red circled). They have two different types of trans-
lation components (Ta and Tb) which are shown in (b).

detected in our 3D parameter space (Figure 7 (c)). After
that, local axes near (with respect to the Euclidean distance
of (rij , φaxis) coordinate) each other are grouped. This can
be done in a 2D density plot (Figure 7 (d)) obtained by cu-
mulating points along the T -axis of the 3D parameter space
density. As a result, we find a series of local straight axes
having contiguous rij and φaxis values. Figure 7 (e) shows
a detected axes group corresponding to a curved glide re-
flection axis in Figure 7 (f).

Figure 2.6: Lee & Liu, 2012 [57]: Votes casted (blue points) from glide symmetry units
form dense clusters (red circles), and when projected into 2-space can be easily grouped.

gap-filling quadrilaterals, and incorporates this into a more principled, ratio-cut cost that

is globally minimized. While the cost function incorporates closure, an important cue, it

is still built on a prohibitively large number of possible trapezoids and quadrilaterals.

With the advent of repeatable interest point detectors and their matching capabil-

ity, a line of methods uses symmetry to group them. Loy & Eklundh, 2006 [77] use a

voting framework based on matching SIFT features within the same image. From all

possible pairs of SIFT features, the best matching “mirrored” pairs are selected, and

each pair votes for a linear axis. Lee & Liu, 2012 [57] builds on this method by handling

glide reflection using an extra translation parameter, and curved symmetry with piece-

wise linear approximation. While the distinctiveness of local features offers an effective

way to narrow down promising pairs, they critically depend on interest point detection,

which typically does not respond well in regions of low-texture. On the other hand,

computing features more densely will explode the pairing complexity. Common to all

approaches using an axis of reflection is the challenge of enumerating promising pairs of

elements. Without the help of other cues, the number of hypotheses grows quadratically,

constraining the efficiency of the grouping algorithm.



Chapter 2. Related Work 34

2.5.2 Medial point models

The medial point approach to symmetry detection decomposes a symmetric structure

into a locus of maximal discs, and groups together disc hypotheses that lie on the same

medial axis. The detected symmetric parts can then be grouped to compose an object.

Methods in this category vary in the structure of the underlying discs. Filter-based

methods detect disc hypotheses by thresholding the response at every point. For example,

Crowley & Parker, 1984 [23] computes a pyramid of filter responses, over which peaks

and ridges are located, corresponding to medial axes, and linked into a tree structure.

Shokoufandeh et al., 2006 [104] presents a recognition framework that uses a directed

acyclic graph over a multi-scale blob decomposition of an image. To reduce grouping

complexity, medial point approaches can compute disc hypotheses using interest point

detectors like the auto-scale blobs and ridges of Lindeberg, 1998 [72], and affine-invariant

interest point features of Mikolajczyk & Schmid, 2002 [83]. The initial step of proposing

disc hypotheses critically affects the performance of medial point approaches. Since many

filters are point-based, they tend to discard region boundary information, yielding both

false positives and false negatives.

The more recent method of Tsogkas & Kokkinos, 2012 [114] defines a geometric filter

composed of a 3-rectangle template, which is used to compute the probability of a skeleton

point at every pixel using a classifier with symmetry-based features. A new dataset with

annotated skeleton points was introduced, used to train the template classifier and to

demonstrate an improvement in computing a skeleton filter map. While the method

is parallelizable, the bottleneck lies in trying all possible orientations and scales of the

template.

An alternative way of generating disc hypotheses is by detecting regions corresponding

to discs. For example, the method of Levinshtein et al., 2009 [65] hypothesizes discs

directly from a superpixel segmentation of the image. Superpixel disc hypotheses are

represented by a graph, and a trained affinity is assigned between adjacent discs, allowing
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Fig. 2. Left: Rectangles used to rapidly calculate sums in integral images. Rotation of
the filters on the original integral image I is equivalent to filters aligned with axes x−y
in a rotated version of the image, IR. Scale s is equal to a

2
(typically a = 3 · b). Right:

Feature contents of the middle part show high dissimilarity to the contents of the left
and right parts. Therefore the cue strength in the vertical diameter (in yellow) is high.

for symmetry detection. One significant difference in our setting is that we need
to consider more and also larger sizes for the pixel neighborhoods used for feature
extraction. We address this problem by creating a Gaussian pyramid of the orig-
inal image and performing the feature extraction at multiple scales. To alleviate
the additional computational cost of this multi-scale analysis, we replace filter-
ing operations with integral image-based computations [32], and obtain features
at various orientations by creating multiple integral images for rotated versions
of the original image [33]. In the following, we describe in detail each of the
individual features we use.

4.1 Histogram-Based Operators and Features Using Integral Images

We consider three adjacent rectangles of side lengths a and b, labeled as shown
in Fig. 2; the middle rectangle is centered at location (x, y) on the image plane.
For any two such rectangles we define a dissimilarity function Hi,j(x, y, θ, s),
where indices i, j ∈ {1, 2, 3} indicate which two rectangles are being compared,
θ denotes orientation, and s = a/2 denotes scale.

Following [2], to compute H first we create a histogram representation of the
empirical distribution of some feature value in the pixels included in each rect-
angle. Then we use the χ2-distance function [34] to compare the two histograms,
defined for two histograms g and h with K bins as

χ2(g, h) =
1

2

K∑

k=1

(g(k) − h(k))2

g(k) + h(k)
. (1)

Figure 2.7: Tsogkas & Kokkinos, 2012 [114]: A symmetry template matched at a given
point at the correct scale and orientation.

discs to be grouped by a solution to a graph partitioning problem. Because symmetric

parts exist at unknown scales, the graph partitioning step is repeated over superpixels of

different scales. As with the filter-based methods, performance depends on the quality

of the underlying superpixels.

The method of Narayanan & Kimia, 2012 [86] detects medial fragments which, like

superpixels, roughly correspond to maximal discs. They are computed by the shock

graph defined by the contours of the entire image. Due to the presence of false positives

and false negatives in contour maps, however, the resulting medial fragments are over-

and undersegmented, and the method merges and splits them according to a pre-defined

set of transformations such as gap completions, loop removals, and occlusion removal. A

containment graph manages the exponential number of possible series of transforms by

bounding the likelihood and detecting duplicates. A limitation of this method is that the
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number of transformations required to detect a part is highly sensitive to contour noise.

2.5.3 Symmetric shape models

The third and final type of symmetry model is a high-level model of a symmetric shape.

It is high-level in the sense that it abstracts the set of symmetric elements into a specific

class, and can therefore narrow down the set of possible objects that it belongs to.

Superpixels are useful in this approach, providing a reduced set of oversegmented regions

to combine into hypothetical shapes. While all possible hypotheses should, in theory,

be tested before selecting the most favourable ones, the practical challenge faced by this

approach is the effective pruning of implausible hypotheses in order to keep the search

space down to a manageable size.

An example method taking this approach is Sala & Dickinson, 2010 [98], which

matches cycles of oversegmentation boundaries to parts from a pre-defined vocabulary of

symmetric part shapes. In general, models are not limited to symmetric shape, and the

category can be expanded to include similar methods. For example, Sclaroff & Liu, 2001

[100] learn a statistical deformable polygon model and apply it to combinations of over-

segmented regions. Despite ruling out implausible combinations of regions by enforcing

adjacency and smoothness across the boundary, the method still finds a difficult trade-off

between speed and accuracy.

2.6 Conclusion

Methods in computer vision have progressed from clean, segmented inputs to natural

images of scenes containing multiple cluttered objects. Likewise, object recognition can

now handle important sources of variability such as part deformation. More recently, we

have seen a shift from sliding window proposals to region proposals of arbitrary shape and

size. The assumption of object-specific knowledge, however, has deflected attention away
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from the role of object-independent knowledge, resulting in bottom-up grouping methods

that need to return a large quantity of proposals to achieve satisfactory recall. One way

to move forward is to develop methods to generate a smaller number of more reliable

proposals. The power of higher-level cues suggests a path to pursue, however more

research is needed on how to incorporate these cues without giving up computational

efficiency.
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Shape-based learning and detection

As outlined above, we begin with a chapter on object categorization as a motivating

context for our main thesis. Learning visual category models from training images is

now standard practice in the object categorization community [33, 38]. Such systems

typically rely on a strong degree of supervision, including cluttered scenes with labeled

bounding boxes placed around objects of interest, or alternatively, scenes in which the

labeled object of interest is largely front and centre (allowing the image boundary to

serve as an effective bounding box). However, as the scope of the recognition task scales

up to many thousands of objects, the burden of manually annotating the large number

of required training images becomes prohibitive.

Captioned images are ubiquitous on the web and in certain image collections, and offer

a powerful semi-supervised mechanism for learning category models without the need for

labeled bounding boxes or image cropping. Unfortunately, any given image-caption pair

may be unreliable, providing very weak or even erroneous training data. For example,

the caption’s nouns may refer to objects that don’t appear in the image, while the more

salient objects in the image might not even be referred to in the caption. However, across

a large training set, recurring correspondences between particular objects appearing in

the images and particular nouns appearing in the captions of those same images can be

38
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apple, miss Piggy lake, swan, painting 

apple, Macintosh street, store, apple girl, lake, swan 

giraffe, nature, trip 

giraffe 

swan 

apple 

Figure 3.1: Given a set of captioned images of objects appearing in different positions
and scales, we learn named contour models without bounding boxes.

assumed to be salient. Such correspondences can therefore be analyzed to yield visual

category models as well as the names of those categories.

In [48], such a framework was proposed which learned structured visual object models

from captioned training data. A learned visual model was captured in a graph, in which

nodes represent SIFT features and edges represent spatial relations among the SIFT

features, including relative position, orientation, and scale. When applied to captioned

image collections, the choice of SIFT to characterize a node ultimately constrained the

system to learn the structure and names of exemplars rather than categories. For exam-

ple, the system learned the logos (and team names) of NHL teams from captioned action

images (containing players whose jerseys contained the logos) taken from the NHL web-

site, and learned the models and names of famous buildings and landmarks from around

the world from captioned image landmark collections. The question we pose is whether

such a framework can be extended to learn named categorical models based on shape

rather than appearance.

Extending the framework of Jamieson et al. [48] poses a number of significant chal-

lenges, including 1) the choice of a suitable structured shape representation that can

accommodate within-class deformation, articulation, and occlusion, and 2) coping with
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the tremendous ambiguity of local shape features relative to appearance-based features

such as SIFT. For a categorical shape representation, we adopt and extend the contour

representation introduced by Ferrari et al. [37], replacing the star graph with a more

generic graph with spatial relations between any pair of nodes, and adding multi-scale

feature extraction. Like Jamieson et al., we “grow” visual models that repeatedly co-

occur with caption words across training images. However, for any pair of spatially

related contour features representing an initial model, there may be many false positives

across training images due to their inherent lack of specificity compared to appearance-

based features. As a result, we introduce a powerful bottom-up heuristic that can focus

search for recurring shape features that are likely to represent the boundaries of objects.

We evaluate our approach head-to-head with Jamieson et al., and demonstrate that

on a standard benchmark, it clearly outperforms Jamieson et al. in terms of learning

visual categories in which shape is more invariant than appearance. Since we have based

our shape representation on that of Ferrari et al., we demonstrate that for the task of

learning visual models with correct object labels but without the aid of bounding boxes,

our approach outperforms Ferrari et al.’s approach, which depends heavily on the strong

supervision offered by a bounding box. Finally, we demonstrate the robustness of our

approach under image caption noise.

3.1 Related Work

There is a vast literature on language-vision integration, and the related problems of

object category modelling, recognition and localization. While it is beyond the scope of

this chapter to provide a full review of these topics, we will focus on the two subfields

most related to our work: 1) using language or text to discover associations between

visual and textual features, and 2) weakly- or semi-supervised object category learning

using part-based models in support of image annotation.
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Automatic image annotation systems attempt to discover correlations between words

and visual features in a set of image-text pairs, e.g., Barnard et al. [7] and Duygulu et

al. [27]. Such systems typically model objects as a mixture of appearance-based features

in which common configurations are not captured by explicit spatial relations but rather

by co-occurrence statistics, e.g., Carneiro et al. [14], Monay and Gatica-Perez [85], and

Quattoni et al. [93]. The relatively high dimensionality of appearance-based features,

e.g., SIFT, means that image features are relatively unambiguous and therefore explicit

relations are often unnecessary. The most similar work to ours is Jamieson et al. [48],

whose framework used language to recover an explicit graph-based structural appearance

model from captions training images. While the structural model captured explicit re-

lations, its reliance on appearance-based local features rendered it far more suitable for

learning named exemplars rather than named categories. We attempt to extend that

framework to support the learning of visual object categories based on a structural shape

representation, which is far more invariant to within-class variation than a structured

appearance representation.

Learning a visual category model in the absence of image captions has received con-

siderable attention from the recognition community. Most current approaches assume

that bounding boxes around the objects are given [33, 92, 38]. In our domain, we want

to avoid such strict supervision, and learn objects from cluttered scenes without any a

priori information about location and scale. Moreover, labeling is assumed to be noisy in

the sense that a noun in the caption may or may not refer to an object in its associated

image, and an object in the image may or may not be referred to in the caption. Given

coarse location and scale information, a number of frameworks have learned structured

models in terms of parts and relations without requiring part labeling [22, 35, 6]. How-

ever, most of these approaches, like Jamieson et al. [48], rely on the distinctiveness of

local appearance-based features, such as image patches or SIFT, because such features

allow the search space to be aggressively pruned, thereby reducing the complexity of the
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task. Furthermore, [22, 35, 6] constrain object models to a star structure, while in our

work object features can be connected using a denser graph whose number of vertices

and edge structure are inferred from images without supervision.

There are a few approaches which attempt to learn object models without the strong

supervision provided by a bounding box. For example, Todorovic and Ahuja [112] propose

a powerful framework for unsupervised modelling based on tree matching using a region-

based object representation. Lee and Grauman [62] perform object discovery over images

of multiple categories, using matching local appearance patches to anchor an initial set

of edge fragments. In our approach, we do not rely on sparse discriminative features,

and instead use only dense contour features which capture object categories better. Both

Leordeanu et al. [63] and Payet and Todorovic [88] use only shape features to learn

object models with weak supervision. In [63], object models consisting of hundreds of

fully interconnected features require class labels for learning, while in [88], clusters of

matching pairs of contour features and spatial relations are found in an unsupervised

manner. While our visual representation also consists only of contours, we take an

integrated approach where learning is guided by both bottom-up segmentation and image

caption text to achieve a comparatively efficient way to initialize visual clusters among

multiple categories. The key concept here is that in our approach, we focus on the

construction of only those models that are referred to (i.e., named) in the captions, as

opposed to mining a much larger space of possible regularities across a set of images,

regardless of whether they are salient or not.

3.2 Overview

Given a set of captioned images, we learn object models that co-occur with words, and

use the learned models to detect and annotate objects in uncaptioned images. In Section

3.3, we describe the object model, a graph in which vertices are local contour features
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and edges encode pairwise spatial relations between features. Section 3.4 describes how

object models are detected in an image by matching the model’s contour features to those

in the image. In a cluttered image, typically a large number of ambiguous features match

individually to model features, creating an intractable search space. Efficient detection

is achieved by using the model’s spatial relations to prune out unlikely matches.

Section 3.5 describes how we learn object models that co-occur with words. In a graph-

growing process, an initial model representing a small part of the object is iteratively

grown, primarily along the object’s boundary, to cover the object. Features found in the

vicinity of existing model matches are added to the model if they recur with spatially

consistent relations, thus making the model more object-specific and strengthening its

co-occurrence with the given word. When no more consistently recurring features can

be found in the vicinity, co-occurrence can no longer be improved and the final model is

returned.

Model growth strongly depends on the initial model representing a small part of the

object. Whereas in [48] a spatially related pair of appearance-based features was dis-

tinctive enough to represent a salient part, a related pair of contour features is relatively

ambiguous, i.e., a contour representation of an object part is often very similar to, and

thus easily confused with, contours from background clutter or even other objects. To

ensure that model growth begins from an object part, we use bottom-up segmentation

as a powerful heuristic to focus search on contours that are likely to represent an object

boundary.

3.3 Object model

An object model is denoted as M = (F, S), where M is a graph with a vertex set of

contour features F = {f1, . . . , fT} where T is unknown, and an edge set of pairwise

relations S ⊆ {sij : 0 ≤ i < j ≤ T}. Figure 3.2(a) shows an example of such a structure.
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(a) Object model graph (b) Model in-
stance

Figure 3.2: An object is modeled as a graph M over contour features F with pairwise
spatial relations S.

A (undirected) spatial relation sij between features fi and fj may exist for any feature pair.

To maintain a spatially coherent object description, we require that M be a connected

graph. Typically, a dense set of relations is learned for objects having spatially consistent

features and relations, resulting in a relatively distinctive model, while more deformable

and articulating objects result in a sparser, more flexible model.

Feature extraction and description. Local contour features are extracted from

an image using the method of Ferrari et al. [36]. Features are scale-invariant descriptions

of line-segment abstractions of image contours, where edgel-chains are partitioned into

line segments (e.g., Figure 3.2(b)). Because linear partitioning is scale-dependent, we

extract features at multiple scales to obtain a robust bottom-up description of an image.

Efficient matching (Section 3.4) and learning (Section 3.5) is facilitated by a discrete

vocabulary of codewords [36], whereby similar contour features are represented by the

same codeword. By performing feature comparisons at the codeword level, many feature

similarity computations are saved.

Spatial relations. A spatial relation sij encodes the distance uij, relative direction

vij, and relative scale wij between features fi and fj, i.e., sij = (uij, vij, wij). Letting xi

and si denote feature position and scale with respect to the image as in [36], respectively,
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the three components are defined as follows:

uij =
1

λ
||xj − xi|| (distance)

vij = arctan(xj − xi) (relative direction)

wij =
1

λ
(sj − si) (relative scale)

where λ(si, sj) normalizes for the feature scales [48].

While features and spatial relations originate from the image, the object model is

a prototypical description of the object using these elements, averaging over natural

variations present in example images, e.g., due to deformation or viewpoint variation.

The following section explains how the model matches to image features under these

variations.

3.4 Detecting objects

Occurrences of M = (F, S) are detected by matching model features F = {f1, . . . , fT}

to image features subject to spatial relations S. Due to occlusion and feature extraction

errors, only a minimum number of model features are required to match. To detect

occurrences in complex, cluttered images efficiently, features are matched sequentially,

using S to prune out unlikely combinations at each stage.

Each occurrence is associated with a detection score D that measures the confidence

of the match, and can be thresholded to obtain a level of precision. Suppose F ′ is a set

of image features which is a potential match to a set of model features F . The detection

score with respect to M is defined as a ratio of two quantities (similarly to [35]):

D =
p(F ′|M)

p(F ′|bg)
. (3.1)

The numerator is the probability that F ′ is a true instance of the object (approximated
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by M), while the denominator is the probability that F ′ is not an instance of the object.

We can prune out unlikely matches by testing D ≥ τ , where τ = 1 is a natural thresh-

old. While the quantity p(F ′|bg) determines the level of pruning, and is set independently

of the object, τ > 1 provides a tighter, object-specific threshold for D.

Let a partial matching be denoted using c, a list of T binary indicators, where ci is 1

exactly when the model feature fi is matched. We use F (c) ⊆ F to indicate the subset of

matching model features, and S(c) ⊆ S to indicate the subset of model relations between

any pair of features in F (c). Furthermore, given a set of matching image features F ′, let

S ′ denote the set of pairwise relations among F ′.

We let the object probability p(F ′|M) factorize into a feature and spatial component:

p(F ′|M) = p(F ′|F )p(S ′|S). (3.2)

Next, we proceed to define the two components. Let f ′ denote the image feature matching

the model feature f . The feature component p(F ′|F ) is defined only over f ∈ F (c), as

follows:

p(F ′|F ) =
∏

f∈F (c)

p(f ′|f), (3.3)

where p(f ′|f) is a Gaussian density over the feature dissimilarity measure d(f ′, f) given in

[36], with variance σ2
f = 2.0 and zero mean. The dissimilarity d(f ′, f) compares two con-

tours using their line segment abstractions, in particular their internal relative positions,

orientations, and lengths.

The spatial component p(S ′|S) considers only model relations between matched fea-

tures, i.e., sij ∈ S(c). Given a pair of matching features, let s′ij denote the spatial relation
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in the image corresponding to sij. The spatial component is then defined as:

p(S ′|S) =
∏

sij∈S(c)

p(s′ij|sij), (3.4)

where p(s′ij|sij) factors into its distance, relative direction, and relative scale components:

p(s′ij|sij) = p(u′ij|uij)p(v′ij|vij)p(w′ij|wij), (3.5)

each of which is a Gaussian density with means uij, vij, wij and fixed variances σ2
u =

0.35, σ2
v = 0.3, σ2

w = 0.8, respectively. The spatial component accounts for variations in

spatial relations, e.g., due to deformation or viewpoint.

The background probability p(F ′|bg) represents a pruning threshold and is similarly

composed only of the matching components as follows:

p(F ′|bg) =
∏

f∈F (c)

p(f ′|bgf )
∏

sij∈S(c)

p(s′ij|bgs), (3.6)

where p(f ′|bgf ) and p(s′ij|bgs) are fixed values that in the product offset the ratio D.

Given the above definitions, the detection score is equivalent to:

D =
∏

f∈F (c)

p(f ′|f)

p(f ′|bgf )

∏

sij∈S(c)

p(s′ij|sij)
p(s′ij|bgs)

. (3.7)

Note that since features and spatial relations must individually pass the pruning threshold

given by p(f ′|bgf ) and p(s′ij|bgs), each factor in Equation 3.7 is greater than 1, i.e., each

matching component accumulates evidence by increasing the detection score. Since a

partial match has fewer components, it is penalized with a lower score.

Detection algorithm. As in [48], matching is done efficiently by using S as a

constraint to prune out unlikely feature combinations. A set of potentially matching

features F ′ is iteratively grown until all model features are matched, or no more matching
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features can be found. Failed partial matches are rejected and search resumes with a

new initialization. Multiple occurrences in the same image are detected by repeating the

search over remaining image features.

3.5 Learning objects

The graph-growing algorithm in [48] iteratively adds model features to cover the object

(e.g., in Figure 3.3), making the model increasingly object-specific and simultaneously

increasing its co-occurrence with the word. Since word-object co-occurrence is our objec-

tive in finding salient object models in captioned images, we measure co-occurrence using

the score CM,W , defined as follows. Given N captioned training images, occurrences of

words and objects are summarized in two vectors of length N :

w = {w1, . . . , wN}, wn ∈ {0, 1}

indicating the occurrence of W in each image caption, and

m = {m1, . . . ,mN},mn ∈ [0, 1]

indicating the occurrence of M in each image. While word occurrences are binary, ob-

ject occurrences have soft scores weighted by their detection scores D. When there are

multiple object occurrences in one image, the highest-scoring detection is considered.

While object and word occurrences are obviously correlated, objects may or may not

be referred to in the caption, and words in the caption may or may not refer to objects

in the image. The co-occurrence score CM,W has a probabilistic formulation in which

the occurrences m,w are generated from the presence (c = 1) or absence (c = 0) of a
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Figure 3.3: Initial models grow (left to right) to cover the object, increasing in dis-
tinctiveness and co-occurrence with words ‘bottle’, ‘giraffe’, and ‘swan’, shown (top to
bottom).

common object, defined similarly to [48] as

CM,W =
p(m,w|c = 1)

p(m,w|c = 0)
. (3.8)

The numerator is defined as:

p(m,w|c = 1) =
N∏

n=1

p(mn, wn|c = 1) (3.9)

=
N∏

n=1

∑

on=0,1

p(mn, wn|on, c = 1)p(on|c = 1)

=
N∏

n=1

∑

on=0,1

p(mn|on, c = 1)p(wn|on, c = 1)p(on|c = 1)

where on is a hidden variable indicating the presence (on = 1) or absence (on = 0) of the

common object. The quantities α = p(w|o = 1) and β = p(w|o = 0) are the probability

that W occurs in the caption when the common object is present or absent, respectively.

Similarly µ = p(m|o = 1) and ν = p(m|o = 0) represent the probability of the model M

occurring in an image when the common object is present or absent. These parameters

control the degree to which CM,W is sensitive to caption noise.
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Figure 3.4: Superpixel Closure [66] returns multiple figure-ground segmentations per
image (shown above for 4 images). Model initialization is constrained to contour features
that fall along the boundaries of segmentation regions.

The denominator is defined as:

p(m,w|c = 0) =
N∏

n=1

p(mn|c = 0)p(wn|c = 0) (3.10)

and acts as a bias term to offset the score CM,W .

Graph-growing algorithm. Given an initial modelM (0) of two spatially related fea-

tures representing a small object part, a sequence of successively larger modelsM (1),M (2),M (3), . . .

is found such that co-occurrence CM(k),W is increasing for k ≥ 0. More specifically, given

occurrences of M (k), a search is performed for a feature in the vicinity that repeats in a

consistent spatial relation with respect to the occurrences. Given a candidate shortlist

of such features, the candidate with the highest CM(k+1),W is chosen, where M (k+1) is

the model with the added candidate feature, provided that CM(k+1),W > CM(k),W . When

no such candidate exists, the current model is returned as the final model. While the

approach described above is greedy, in practice we keep a list of the best few candidates

at each iteration to explore in a backtracking fashion.

Model initialization. It is crucial that M (0) initially represents part of an object

so the model can be expanded. The ambiguity of contour features, however, makes

it difficult to distinguish salient boundary portions from accidental contours. Bottom-
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up segmentation offers a powerful heuristic for focusing search over features likely to

represent object boundaries. For each image containing the word W , we use Superpixel

Closure [66] to extract multiple figure-ground segmentation hypotheses at multiple scales

(Figure 3.4). The boundaries of a figure-ground segmentation hypothesis are used as

constraints over features, where only contour features that fall within a small, fixed

distance from the region boundary are selected. By initializing M (0) over this subset of

features, the heuristic is used to guide the search for promising object parts that can be

added to the model.

3.6 Evaluation

Following a discussion of the strengths and limitations of our method in Section 3.6.1,

we present a head-to-head comparison of our approach to Jamieson et al. [48] in Section

3.6.2, and two experiments comparing our approach to Ferrari et al. [38], on which we

have based our shape representation, in Section 3.6.3. Finally in Section 3.6.4, we train

object models under image caption noise.

Experiments are conducted on the benchmark ETHZ dataset [36], which consists of

255 images of 5 diverse categories labeled with the words ‘apple logo’, ‘bottle’, ‘giraffe’,

‘mug’, and ‘swan’. While bounding boxes are provided with the ETHZ dataset, they are

used only for evaluating object localization and not for training, unless otherwise noted.

In our evaluation, we have used only the single final model M∗ having the highest

co-occurrence score CM∗,W , in the same manner as in [48]. A possibility is to incorporate

combinations of multiple learned models into detection for improved robustness (e.g.,

models corresponding to different viewpoints), although we have not done this.
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Figure 3.5: Comparison with Jamieson et al. Contour features capture object categories
more effectively than appearance-based features.

3.6.1 Qualitative evaluation

In Figure 3.9 we present sample detections of learned object models for each ETHZ cat-

egory. Our method is able to localize objects under large variations in scale and minor

changes in viewpoint, orientation, deformation, and articulation. We achieve our best

performance with ‘apple logo’, which features stable contours; our system missed only

instances that were severely occluded or rotated by a large amount. ‘Bottle’ and ‘mug’

objects have tremendous variation in their surface markings: these objects are similar

only in their shape, and our method correctly captures their characteristic contours. One

source of false positives, however, is brand labels on bottles, which are easily confused

with the bottle boundary due to their proximity. ‘Giraffe’ and ’swan’ pose a significant

challenge to our system due to their deformation and articulation. The line-based ab-

straction of Ferrari et al.’s contour features does not always respond in a stable manner

to slight changes in curvature, as curve partitioning breakpoints suddenly appear or dis-

appear. When our system encounters highly varying features during the graph-growing
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Figure 3.6: Comparison with Ferrari et al., training without bounding boxes.

process, it tends to terminate growth early to avoid overfitting.

3.6.2 Shape vs. appearance models

A comparison with Jamieson et al. [48] allows us to study the effectiveness of shape-based

vs. appearance-based features for learning named object categories. Our preliminary

experiments support our hypothesis that shape is more effective. Figure 3.5 shows the

performance of both approaches using precision-recall over correct image annotation,

where an annotated image is counted as a true positive if the annotation is correct, i.e., a

detected occurrence is consistent with the true word label; and counted as a false positive

if a detected occurrence is inconsistent with the true label.

Results show that the appearance-based system has difficulty finding recurring object

models, especially for ‘bottle’ and ‘mug’. These categories exhibit virtually no regularities

in colour, texture, or surface markings. Instead, the appearance-based system found

recurring texture on the body of the giraffe, and company slogan text appearing in a

limited number of ‘applelogo’ images. Recurring patterns in the water were found for



Chapter 3. Shape-based learning and detection 54

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False−positives per image

D
e

te
c
ti
o

n
 r

a
te

Apple logos

 

 

our approach
Ferrari voting
Ferrari matcher

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False−positives per image

D
e

te
c
ti
o

n
 r

a
te

Bottles

 

 

our approach
Ferrari voting
Ferrari matcher

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False−positives per image

D
e

te
c
ti
o

n
 r

a
te

Mugs

 

 

our approach
Ferrari voting
Ferrari matcher

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False−positives per image

D
e

te
c
ti
o

n
 r

a
te

Swans

 

 

our approach
Ferrari voting
Ferrari matcher

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False−positives per image

D
e

te
c
ti
o

n
 r

a
te

Giraffes

 

 

our approach
Ferrari voting
Ferrari matcher

Figure 3.7: Comparison with Ferrari et al., training with bounding boxes.

‘swan’ images, but these were similar to parallel strokes in leaves and grass, giving rise

to poor precision. While appearance may have a limited ability to describe some object

categories, contours were found to be more effective overall.

3.6.3 Training without bounding boxes

Our next experiments compare our approach with that of Ferrari et al. [38] under two

settings described below. We follow the strict evaluation protocol in [38] (Pascal criterion

of 50% intersection-over-union bounding box overlap), and report in Figure 3.6 detection

rate (DR) against false positives per image (FPPI). For interest, we include performance

for Ferrari et al.’s initial hough voting stage (lower curve) and the final verification stage

(higher curve).

In the first setting we train under realistic conditions where manual annotations

(bounding boxes) are not available to the system. Results in Figure 3.6 show that we

generally outperform Ferrari et al., which is unable to handle training images where

objects do not appear in consistent positions and scales, namely, ‘apple logo’, ‘bottle’,
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and ‘mug’. It is clear that Ferrari et al.’s method strongly depends on the availability

of manually annotated bounding boxes. Ferrari et al. performs better for ‘giraffe’ and

‘swan’, as the respective objects typically occupy most of the image, i.e., the image

boundary serves as an effective bounding box.

Our second setting examines the scenario where bounding boxes are provided for

training. Although our system is not designed to use the information given by bounding

boxes, it is interesting to include a discussion of the results. While our method works

well for categories with relatively stable contour representations, e.g., ‘apple logo’, the

high variation in deformable and articulating categories present a significant challenge

to our model-growing algorithm, and our performance is worse than that of Ferrari et

al.’s (Figure 3.7). Since models grow incrementally in size, the algorithm is faced with

the choice of adding weak, ambiguous contours, and hence may terminate growth early

to avoid overfitting, resulting in the strict bounding box overlap criterion not being met.

In contrast, Ferrari et al.’s Hough-based method has a more global view by having each

model feature vote independently for the object centroid. However, this explicitly takes

advantage of information from the bounding box, and thus performs an easier task than

ours.

3.6.4 Image caption noise

In our final experiment, we approximate real-world captions by adding noise to the ETHZ

word labels (referred to below as captions). Recall from Section 3.5 that the co-occurrence

score assumes that an object is likely to be referenced in the caption with probability α,

and an object has a chance of being referenced even when it is absent, with probability β.

We corrupt the 5 original words in the ETHZ captions as follows. First, with probability

α, words are substituted with a random word (not restricted to the 5 original words). For

example, some ‘apple logo’ images no longer have the word ‘apple logo’ in the captions.

Secondly, with probability β, an original word is appended to captions not originally
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Figure 3.8: Localization performance of ‘apple logo’ and ‘bottle’ as caption noise is
increased by corrupting ETHZ word labels. Results show stability under significant
noise (up to 20%).

containing that word. For example, some non-‘apple logo’ images now have the word

‘apple logo’ in their captions. Distinct levels of noise are quantified with a percentage p,

where p% reflects the value α = 1 − p
100

and the value β = p
100

. We run experiments at

different noise levels, where captions are corrupted prior to training. Figure 3.8 reports

localization performance as a function of noise levels, and shows that performance for

‘apple logo’ and ‘bottle’ remains stable under significant noise.

3.7 Conclusion

We have extended the framework of Jamieson et al. [48] to learn named categorical models

based on shape, and added a focus-of-attention heuristic to cope with the ambiguity of

contour features. Using a standard benchmark we have demonstrated that our method is

able to handle large variations in scale and minor changes in viewpoint, deformation and

articulation. A comparison with Jamieson et al. [48] showed that object categories are

better captured by shape than appearance. Additionally we outperform methods such as

Ferrari et al. [38] when training without bounding boxes, and showed that such methods

have a strong dependence on manual annotations.

To conclude our chapter on object categorization as motivating context, we end with

a few remarks on future work. We would like to extend the method in different ways
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Figure 3.9: Sample contour detections of ‘applelogo’, ‘bottle’, ‘giraffe’, ‘mug’, and ‘swan’
(each in a unique color) in the ETHZ dataset.
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to make it applicable to larger datasets. Ultimately, our goal is to learn object class

models directly from the web. This entails having a richer representation (shape as well

as appearance, more flexibility in the shape features), dealing with multiple classes in

a scalable way as well as a more involved text model that could better deal with noisy

image tags and surrounding web text.



Chapter 4

Symmetric part detection

Symmetry is a long-standing, interdisciplinary form that spans across the arts and sci-

ences, covering fields as disparate as mathematics, biology, architecture, and music [70].

The roles played by symmetry are equally diverse, and can involve being an abstract ob-

ject of analysis, a balancing structure in nature, or an attractor of visual attention. With

object categorization in mind, the common thread in all of the above is that symmetry is

ubiquitously present in both natural objects and artificial objects. It is no accident that

we constantly encounter symmetry through our eyesight, and in fact, Gestalt psycholo-

gists [120] of the previous century proposed that symmetry is a physical regularity in our

world that has been exploited by the human visual system to yield a powerful perceptual

grouping mechanism. Experiments show evidence that we respond to symmetry before

being consciously aware of it [115].

Inspired by a computational understanding of human vision, perceptual grouping

played a prominent role in support of early object recognition systems, which typically

took an input image and a set of shape models, and identified which of the models was

visible in the image. Mid-level shape priors were crucial in grouping causally related

shape features into discriminative shape indices that were used to prune the set down to

a few promising candidates that might account for a query. Of these shape priors, one

59
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of the most powerful is a configuration of parts, in which a set of related parts belonging

to the same object is recovered without any prior knowledge of scene content.

The use of symmetry to recover generic parts from an image can be traced back to

the earliest days of computer vision, and includes the medial axis transform (MAT) of

Blum (1967) [10], generalized cylinders of Binford (1971) [9], superquadrics of Pentland

(1986) [90], and geons of Biederman (1985) [8], to name just a few examples. Central to

a large body of approaches based on medial symmetry is the MAT, which decomposes a

closed 2D shape into a set of connected medial branches corresponding to a configuration

of parts, providing a powerful parts-based decomposition of the shape suitable for shape

matching, e.g. Siddiqi et al. (1999) [107] and Sebastian et al. (2004) [101]. For a definitive

survey on medial symmetry, see Siddiqi et al. (2008) [106].

In more recent years, the field of computer vision has shifted in focus toward the object

detection problem, in which the input image is searched for a specific target object.

One reason for this lies in the development of machine learning algorithms that can

leverage large amounts of training data to produce robust classification results. This led

to rapid progress in the development of object detection systems, enabling them to handle

increasing levels of background noise, occlusion, and variability in input images [42]. This

development established the standard practice of working with input domains of real

images of cluttered scenes, significantly increasing the applicability of object recognition

systems to real problems.

A parallel advance in perceptual grouping, however, did not occur for a simple reason:

With the target object already known, indexing is not required to select it, and perceptual

grouping is not required to construct a discriminative shape index. As a result, perceptual

grouping activity at major conferences has diminished along with the supporting role of

symmetry [25, 26]. However, with the increasing popularity of evaluation datasets like

VOC [31] and COCO [71], the community is starting to move from detecting objects of a

single class to multi-class object detection. We expect shape-based perceptual grouping
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(a) (b)

Figure 4.1: Our representation of symmetric parts: In (a), the shape of the runner’s body
is transformed into its medial axis (red), a skeleton-like structure that decomposes the
shape into branch-like segments, e.g. the leg. The leg’s shape is swept out by a sequence
of discs (green) lying along the medial axis. In (b), the shape of the same leg is composed
from superpixels that correspond to the sequence of discs. The scope of this chapter’s
framework is limited to detecting symmetric parts corresponding to individual branches.

to play a critical role in facilitating this transition.

In attempting to bring back medial symmetry in support of perceptual grouping,

we observe that the subcommunity’s efforts have not kept pace with mainstream object

recognition. Specifically, medial symmetry approaches typically assume that the input

image is a foreground object free from occluding and background objects and, accord-

ingly, lack the ability to segment foreground from background, an ingredient crucial for

tackling contemporary datasets. It is clear that the MAT cannot be reintroduced without

combining it with an approach for figure-ground segmentation. This chapter is based on

Lee et al. (2013) [58], which is the most current work along this trajectory, itself based

on the earlier work of Levinshtein et al. (2009) [65, 68].

In the context of symmetric part detection, [58] introduced an approach that lever-

aged earlier work [65] to build a MAT-based superpixel grouping method. Since the

proposed representation is central to our approach, we proceed with a brief overview of
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the latter. A bottom-up method was introduced which first detected symmetric parts,

then grouped them non-accidentally to form a discriminative shape index. By estab-

lishing a correspondence between superpixels and maximally inscribed discs, the method

formulated a superpixel grouping problem that exploited symmetry as a grouping cue.

The method thus recovered symmetric parts by grouping superpixels that represented

discs of the same part. An evaluation was presented to show a significant improvement

over other symmetry-based approaches.

Subsequently, [58] furthered the development of the above ideas on two complemen-

tary fronts. First, the medial representation was used to derive a sequence optimization

problem for grouping, whose solution was shown to bring significant improvements in

results. The approach uses a grouping algorithm that is principled and more effective

than in [65]. Second, symmetry was captured more accurately by increasing the number

of model parameters. While a limited number of parameters previously captured scale

and orientation, the method’s invariance was improved by additionally capturing bending

and tapering. The resulting affinity function was also shown to support an improvement.

This chapter takes a high-level view of the work in reintroducing the MAT with figure-

ground segmentation capability, enabling us to draw insights from a higher vantage point.

We first develop the necessary background to trace the development from its origins in the

MAT, through [65], and finally to [58]. In doing so, we establish a framework that makes

clear the connections among previous work. For example, it follows from our exposition

that [65] is an alternative instance of our framework. More generally, our unified frame-

work benefits from the rich structure of the MAT while directly tackling the challenge

of segmenting out background noise in a cluttered scene. Our model is discriminatively

trained and stands out from typical perceptual grouping methods that use predefined

grouping rules. Using experimental image data, we present both qualitative results and

a quantitative metric evaluation to support the development of the components of our

approach.
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4.1 Related work

Symmetry is one of several important Gestalt cues that contribute to perceptual grouping.

Symmetry plays neither an exclusive nor an isolated role in the presence of other cues.

Contour closure, for example, is another mid-level cue whose role will increase as the

community relies more on bottom-up segmentation in the absence of a strong object

prior, e.g. [67]. Symmetry may also be effectively combined with other mid-level cues,

e.g. [96, 59]. For brevity, we restrict our survey of related work to symmetry detection.

The MAT, along with its many descendant representations such as the shock graph

[101, 107, 89, 24] and bone graph [78, 79], provides an elegant decomposition of an

object’s shape into symmetric parts; however, it made the unrealistic assumption that

the shape was segmented, and is thus not directly suitable for today’s image domains.

For symmetry approaches in the cluttered image domain, we first consider the filter-based

approach, which first attempts to detect local symmetries, in the form of parts, and

then finds non-accidental groupings of the detected parts to form indexing structures.

Example approaches in this domain include the multiscale peak paths of Crowley &

Parker (1984) [23], the multiscale blobs of Shokoufandeh et al. (1999) [105], the ridge

detectors of Mikolajczyk & Schmid (2002) [83], and the multiscale blobs and ridges of

Lindeberg & Bretzner (2003) [73], and Shokoufandeh et al. (2006) [104]. Unfortunately,

these filter-based approaches yield many false positive and false negative symmetric part

detections, and the lack of explicit part boundary extraction makes part attachment

detection unreliable.

A more powerful filter-based approach was recently proposed by Tsogkas & Kokkinos

(2012) [114], in which integral images are applied to an edge map to efficiently compute

discriminating features, including a novel spectral symmetry feature, at each pixel at each

of multiple scales. Multiple instance learning is used to train a detector that combines

these features to yield a probability map which, after non-maximum suppression, yields

a set of medial points. The method is computationally intensive yet parallelizable, and
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the medial points still need to be parsed and grouped into parts. But the method shows

promise in recovering an approximation to a medial axis transform of an image.

The contour-based approach is a less holistic approach that addresses the combinato-

rial challenge of grouping extracted contours. Examples include Brady & Asada (1984)

[12], Connell & Brady (1987) [21], Ponce (1990) [91], Cham & Cipolla (1995, 1996)

[17, 16], Saint-Marc et al. (1993) [97], Liu et al. (1998) [74], Ylä-Jääski & Ade (1996)

[124], Stahl & Wang (2008) [109], and Fidler et al. (2014) [39]. Since these methods are

contour-based, they have to deal with the issue of computational complexity of contour

grouping, particularly when cluttered scenes contain many extraneous edges. Some re-

quire smooth contours or initialization, while others were designed to detect symmetric

objects and cannot detect and group the symmetric parts that make up an asymmet-

ric object. A more recent line of methods extract interest point features, such as SIFT

[76], and group them across an unknown symmetry axis [77, 57]. While these methods

exploit distinctive pairwise correspondences among local features, they critically depend

on reliable feature extraction.

A recent approach by Narayanan and Kimia [86] proposes an elegant framework

for grouping medial fragments into meaningful groups. Rather than assuming a figure-

ground segmentation, the approach computes a shock graph over the entire image of a

cluttered scene, and then applies a sequence of medial transforms to the medial frag-

ments, maintaining a large space of grouping hypotheses. While the method compares

favorably to figure-ground segmentation and fragment generation approaches, the high

computational complexity of the approach restricts it to images with no more than 20

contours.

Our approach, represented in the literature by [58, 65, 68], is qualitatively different

from both filter-based and contour-based approaches, offering a region-based approach

which perceptually groups together compact regions (segmented at multiple scales using

superpixels) representing deformable maximal discs into symmetric parts. We note that
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while [65] has an additional step that groups symmetric parts into full objects, the scope

of our framework is limited to detecting symmetric parts. In doing so, we avoid the low

precision that often plagues the filter-based approaches, along with the high complexity

that often plagues the contour-based approaches.

4.2 Representing symmetric parts

Our approach rests on the combination of medial symmetry and superpixel grouping

[58, 65, 68], and in this section we formally connect the two ideas together. We proceed

with the medial axis transform (MAT) [10] of an object’s shape, as illustrated with the

runner in Figure 4.1. The set of maximally inscribed discs plays the central role, whose

centers (called medial points) trace out the skeleton-like medial axis of the object. We

can identify the object’s parts by decomposing the medial axis into its branch-like linear

segments. We note that each object part is swept out by the sequence of maximally

inscribed discs along the corresponding segment of the medial axis. For details on the

relationship between the medial axis and the simpler reflective axis of symmetry, see

Siddiqi et al. (2008) [106].

The link between discs and superpixels is established by recently developed approaches

that oversegment an image into superpixels of compact and uniform scale. In order to view

superpixels as discs, we note that just as superpixels are attracted to parts’ boundaries,

we imagine removing the circular constraint on discs and allowing them to deform to the

boundary, resulting in “deformable discs”. We will henceforth use the terms “superpixel”

and “disc” interchangeably. The disc’s shape deforms to the boundary provided that it

remains compact (not too long and thin), resulting in a subregion that aligns well with

the part’s boundary on either side, when such a boundary exists. In contrast with the

maximal disc, which is only bitangent to the boundary, as shown in Figure 4.1, the

number of discs required to compose a part’s shape is far less than the number required
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(a) (b) (c) (d)

Figure 4.2: To compose a part’s shape from superpixels in a given input image (a),
we compute superpixels at multiple scales (b-c), and combine superpixels from different
scales (d).

using maximal discs.

In an input image domain of cluttered scenes, the vast majority of superpixels will not

correspond to true discs of an object’s parts, and thus it is suitable to treat superpixels

as a set of candidate discs. Furthermore, a superpixel that is too fine or too coarse for a

given symmetric part fails to relate its opposing boundaries together into a true disc, and

a tapered part may be composed of discs of different sizes, as shown in Figure 4.2. Since

we have no prior knowledge of a part’s scale, and an input image may contain object

parts of different scales, we compute superpixels at different scales, and take their union

as a set of candidate discs.

Our goal is to perceptually group discs that belong to the same part. To facilitate

grouping decisions, we will define a pairwise affinity function to capture non-accidental

relations between discs. Since the vast majority of superpixels will not correspond to

true discs, however, we must manage the complexity of the search space. By restricting

affinities to adjacent discs, we exploit one of the most basic grouping cues, namely, prox-

imity, which dictates that nearby discs are more likely to belong to the same medial part.

We enlist the help of more sophisticated cues, however, to separate those pairs of discs

that belong to the same part from those that do not. Viewing superpixels as discs allows



Chapter 4. Symmetric part detection 67

us to directly exploit the structure of medial symmetry to define the affinity. In Section

4.3, we motivate and define the affinity function from perceptual grouping principles to

set up a weighted graph G of disc candidates. In Section 4.4, we discuss alternative

graph-based algorithms for grouping discs into medial parts. Section 4.5 presents quali-

tative and quantitative experiments, while Section 5.7 draws some conclusions about the

framework.

4.3 Disc affinity

Since bottom-up grouping is category-agnostic, a supporting disc affinity must accommo-

date variations across objects of all types. The affinity A(di, dj) between discs di and dj

must be robust against variability not only within object categories, but also variability

between object categories. For a discriminatively trained affinity, it is helpful to extract

features that reduce the variability for the classifier. In the following sections we define

both shape and appearance features on the region scope defined by di and dj.

4.3.1 Shape features

The local shape of discs is captured by a spatial histogram of gradient pixels, as illustrated

in Figure 4.3. By encoding the distribution of the boundary edgels of the region defined

by the union of the two discs, we capture mid-level shape while avoiding features specific

to the given exemplar. This representation offers us a degree of robustness that is helpful

for training the classifier, however it is not perfect—it remains sensitive to variations

like scale and orientation, to name a few, and can thus allow the classifier to overfit to

training examples.

We turn to medial symmetry to capture these unwanted variations, as the first step

in making the feature invariant to such changes. Specifically, we locally model the shape

by fitting the parameters of a symmetric shape to the region. We refer to a vector w of
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4.3: Improving invariance with a deformable ellipse: given two adjacent candidate
discs, the first step is to fit the ellipse parameters to the region defined by their corre-
sponding superpixels in (a). The top row shows invariance achieved with a standard
ellipse. The ellipse’s fit is visualized with the major axis in (b), the region’s boundary
edgels before (c) and after (d) warping out the unwanted variations, and the resulting
spatial histogram of gradient pixels (e). See text for details. The bottom row shows the
corresponding steps (f-i) obtained by the deformable ellipse. Comparing the results, a
visually more symmetric feature is obtained by the deformable ellipse, which fits tightly
around the region’s boundary as compared with the standard ellipse.

warping parameters that subsequently define a warping function W : R2 → R
2 that is

used to remove the variations from the space, in effect normalizing the local coordinate

system. Figure 4.3 visualizes the parameters w of a deformable ellipse fit to a local

region, the medial axis before and after the local curvature was “warped out” from the

coordinate system, and the spatial histogram computed on the normalized coordinate

system.

Before describing the spatial histogram in detail, we discuss a class of ellipse-based

models for modelling the local medial symmetry. Ellipses represent ideal shapes of an

object’s parts, and in particular are shapes that are symmetric about their major axes.

A standard ellipse is parameterized by we = (p, θ, a), where p denotes its position, θ its

orientation, and a = (ax, ay) the lengths of its major and minor axes. The parameter

vector we is analytically fit to the local region and is used to define the corresponding
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warping function We(we).

Historically, we first obtained the warping parameters with an ellipse [65]. While

the advantages of using the ellipse lie in its simplicity and ease of fitting, shortcomings

were identified in its tendency to provide too coarse a fit to the boundary to yield an

accurate enough warping function. Accordingly in [58], we added deformation parameters

to obtain a better overall fit across all examples. Despite a higher computational cost of

fitting, the deformable model was shown to yield quantitative improvements.

Specifically, we obtain invariance to bending and tapering deformations by augment-

ing the ellipse parameters as follows: wd = (p, θ, a, b, t) with the bending radius b along

the major axis and tapering slope t along the major axis. The parameter vector wd is fit

by initializing as a standard ellipse and iteratively fitting it to the local region’s boundary

with a non-linear least-squares algorithm. The fitted parameters are then used to define

the warping function Wd(wd) corresponding to the deformable ellipse.

Parameters wd are fit to input points X = {x} in the least-squares minimization

problem

arg min
w

∑

x∈X

r(x; w)2, (4.1)

with error function

r(x; w) = c · (W (x; w) ·W (x; w)− 1) , (4.2)

where c =
√
axay is a regularization term that penalizes highly elongated axes [108]. The

least-squares estimate ŵ is obtained using the Matlab function lsqcurvefit with box

constraints 0 < ax, ay ≤ 1000,−2π ≤ θ ≤ 2π, 0.5 ≤ b ≤ 0.5, 0.5 ≤ t ≤ 0.5. The algorithm

is initialized with a standard elliptical fit with zero deformation.

Only once the warping function W (w) is fit to the local region X and applied to

normalize the local coordinate system do we compute the spatial histogram feature. We
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place a 10× 10 grid on the warped region, and focusing on the model fit to the union of

the two discs, we scale the grid to cover the area [−1.5ax, 1.5ax]× [−1.5ay, 1.5ay]. Using

the grid, we compute a 2D histogram on the normalized boundary coordinates weighted

by the edge strength of each boundary pixel. Figure 4.3 illustrates the shape feature

computed for the disc pair. We train a SVM classifier on this 100-dimensional feature

using our manually labeled superpixel pairs, labeled as belonging to the same part or

not. The margin from the classifier is fed into a logistic regressor in order to obtain the

shape affinity Ashape(di, dj) in the range [0,1].

4.3.2 Appearance features

Aside from medial symmetry, we include appearance similarity as an additional group-

ing cue. While object parts may vary widely in color and texture, regions of similar

appearance tend to belong to the same part. We extract an appearance feature on the

discs di, dj that encodes their dissimilarity in color and texture. Specifically, we compute

the absolute difference in mean RGB color, absolute difference in mean HSV color, RGB

and HSV color variances in both discs, and histogram distance in HSV space, yielding

a 27-dimensional appearance feature. To improve classification, we compute quadratic

kernel features, resulting in a 406-dimensional appearance feature. We train a logistic

regressor with L1-regularization to prevent overfitting on a relatively small dataset, while

emphasizing the weights of more important features. This yields an appearance affinity

function between two discs Aapp(di, dj). Training the appearance affinity is easier than

training the shape affinity. For positive examples, we choose pairs of adjacent superpixels

that are contained inside a figure in the figure-ground segmentation, whereas for negative

examples, we choose pairs of adjacent superpixels that span figure-ground boundaries.

We combine the shape and appearance affinities using a logistic regressor to obtain

the final pairwise affinity A(di, dj). Both the shape and the appearance affinities, as well

as the final affinity A(di, dj), were trained with a regularization parameter of 0.5 on the
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L1-norm of the logistic coefficients.

4.4 Grouping discs

Given a graph G of discs weighted by affinities, the final step is to group discs that belong

to the same symmetric part. If two adjacent discs correspond to medial points belonging

to the same medial axis, they can be combined to extend the symmetry. This is the basis

for defining the pairwise affinities in G, and it is how we exploit our medial representation

of symmetric parts for grouping. Specifically, the affinity between two adjacent discs

reflects the degree to which it is believed that they not only non-accidentally relate the

two opposing boundaries together, but that they are centered along the same medial axis.

In this section, we adapt and discuss two alternative graph-based algorithms, namely,

the agglomerative clustering algorithm of Felzenszwalb & Huttenlocher (2004) [32], and

the sequence-finding algorithm in the salient curve detection method of Felzenszwalb &

McAllester (2006) [34].

4.4.1 Agglomerative clustering

Our first grouping approach is based on agglomerative clustering [32]. The algorithm

takes as input the weighted graph G and merges edges in increasing order of weights.

Each merge represents a grouping of discs, and the connected components that result

correspond to symmetric parts. Grouping is performed efficiently in O(e log e) time,

where e is the number of edges in G. We refer the reader to [65] for details on the

algorithm’s adaptation to the setting of grouping discs.

The greedy approach, while fast, is unfortunately underconstrained in allowing merges

to occur between branch-structured clusters, resulting in tree-like clusters as illustrated

in Figure 4.4. These types of clusters can occur as frequently as spuriously high affinity

values (false positives) occur, thus motivating the need to constrain the growth of clusters
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(a) (b)

(c) (d)

Figure 4.4: In our approach, the (a) input image of foreground leaves is oversegmented
into superpixels, and a (b) weighted graph G is built that captures the pairwise affinities
that are computed among the superpixels. A graph-based grouping algorithm takes as
input the graph G, which may contain false positive affinities between the leaves, as shown
in (b). In this figure, we illustrate the relative advantage of (d) sequence optimization
over (c) agglomerative clustering. In (c), merging the vertices in G results in a cluster that
undersegments the leaves, combining them into a single symmetric part that violates the
assumption that a part is composed of a linear sequence of discs. In (d), the branching
constraint is built into the sequence-finding algorithm which prevents symmetric parts
from having tree-structured discs, and correctly segments the leaves into two distinct
parts.

within medial branches.

4.4.2 Sequence optimization by dynamic programming

Our second approach is dynamic programming used in [58], which observes that each

symmetric part is swept out by an ordered sequence of discs. Discs along the same medial

axis are thus not only combined in pairs, but can be traced out linearly. This allows us to

reformulate the problem of superpixel grouping as finding sequences of discs in a weighted

graph G that belong to the same symmetric part. We thus obtain a grouping approach

in which the desired branching constraint is inherent in the problem formulation. As

illustrated in Figure 4.4, the algorithm applied to the same graph prevents the resulting
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d0
d1 d2

d3

d4?D⇤ = (d0, d1, d2, d3)

d4?

Figure 4.5: Grouping by dynamic programming: The iterative step of the algorithm
grows sequences by extracting a sequence D∗ from the priority queue, and returning
longer sequences to the queue obtained by extending the end of D∗ with adjacent discs.
See text for details.

clusters from violating the branching constraint.

Before describing the steps of the dynamic programming algorithm, we note that it

solves a discrete optimization problem, and thus represents a principled reformulation

of our grouping problem. This includes defining an objective function that captures the

goal of the problem, which is missing from the first approach, and making use of dynamic

programming that efficiently solves for a global optimum. We specifically borrow from

the optimization framework used for salient curve detection in Felzenszwalb & McAllester

[34] and adapt it for symmetric part detection.

The application of [34] to our setting is best explained via their method for curve

detection. The method takes as input a graph with weights defined on edges, and “tran-

sition weights” defined on pairs of adjacent edges. A salient curve is modeled as a valid

sequence of edges, and a regularized cost function is defined on valid sequences that

includes a normalized sum of the weights along the given sequence. Salient curves are

found by globally optimizing the cost function using a dynamic programming algorithm.

In our setting, the graph G supplies weights between adjacent discs, and we define a

valid sequence of discs (of variable length) by D = (d0, d1, . . . , dn), which represents a

symmetric part. The criteria that we want to optimize—good symmetry along the medial

axis and a maximally long axis—is provided by the affinity graph G. The regularized cost

function, cost(D), is defined correspondingly, and favors good internal affinity with a nor-

malized sum over the affinities along the given sequence, and encourages longer sequences

with a regularization term. Affinities defined over longer subsequences corresponding to
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the transition weights have a smoothing effect on the preferred sequences.

We find optimal sequences D1, D2, . . . over G using the global cost defined as follows:

cost(D) =
A

n
+

∑n
i=1w(di−1, di)

n
+

∑n−1
i=1 w(di−1, di, di+1)

n− 1
, (4.3)

which consists of a sum over pairwise and triplewise weights, and a length bias A. The

total cost is normalized by the length n of the sequence of edges. Compact superpixels

are uniform in size and allows us to assume that a sequence consists of superpixels of

approximately equal length. When the term A is strictly positive, the cost favors longer

sequences and has the overall effect of encouraging sequences to grow during grouping

(we have set A = 0.1). A sequence of discs corresponding to a symmetric part is ideally

reflected by a low sum of weights. In our implementation, we have set pairwise weights to

1−A(di−1, di), and experimented with setting the triplewise weights to a uniform value of

zero, and to 1−A(di−1, di, di+1), in which the affinity is evaluated over the region defined

by the union of three discs. In the latter case, the triplewise weights have a smoothing

effect by evaluating symmetry over longer subsequences.

We now summarize the dynamic programming steps for globally minimizing cost(D).

The core step is illustrated in Figure 4.5, and details can be found in [34]. The algorithm

initializes a priority queue Q of candidate sequences with all possible sequences of unit

length, then pursues a best-first search strategy of iteratively extending the cheapest

candidate sequences. Each edge (di−1, di) is directed such that a sequence of edges ter-

minating at di can be extended with an edge starting at di. At each iteration, as shown

in Figure 4.5, the most promising sequence D∗ is removed from Q, and new candidate

sequences are proposed by extending the end of D∗ with adjacent discs. If an extended

sequence ending at an edge improves the cost of an existing sequence ending at the same

edge, it is added back into Q. To find multiple sequences from the graph corresponding

to different symmetric parts, we iteratively remove sequences that are already found and
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(a) (b)

Figure 4.6: Multiple symmetric parts: for each image (a), (b) below we show the top
15 masks detected as symmetric parts. Each mask is detected as a sequence of discs,
whose centers are plotted in green and connected by a sequence of red line segments that
represents the medial axis.

re-minimize the cost, until a maximum cost is reached.

4.5 Results

We present an evaluation of our approach, first qualitatively in Section 4.5.1, then quan-

titatively in Section 4.5.2. Our qualitative results are drawn from sample input images

and illustrate particular strengths and weaknesses of our approach. In our quantitative

evaluation, we use performance metrics on two different datasets to gauge the contri-

butions of different components in our approach. Figure 4.6 visualizes detected masks

returned by our method, specifically showing the top 15 detected parts on sample input

images. Parts are ranked by the optimization objective function. On each part’s mask,

we indicate the associated disc centers and the medial axis via connecting line segments.

All results reported are generated with superpixels computed using normalized cuts [103],
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at multiple scales corresponding to 25, 50, 100, and 200 superpixels per image.

Our evaluation employs two image datasets of cluttered scenes. The first dataset is a

subset of 81 images from the Weizmann Horse Database (WHD) [11], in which each image

contains one or more horses. Aside from color variation, the dataset exhibits variations

in scale, position, articulation of horse joints. The second dataset was created by Lee

et al. [58] from the Berkeley Segmentation Database (BSD) [82]. This set is denoted as

BSD-Parts and contains 36 BSD images which are annotated with ground-truth masks

corresponding to the symmetric parts of prominent objects (e.g., duck, horse, deer, snake,

boat, dome, amphitheater). This contains a variety of natural and artificial objects and

offers a balancing counterpart to the horse dataset.

Both WHD and BSD-Parts are annotated with ground-truth masks corresponding to

object parts in the image. The learning component of our approach requires ground-truth

masks as input, for which we have held a subset of training images away from testing.

Specifically, we trained our classifier on 20 WHD images and used for evaluation the

remaining 61 WHD images and all 36 BSD-Parts images. This methodology supports

a key point of our approach, which is that of mid-level transfer : by increasing feature

invariance against image variability, we help prevent the classifier from overfitting to the

objects on which it is trained. By training our model on horse images and applying

it on other types of objects, we thus demonstrate the ability of our model to transfer

symmetric part detection from one object class to another.

4.5.1 Qualitative results

Figure 4.7 presents our results on a sample of input images. For each image, the set of

ground-truth masks are shown, followed by the top several detection masks. (Detection

masks are indicated with the associated sequence of discs.) For clarity, individual detec-

tions are shown in separate images. The tiger image demonstrates successful detection

of its parts, which vary in curvature and taper. In the next example, vertical segments
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Figure 4.7: Example detections on a sample of images from BSD-Parts. Columns left to
right: input image, ground-truth masks, top 4 detection masks. Note that many images
have more ground-truth masks than detections that can be shown here.

of the Florentine dome are detected by the same method. The next example shows re-

covered parts of the boat. When suitably pruned, a configuration of parts hypothesized

from a cluttered image can provide an index into a bank of part-based shape models.

In the image of the fly, noise along the abdomen was captured by the affinity function

at finer superpixel scales, resulting in multiple overlapping oversegmentations. The leaf

was not detected, however, due to its symmetry being occluded. In the first snake

image, low contrast along its tail yielded imperfect superpixels that could not support

correct segmentation, however the invariance to bending is impressive. The second snake
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(b) WHD

Figure 4.8: Performance curves for corresponding to different settings of the components
of our approach on (a) BSD-Parts and (b) WHD. See text for details.

is accompanied with a second thin detection along its shadow. We conclude with the

starfish whose complex texture was not a difficult challenge for our method. We have

demonstrated that symmetry is a powerful shape regularity that is ubiquitous across

different objects.

4.5.2 Quantitative results

In the quantitative part of our evaluation, we use standard dataset metrics to evaluate the

components of our approach. Specifically, we demonstrate the improvement contributed

by formulating part grouping as sequence optimization, and by using invariant features to

train the classifier. Results are computed on the subset of WHD held out from training,

and on BSD-Parts. To evaluate the quality of our detected symmetric parts, we compare

them in the form of detection masks to the ground-truth masks using the standard

intersection-over-union metric (IoU). A detection mask mdet is counted as a hit if its

overlap with the ground-truth mask mgt is greater than 0.4, where overlap is measured

by IoU |mdet ∩ mgt|/|mdet ∪ mgt|. We obtain a precision-recall curve by varying the

threshold over the cost (weight) of detected parts.
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Figure 4.8 presents the performance curves corresponding to 4 different settings under

our framework, evaluated on both WHD and BSD-Parts: 1) ellipse+clustering combines

the ellipse-warped affinity with agglomerative clustering and corresponds to [65]. We note

that low precision is partly due to the lack of annotations on many background objects

in both datasets; 2) ellipse+sequences combines the ellipse-warped affinity with sequence

optimization; 3) deform+sequences combines deformable warping with sequence opti-

mization, and corresponds to [58]; and 4) deform+unsmooth sets the triplewise weights

in cost(D) uniformly to zero rather than using the affinity as done in the previous setting.

A corresponding drop in performance shows that smoothness is an important feature of

symmetric parts. In summary, experimental results confirm that both the added defor-

mations and sequence optimization are individually effective at improving the accuracy

of our approach.

4.6 Conclusion

Symmetry figured prominently in early object recognition systems, but the potential of

this powerful cue is largely overlooked in contemporary computer vision. In this chapter,

we have reviewed a framework that attempts to reintroduce medial symmetry into the

current research landscape. The key concept behind the framework is remodelling the

discs of the MAT as compact superpixels, learning a pairwise affinity function between

discs with a symmetry-invariant transform, and formulating a discrete optimization prob-

lem to find the best sequences of discs. We have summarized quantitative results that

encourage further exploration of using symmetry for object recognition.

We have reviewed ways in which we overcame the early limitations of our approach,

such as using additional deformation parameters to improve warping accuracy, and refor-

mulating grouping as a discrete optimization problem to improve results. There are also

current limitations to be addressed in future work. To briefly mention two, we first note
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that the success of using Gestalt grouping cues such as symmetry depends on effectively

combining multiple cues together. To improve the robustness of our system, we are thus

exploring how to incorporate additional mid-level cues such as contour closure. This will

help our system more accurately resolve cases where different features provide conflicting

cues, and thus improve the overall performance. Secondly, our scope is bottom-up detec-

tion and thus is agnostic of object categories. However, in a detection or verification task,

top-down cues may be available. We are thus investigating ways of integrating top-down

cues into our framework.

In conclusion, we have reviewed an approach for reintroducing the MAT back into

contemporary computer vision, by leveraging the formulation of maximal discs as com-

pact superpixels to derive symmetry-based affinity function and grouping algorithms.

Quantitative results encourage further development of the framework to recover medial-

based parts from cluttered scenes. Finally, as initial explored in [68], detected parts

must be non-accidentally grouped before they yield the distinctiveness required for ob-

ject recognition. Having looked in-depth at the grouping cue of symmetry, we now move

on to combining symmetry with other mid-level cues.



Chapter 5

Grouping with multiple mid-level

cues

Bottom-up grouping has re-emerged in the form of class-independent region proposals

[15, 116] which are increasingly combined with object detectors and have been shown to

improve performance on competitive challenges [40]. Region proposal methods typically

start with a generation stage that uses a bottom-up grouping algorithm to output a

diverse set of proposals, which are then passed to a ranking stage where they are evaluated

by a trained scoring function. The ranked proposals have richer structure than sliding

windows, which are typically fixed in aspect ratio, and have higher precision than sliding

windows, whose proposals number in the millions. In contrast, region proposal methods

achieve state-of-the-art results with only thousands of proposals.

Region proposal methods forward bottom-up ambiguity from the generation stage

to the ranking stage in the form of proposals, at which point stronger cues are avail-

able to reduce the ambiguity. Unlike hierarchy-based models [39], proposals are often

explicitly isolated from object class labels. Typical methods like [15, 116], however, rely

on only low-level appearance and contour cues to generate proposals, and as a result

must diversify their proposals in large quantities to preserve recall. In this chapter, we

81
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Given an input image as shown in (a), our method first oversegments into
superpixels in (b), which are to be grouped into regions based on a combination of
perceptual grouping cues. In this example, both the horse and the fence are relatively
homogeneous in color and exhibit contrasting boundaries, however the horse’s neck is
slightly darker than its torso. As shown in (c), low-level appearance alone oversegments
the horse at the neck where a large gap in contour is attempted. When including contour
closure in (d), the boundary correctly encloses the head, but elsewhere strays along the
fence. Conversely in (e), including symmetry without closure separates the fence from
the horse, but fails to enclose the head. With closure and symmetry together in (f), the
entire horse is correctly segmented.

present a complementary approach to diversification that uses mid-level grouping cues to

resolve ambiguity at an early stage to avoid the need to generate proposals in excessive

quantities.

By approaching the problem as figure-ground separation, we draw on a large body

of work in perceptual grouping. Mid-level cues capture non-accidental relations between

image elements that are exhibited by all objects. They are less specific than a high-level

object model, yet more discriminative than low-level cues like appearance similarity and

contour continuity. Here we highlight two mid-level cues of interest:

Closure [28, 47] is a regularity that favors regions that are enclosed by strong contour

evidence along the boundary. Bottom-up approaches to finding closure vary in the types

of cues used, and may include continuity and convexity. The problem is often cast as
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finding a cycle of graph edges in a very large space, and is exacerbated when allowing

for gaps in the closure (an illustrative example being the Kanizsa triangle).

Symmetry [77, 84, 114], as discussed in Chapter 4, is a ubiquitous and powerful regu-

larity with scope that spans entire objects or their parts. Since the early days, perceptual

grouping research has produced such varied representations as the medial axis transform

[10], generalized cylinders [9], superquadrics [90], and geons [8]. Later approaches applied

symmetry toward cluttered and occluded image domains, which present the challenge of

searching for symmetrically related elements in an intractably large space.

Like other bottom-up cues, closure and symmetry govern the perception of figure

and ground. Our method, as illustrated in Figure 5.1, groups regions by leveraging

mid-level and low-level cues in combination. An input image (a) is oversegmented into

superpixels (b) to be grouped together into regions. The example shown contains a

horse as foreground, for which multiple grouping cues will help to separate from the

background. Relying on a limited number of cues, as subsequently shown, may result in

a segmentation that is overly sensitive to detailed changes in the image. In (c), low-level

appearance alone oversegments the horse at the slightly darker neck, while jumping a

large gap in contour. Including contour closure in (d) attracts the boundary to pixels

with strong contour evidence and encloses the head, but elsewhere strays along the fence.

Symmetry is a regularity that groups objects, such as the fence, into its coherent parts,

but as shown in (e), does not group the head with the horse. In (f), closure and symmetry

combine their strengths to correctly segment the horse.

Mid-level cues extend beyond any particular object, and symmetry and closure, in

particular, are ubiquitous over most objects. Since our model is aware of objects only

at the mid-level and unaware of their specific appearance, the model can easily transfer

from one object to another. In this chapter, as a case in point, we learn our model

on the Weizmann Horse Dataset (WHD) [11], and then apply it to diverse non-horse

objects from the Weizmann Segmentation Dataset (WSD) [3]. Quantitative experiments
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are performed on WHD to 1) establish the usefulness of each cue by demonstrating

improvement as they are incrementally added, and to 2) demonstrate improvement on two

leading region proposal methods with a limited budget of proposals. The contributions

of our chapter are summarized as follows:

1. Perceptual search. We focus on the front-end stage where the generation of

region proposals is driven by bottom-up grouping. We argue that stronger mid-

level cues play an important role in reducing the number of proposals.

2. Mid-level cue combination. We improve upon previous approaches that lack

mid-level knowledge or combine only one mid-level cue with low-level cues, by

leveraging the combination of mid-level closure and mid-level symmetry to group

regions together.

3. Trained cue combination: While perceptual grouping methods often make ad

hoc grouping decisions, we capture all cues in a single energy function and jointly

learn their weighted combination.

5.1 Related work

Viewing region proposals as object hypotheses for recognition, we begin by broadening

our scope to include methods designed for sliding window detectors. Among these, the

objectness detector of Alexe et al. [2] computes low-level features on superpixels [32] to

score sampled image boxes. Selective search of Uijlings et al. [116] outputs boxes that

bound regions generated from agglomerative clustering of superpixels [32]. The method

accumulates a pool of regions over each step of region-merging until all regions are merged

together, and ensures diversity by pooling results over multiple color and texture feature

spaces. The method is very fast, yet is based on low-level appearance alone.

Arbelaez et al. [5] produces regions by merging superpixels of [4] over multiple scales.

The method considers a limited number of all pairs, triples, and quadruples of adjacent
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superpixels. Our approach is different in that we operate on a single layer of compact

superpixels, and define a set of low-level and mid-level cues that quantify the likelihood

of grouping.

The shape sharing method of Kim & Grauman [51] matches part-level regions in a

given image to a bank of exemplars, which project object-level information back into

the image to help with segmentation. The category-independent proposals of Endres &

Hoiem [29] develops a CRF model to label superpixels based on segment seeds. The

resulting region proposals are ranked using structured learning on grouping cues. The

energy potentials are pairwise and submodular, and inference is done by graph cuts.

While we use a similar procedure to generate regions, we combine mid-level cues at the

front-end without seeding from a fixed hierarchical segmentation.

The CPMC method of Carreira & Sminchisescu [15] generates regions directly from

the image rather than deriving them from a fixed segmentation. The method solves mul-

tiple parametric min-cut instances over color seeds. Regions are re-ranked by regressing

on overlap with region-scoped features, including mid-level features such as convexity

and eccentricity. The emphasis is on ranking rather than the front-end grouping, which

samples color seed models over millions of pixels. Our approach is qualitatively differ-

ent from the above methods as we focus on bottom-up grouping, however our mid-level

front-end is complementary to the ranking stage.

Viewing region proposals as figure-ground labeling calls on a large literature cover-

ing low-level and mid-level Gestalt cues. Rather than covering methods on individual

mid-level cues like symmetry [77, 84, 114] and closure [28, 47], we consider holistic ap-

proaches that combine low- and/or mid-level cues. The region competition approach of

Zhu & Yuille [126] combines the objectives of snakes and region growing into a single

Bayes criterion, effectively integrating the relative strengths of contour-based and region-

based cues. An algorithm for optimizing the new criterion was introduced, however only

guaranteed convergence to a local minimum. Our approach differs in using superpixels
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which, providing access to both contours and regions, serves as a convenient basis for

combining their respective cues, independently from the optimization approach.

Cue combination is alternately formulated as a linear combination of terms that

make up a cost or scoring function. Graph-based image partitioning [32, 103] requires

an affinity function to be specified between pairs of pixels and therefore falls under this

category. For example, the intervening contour method of Leung & Malik [64] includes

a contour-based term into the appearance-based affinity and solves the normalized cut

problem. Like [64], we combine cues in a linear combination of terms, but differ in the

overall grouping approach and use different cues on superpixels.

Inspired by random field models, the cue integration method of Ren et al. [96] devel-

ops an energy function that integrates appearance similarity, contour continuity, contour

closure, and object familiarity on triangular tokens. The model was trained and solved

using loopy belief propagation. Like [96], we combine multiple grouping cues over adja-

cent regions, but we take the approach of expressing the energy potentials in a form that

allows efficient and exact solutions.

Our approach is most similar to Levinshtein et al. [67], which elegantly formulated

contour closure as finding minimum energy labelings, and used parametric min-cut to

find globally optimal solutions. A gap cost was trained on superpixel boundary features

and incorporated into a gap-to-area ratio cost. We differ from [67] by combining multiple

cues, among which contour closure counts as only one, and furthermore we learn to

combine cues in a random field energy model.

5.2 Approach overview

We develop an energy function over superpixel labelings that captures a combination

of low-level and mid-level grouping cues. In Section 5.3, we motivate the cues of low-

level appearance, mid-level closure, and mid-level symmetry from perceptual grouping
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principles and define their corresponding energy potentials. We use a mathematical form

that is flexible enough to accommodate additional cues, yet conforms to a structure that

can be exploited to obtain efficient and exact solutions. In Section 5.4, we introduce

a scaling term in the energy that represents ambiguity in scale, and use it to obtain

multiple solutions. Section 5.5 formulates the loss-based framework with which we train

the weights of the energy function. We present and discuss results in Section 5.6 and

conclude in Section 5.7.

5.3 Grouping cues

Our method operates on superpixels as grouping primitives from which regions are com-

posed. Superpixels provide a rich topology of regions and boundaries on which a diverse

set of cues can be defined to capture different grouping relations. Specifically, an input

image x is oversegmented into P superpixels, where each superpixel p is assigned a binary

label yp ∈ {1 = figure, 0 = ground}. The labeling space Y = {1, 0}P contains all possible

vectors y = {y1, . . . , yP} of superpixel labels and thus represents all possible groupings.

An energy function E(x,y) is defined on Y that favors labelings based on a combination

of cues observed on the image x, and captures this combination as a decomposition into

potentials corresponding to different cues:

E(x,y) =
∑

cue

∑

I∈N cue
Ecue
I (xI ,yI) (5.1)

In (5.1), cue varies over low-level appearance (app), mid-level closure (clo), and mid-

level symmetry (sym). The set N cue of neighborhoods for a particular cue defines the

local subsets of superpixels on which the cue is defined. Potentials in our model are

restricted to pairwise order. By finding a labeling that globally minimizes the energy,

we obtain a region that exhibits strong grouping relations. In this section, we discuss

the contributions of the cues of symmetry, closure, and appearance and define their
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corresponding energy potentials.

5.3.1 Appearance similarity

Similarity is a basic perceptual grouping cue that we capture in the form of color and

texture similarity. We note that even objects of heterogeneous appearance are often

composed of homogeneous parts. For each superpixel p, we compute a d-dimensional

normalized histogram descriptor hp that summarizes its appearance. We then compute

the similarity between a pair p, q of adjacent superpixels using the histogram intersection

kernel:

sp,q =
d∑

i=1

min(hpi , h
q
i ).

Color and texture are captured with different histograms hc,ht which are computed in

the manner of Uijlings et al. [116] using multiple color channels and SIFT-like features.

Similarity is computed for both histograms to obtain the two-dimensional feature:

φappp,q (x) = (sp,qc , sp,qt ).

The pairwise appearance potential for each adjacent pair p, q combines the cues and is

defined as follows:

Eapp
p,q (x,yp,q) =





wT
appφ

app
p,q (x) yp 6= yq

0 yp = yq.

(5.2)

We note that this discourages adjacent superpixels of similar appearance from splitting,

but allows superpixels of dissimilar appearance to merge.
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(a) (b)

Figure 5.2: To support the cue of mid-level closure, contour evidence is computed along
superpixel boundaries as shown in (a), where thickness indicates the degree of contour
evidence (lack of gap) [67]. In (b), the gap cost G(y) for a hypothetical labeling y
over the corresponding region’s boundary ∂(y) is shown in dashed red and consists of
superpixels S1-S4. Unary potentials sum gap along the corresponding boundaries G1-G4,
and pairwise potentials sum gap along the shared boundaries G12-G34. The total gap
G(y) along the dashed red is obtained by subtracting twice the pairwise potentials from
the unary potentials. (We thank the authors of [67] for permission to reproduce figure
(b)).

5.3.2 Contour closure

Contour closure is a key challenge of perceptual grouping. One of the key ingredients of

closure is strong contour evidence along the boundary that separates figure from ground.

Since we prefer boundaries that avoid large gaps of contour (weak evidence), we define for

any given labeling y the gap cost G(y) in terms of the corresponding region’s boundary

∂(y):

G(x,y) =
∑

x∈∂(y)

g(b).

This cost accumulates a positive gap g(b) over all boundary pixels x ∈ ∂(y). We compute

g(b) ∈ [0, 1] at every boundary pixel using the trained measure of [67], which accounts

for discrepancy between actual image boundaries and superpixel boundaries in location

and orientation.

We directly incorporate G(y) into our energy function by expressing it in terms of
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unary and pairwise potentials over y. We encode the potentials as in [67], for which a

schematic example is provided in Figure 5.2. Unary potentials are defined to sum gap

along the corresponding superpixel’s boundary ∂(p) when yp = 1. Pairwise potentials

between p and q sum gap only along the boundary ∂̄(p, q) shared by both superpixels,

when yp = yq = 1:

Eclo
p (yp) =





∑
b∈∂(p) g(b) yp = 1

0 yp = 0

Eclo
p,q(yp,q) =





∑
b∈∂̄(p,q) g(b) yp = yq = 1

0 otherwise

(5.3)

As illustrated in Figure 5.2(b), unary potentials sum gap along their superpixel bound-

aries. For a region consisting of a single superpixel, the unary potential reflects the correct

gap cost. However, for a region consisting of multiple superpixels, simply summing the

corresponding unary potentials will double count the gaps along the boundaries shared

by adjacent superpixels in the region, which are exactly those counted by the pairwise

potentials. The gap G(y) along the true boundary of the region can thus be easily

expressed as the sum of the unary potentials, minus twice the pairwise potentials:

Eclo(x,y) = wclo ·
(∑

p

Eclo
p (x, yp)− 2

∑

p,q

Eclo
p,q(x,yp,q)

)
(5.4)

5.3.3 Symmetry

Symmetry relates together local features that span the entire object or its parts and, as

such, is a powerful mid-level cue. Its large spatial scope, however, makes the associated

grouping problem combinatorially hard. In the context of our representation in the

labeling space Y , the region corresponding to an object or its part can be composed from

any number of superpixels, and thus induces dependencies of arbitrarily high order.

Our method draws on the approach of Lee et al. [58] for finding symmetrically related

features, which circumvents the above difficulty by leveraging the scope of large superpix-
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(a) (b)

Figure 5.3: Symmetric parts detected by [58] as sequences of medial points represented
as region masks, as shown in (a). In (b), straight lines indicate strong pairwise affinities
between superpixels that belong to the same symmetric part.

els. By operating on successively coarser superpixels, pairwise combinations are able to

cover successively larger regions, effectively achieving higher orders of dependency. This

allows local sections of symmetry of the same object part to be composed from a sequence

of pairwise superpixels at the correct scale. Furthermore, [58] finds optimal sequences of

superpixels that lie along the symmetry axes of object parts, as shown in Figure 5.3.

We incorporate the symmetry cue in the above form into our method by favoring

the grouping of superpixels that belong, with high likelihood, to the same symmetric

part. In practice, we run the sequence optimization of [58] independently on multiscale

superpixels to obtain a set S of symmetric parts, as shown in Figure 5.3(a), and define

pairwise potentials that favor grouping of superpixels that belong to the same symmetric

part, as shown in 5.3(b).

For each pair of adjacent superpixels p, q, we define the feature:

φsymp,q (x) = max
s∈S(p,q)

score(s),

which is the score of the best scoring symmetric part s ∈ S(p, q), where S(p, q) ⊆ S is

the subset of symmetric parts for which the overlap with p and q both exceed τ = 0.75.

When S(p, q) is empty, the feature takes on a value of zero. The value score(s) ∈ [0, 1] is
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the part’s detection score, which we interpret as positive grouping evidence. We perform

non-maximum suppression over all superpixels pairs so that each pairwise relation is

influenced by at most one symmetric part. The symmetry potential penalizes labeled

regions that cut through symmetric parts, and is defined for each pair (p, q) of adjacent

superpixels as:

Esym
p,q (x,yp,q) =





wsym · φsymp,q (x) yp 6= yq

0 yp = yq.

(5.5)

5.4 Figure-ground labeling

We incorporate the potentials corresponding to the grouping cues into our final energy

function as follows:

E(y) =
∑

p,q

Eapp
p,q (y) +

∑

p

Eclo
p (y)− 2

∑

p,q

Eclo
p,q(y) +

∑

p,q

Esym
p,q (y) + λ

∑

p

φp(y). (5.6)

In (5.6), the grouping cues are rescaled by a scaling potential φp(y) by a factor of λ > 0

that is defined as follows:

φp(y) =





−area(p) yp = 1

0 yp = 0.

(5.7)

The scaling potential removes trivial solutions associated with the empty grouping with

zero energy. Furthermore, as λ increases, the scaling potential favors labelings of larger

area, and thus λ adjusts the energy’s preference for regions of smaller or larger scale.

To minimize (5.6), we rewrite it as a sum of unary and pairwise potentials:

E(x,y) =
∑

p

wT
1 φ

λ
p(y, x) +

∑

p,q

wT
2 φp,q(y, x), (5.8)
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noting that the pairwise potentials are submodular when weights are non-negative (fea-

tures are non-negative). When λ is fixed, (5.8) can be minimized efficiently with a

maxflow algorithm. In our model, λ is an unknown variable that represents the scale of

an object, and so we minimize (5.8) for all values λ ∈ Λ, for Λ ⊂ R. This is known as the

parametric maxflow problem [53], which yields a finite number of solutions as λ varies

over Λ. The set of globally optimal solutions can be found with a linear number of calls

to the maxflow algorithm. We use Λ = [0, 1] to yield a dozen solutions on average per

image, thereby obtaining multiple proposals varying in scale.

5.5 Learning

We train the weights of the energy function (5.8) by incorporating it into the Structured

SVM framework. Learning will be thoroughly addressed in Chapter 6, however for this

chapter, we will restrict learning to standard S-SVM for tractability. The framework is

instantiated with the loss function:

∆(ŷ,y) =
1

area(x)

∑

p

area(p) · φ∆
p (ŷp, yp) φ∆

p (ŷ, y) =





1− αp ŷ = 1

αp ŷ = 0

(5.9)

where αp ∈ [0, 1] is the fraction of pixels inside superpixel p labeled by the ground truth

pixel mask. Weights are optimized using StructSVMCP [99] and constrained to be non-

negative. We note that the learning step assumes that the loss for a particular example

is obtained by minimizing the corresponding energy with a particular value of λ. For

simplicity, we have fixed λ = 0.01 for all training examples. During testing, however, we

vary λ over Λ for each example.
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5.6 Evaluation

A key point of our approach is that our model being mid-level enables it to directly

transfer from one object class to another. To illustrate this point, we use the Weizmann

Horse Dataset (WHD) [11] to build our model, while applying it on diverse non-horse

objects from the Weizmann Segmentation Dataset (WSD) [3]. Section 5.6.2 describes the

qualitative results obtained on WSD. We additionally perform quantitative experiments

to study the individual contributions of our grouping cues, and to demonstrate an im-

provement over two leading region proposal methods. Results are presented in Sections

5.6.1 and 5.6.3, respectively.

Contained in WHD are 328 images, each annotated with a ground truth mask. We

train on the first 200 images, and hold out the remainder for test. As an evaluation

metric, we compute the average best overlap [116]:

O(G,R; k) =
1

|G|
∑

(g,i)∈G

max
r∈R(i;k)

o(r; g),

where G and R are the ground truth and region proposal masks, respectively, and the

quantity k is the number of top-ranked proposals. Intersection-over-union overlap be-

tween a region r and the ground truth mask g is denoted by o(r; g). We plot overlap

against k to measure the trade-off between overlap and k.

5.6.1 Cue combination

We study the effect of incrementally combining the cues of appearance, closure and sym-

metry, by including their respective potentials in the energy function (5.6). Each cue

observes a different type of grouping evidence, and we expect the best results from com-

bining the strengths of all cues. Figure 5.4 shows the effect of incrementally adding

closure and symmetry to appearance, as well as using mid-level cues without appear-

ance. We observe that closure and appearance work well together, while symmetry helps



Chapter 5. Grouping with multiple mid-level cues 95

2 4 6 8 10 12 14
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

number

o
v
e
rl
a
p

 

 

appearance+closure+symmetry

appearance+closure

closure+symmetry

closure

appearance+symmetry

appearance

Figure 5.4: Improvement in recall as grouping cues are incrementally added to the energy.

for all combinations. The results confirm our hypothesis that each cue individually con-

tributes useful information, with the best result from combining all cues. Our symmetry

cue contributed a smaller than expected improvement on WHD. We expect symmetry’s

contribution to be better reflected in more challenging datasets of objects whose regions

cannot be as easily computed with the remaining cues alone.

5.6.2 Qualitative results

We present qualitative results for a diverse set of objects in Figure 5.6, where each

row shows the top proposed regions produced from a given input image, along with

the corresponding ground truth mask. Our method successfully separates horses from

cluttered and occluded backgrounds. We observe that alternative regions often arise

when there are spurious contours, particularly within the horse and shadows under the

horse. False negative contours, however, can cause undersegmentation, e.g., in row 4.

Symmetry of occluded fences is often sufficient to prevent undersegmentation. We note

that while our appearance cue favors grouping regions of similar color, it does not penalize

regions of heterogeneous color and correctly segments the horse in row 5. The remaining
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Figure 5.5: Improvements over CPMC [15] and Selective Search [116] with a limited
budget of proposals, and improvement over Superpixel Closure [67]. Our method is
evaluated with and without color seeds. See text for details.

rows show results on different objects from WSD and demonstrate that our method is

class-independent, and that our mid-level cues trained on WHD transfer well to objects

of different classes.

5.6.3 Comparison with region proposals

We demonstrate the advantage of our mid-level method with respect to Selective Search

[116] and CPMC [15] in Figure 5.5. For comparison with [116], we have measured overlap

with respect to the agglomerated regions (rather than their bounding boxes), pooled over

color types, similarity measures, and the parameter of [32]. The quantitative comparison

demonstrates an improvement on [116] with a budget of a hundred proposals. We note

that our method focuses on resolving ambiguity and generates 20-30 proposals per image.

In contrast, [116] relies on diversity of proposals and requires over 100 proposals to achieve

the same recall. Our method is thus more effective for a limited budget of proposals.

For comparison with [15], we have measured overlap with their regions produced using

color seeds, where a color seed model is fit to sampled locations. For this comparison,
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we have also added color seeds to our energy function (5.6). Specifically, for any given

test image, we fit a Gaussian mixture model to the image’s RGB distribution to obtain

a compact set of color seed models corresponding to each mixture component (we obtain

4-6 clusters per image). This differs from [15] which densely samples color seeds over a

grid. For each pair of color seeds as a foreground-background hypothesis, we bias our

energy function (5.6) with a unary potential that scores the corresponding superpixel’s

log likelihood ratio between the foreground seed and the background seed, as done in

[15]. Parametric min-cut is solved for each pair of color seeds, and the resulting regions

are pooled with the original (unbiased) regions, obtaining several hundred proposals

per image. Our method with color seeds improves on [15] with a budget of a hundred

proposals.

5.7 Conclusion

Bottom-up grouping is regaining momentum as a counterpart to object detection, and is

a promising area in which to explore the importance of mid-level grouping cues. Mid-level

cues are ubiquitous and transcend individual object classes, yet can be leveraged effec-

tively only in combination. We have presented a method to combine appearance, closure,

and symmetry, and demonstrated the usefulness of each cue. We have also demonstrated

the effectiveness of using mid-level cues to resolve ambiguity with a limited budget of

proposals, and have shown that our model complements diversification techniques when

a large number of proposals is affordable. Our next chapter will address learning in depth

by adapting S-SVM to the context of region proposals.
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Figure 5.6: Top region proposals from our method from different images ranked by in-
creasing energy. Leftmost column shows corresponding ground truth masks and remain-
ing columns show region proposals. Rows 1-5 correspond to images from the Weizmann
Horse Database (WHD), and rows 6-8 correspond to images from the Weizmann Seg-
mentation Database (WSD). See text for details.



Chapter 6

Learning to generate grouping

hypotheses

The return to bottom-up region segmentation is an invitation to integrate the many mid-

level cues that ultimately play a role in such perceptual grouping, including proximity,

symmetry, closure, similarity, and continuity, to name a few. But even with compu-

tational models of such cues, how should they be combined and what is their relative

importance? As shown in Figure 6.1, we explore these issues within the framework of

graphical models, which encode contextual relationships such as grouping cues between

adjacent image regions. Computationally, graphical models can be solved exactly in a

tractable manner, e.g. by minimizing a pairwise submodular energy function of binary

variables with a maxflow algorithm. They can be discriminatively trained to predict

structured outputs, offering a consistent learning and inference framework for bottom-up

segmentation [96, 111].

Until recently, discriminative graphical models for segmentation have been restricted

to single-output predictions, and lacked a framework for learning to predict diverse multi-

ple outputs, e.g. as introduced in Multiple Choice Learning (MCL) [45]. Multiple-output

models are especially important for region proposals due to the principle of least commit-

99
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Diversification 

Learning 

Figure 6.1: Our approach takes an input image, partitions it into superpixels, and groups
superpixels into region proposals using a novel structured learning framework for para-
metric energy functions, called Parametric Min-Loss (PML). The parametric energy func-
tion combines mid-level cues with weights that are trained to generate multiple region
proposals. Finally, we diversify the energy function to generate a diverse set of region
proposals.

ment needed for bottom-up grouping. One such tool that has emerged in the computer

vision community is parametric maxflow [53], which is used to minimize an energy func-

tion Eλ(y) for multiple values of parameter λ, generating multiple solutions at a time.

Parametric maxflow was applied to proposing object regions in CPMC [15] and in sub-

sequent variants [46, 94].

Despite frequent use in region proposal generation, however, parametric energy func-

tions are, as a rule, not trained to predict multiple outputs, but rather trained to predict

a single output. To the best of our knowledge, this thesis is the first to bridge the gap

between learning and inference for parametric maxflow. Our formulation is inspired by

MCL, which models multiple-output learning with a loss function that evaluates multiple

outputs against a correct output. Our model, however, differs from MCL in 1) having a
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single parametric energy function, and in 2) automatically adapting the number of output

solutions to the input image. Despite these significant differences, we find that MCL’s

block-coordinate descent strategy applies to parametric maxflow and yields a solution

that decomposes into simple alternating steps.

In summary, we introduce Parametric Min-Loss (PML), a novel model and algorithm

for structured multiple-output learning using parametric maxflow. We demonstrate its

use for learning to combine a set of mid-level grouping cues to yield a set of region

proposals with high recall. Besides having applications to perceptual grouping, the model

bridges the disparity between learning and inference for parametric energy functions and

can be applied to any domain that uses parametric maxflow. While learning accounts for

diverse multiple outputs, we include a complementary diversification step that allows the

proposals to adapt to different conditions. With a large-scale experimental validation,

we cast mid-level cue combination in a structured learning environment, representing an

exciting new direction for perceptual grouping.

6.1 Related work

Perceptual grouping has often been formulated as an energy minimization problem, e.g.

[43, 117, 121, 19, 126, 50, 103], yielding a single region or (possibly) closed contour, or

a partition into regions. In the more recent context of generating region proposals, a

parametric energy minimization problem is often formulated (e.g. CPMC [15]) in which

the energy is parameterized by λ and minimized for multiple values of λ using parametric

maxflow, yielding multiple solutions. Such an approach is an extension of energy min-

imization from predicting a single output to predicting multiple outputs in support of

the principle of least commitment, and has been refined by subsequent variants [46, 94].

However, the combination of cues is typically specified manually in the energy or not

trained jointly in the energy.
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Moreover, a gap has emerged between learning and inference for parametric maxflow

because prediction has been extended to multiple outputs while learning has not. This

disparity exists in general for multiple-output models, an example of which is the M-Best

MAP approach for generating multiple hypotheses [41]. Recently, Multiple Choice Learn-

ing (MCL) [45] addressed this gap in a tractable way using an M -tuple of independent

structured predictors that predicts M outputs. The model is efficient and minimizes the

loss of only the most accurate prediction in the set of outputs. Subsequent improvements

included an explicit criterion to encourage diversity among the predictors [44], however

the model remains fundamentally different from parametric maxflow, which solves a sin-

gle parametric energy function that accounts for multiple outputs, and whose number of

outputs is adaptive and does not need to be pre-specified. Our method for parametric

maxflow, however, is similar to MCL in using a block-coordinate descent strategy in a

large-margin formulation to close the train-test gap.

Approaches for region proposals typically consist of a generation stage for hypothesiz-

ing proposals, followed by a ranking stage that attempts to order them by “objectness”.

A diversity of approaches exist in which many generate proposals in the form of bound-

ing boxes, e.g. Objectness [2] and Edge Boxes [127]. In such methods, a sliding window

suffices as no explicit grouping is required, and they are suitable for box-based detectors

even though proposals do not explicitly capture the underlying shape of the objects. Se-

lective Search [116] efficiently generates region-based proposals based on greedily merging

superpixels and was subsequently improved with trained affinity functions [123]. The ap-

proach is similar to ours in using region-based similarity cues, however the agglomerative

grouping procedure is brute force.

In approaches for region-based proposals, such as GOP [55], RIGOR [46], MCG [5],

the principle of least commitment is typically not built into learning. Only very recently

was such a method proposed [56] that minimized the loss of the most accurate region

proposal, with efficient runtime at test time and achieving competitive results. In our
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work, we minimize the same loss function, however one of our key aims is to develop a

graphical model that is unified across learning and inference. Another recent work [18]

also uses learning to combine several cues for generating object proposals in 3D, but

it does not use parametric energies. Earlier methods gave a significant role to learning

in the ranking stage, e.g. [5, 29, 94]. CPMC [15] uses parametric maxflow to generate

proposals and is most similar to ours in spirit, however we perform grouping at superpixel-

level rather than pixel-level. This allows access to region-based mid-level cues during

the generation stage. In contrast to the above methods, our approach emphasizes the

generation stage over the ranking stage, and emphasizes the role of learning to group

using mid-level cues. The closest methods to our approach are Superpixel Closure [66],

which uses mid-level closure, but does not combine other cues, and Multicue [59], which

combines mid-level cues in a parametric energy function, but only trains the energy to

generate a single proposal.

6.2 Perceptual grouping cues

Our method begins by segmenting the input image x into a single layer of superpixels

that forms the basis of feature extraction, labeling, and grouping. Superpixels reduce

search complexity while providing access to local region and contour scope. At the same

time, we are restricting regions to superpixel boundaries, so it is important to preserve

boundary recall. The resulting strategy is to oversegment the image into superpixels

which remain to be grouped.

Formally, we partition the image x into a set S of superpixels, from which we seek

a subset R ⊂ S that represents an object. Equivalently, we represent R as a binary

labeling y ∈ {0, 1}|S|, where yp = 1 exactly when superpixel p is in R, for p = 1, . . . , |S|,

hence R = {p : yp = 1}. The space of possible regions lies in Y = {0, 1}|S|.

Given an image x, we seek a minimum energy region y ∈ Y with respect to the
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energy Eλ(x) : Y → R which is defined for the image and a parameter λ. Specifically,

we minimize the energy function:

Eλ(x,y) = λ
∑

p

φ0(x, yp) + wT
1

∑

p

φ1(x, yp)

+ wT
2

∑

p,q

φ2(x,yp,q), (6.1)

whose terms here are grouped by weighted features φ0, φ1, φ2. This energy can be mini-

mized for multiple values of λ by parametric maxflow under further constraints (see [53]),

however the goal of this section is to model mid-level grouping cues in the energy. To do

so, we regroup the energy (6.1) into subenergies that model their respective cues:

Eλ(x,y) = Eapp(x,y) + Eclo(x,y)

+ Esym(x,y) + Eλ
scale(x,y). (6.2)

The following sections will define the subenergies above.

6.2.1 Proximity

The grouping cue of proximity is a basic image relation that is preserved through image

projection. Since pairwise potentials encode grouping relations, proximity is reflected in

placing a potential on every pair of adjacent superpixels, thereby defining the edge set

A(S) ⊂ S2.

6.2.2 Appearance similarity

Appearance similarity is a non-accidental regularity of objects—the more similar a group

of elements are to each other, the more likely they belong to the same object. We extract

a color histogram hcol
p of dcol dimensions for every superpixel p, and define a similarity
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Figure 6.2: Given a region defined by y ∈ {0, 1}|S|, the closure cue sums gap along its
boundary ∂(y). Summation is regrouped into unary superpixel boundaries ∂(p) and pair-
wise superpixel boundaries ∂̄(p, q) for superpixels inside the region (see text for details).

for every pair (p, q) ∈ A(S) using the histogram intersection kernel [116]:

simp,q(h) =
d∑

i=1

min(hp(i),hq(i)) (6.3)

We similarly define similarity for a texture histogram htext
p of dtext dimensions. Ap-

pearance similarity is encoded into our energy as a 2-dimensional feature consisting of

color and texture:

φapp(x,yp,q) = 1[yp 6=yq ](simp,q(h
col), simp,q(h

text)) (6.4)

We note that φapp contributes a cost only when neighboring superpixels with similar

appearance are labeled differently, while there is no cost when neighboring superpixels

with dissimilar appearance are labeled the same. The potentials are weighted by wapp

which is trained and shared across all superpixel pairs, and overall contributes to the

following energy:

Eapp(x,y) = wT
app

∑

p,q

φapp(x,yp,q). (6.5)
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6.2.3 Contour closure

Contour closure is a non-accidental regularity of objects, in which object coherence in

3D projects to a closed boundary in 2D. The more contour evidence there is along the

boundary of a given region y, the more likely it is to enclose an object. We use a cost

function that sums contour gap G(x,y) =
∑

b∈∂(y) g(x, b) along the region boundary

∂(y), where g(x, b) is the gap (lack of contour) evaluated at pixel b of image x.

To express the cost G(x,y) in the form of unary and pairwise features [66], we first

define a unary feature:

φclo(x, yp) =
∑

b∈∂(p)

1[yp=1]g(x, b) (6.6)

that sums gap along selected superpixel boundaries. For a region consisting of a single

superpixel, the unary feature sums the correct gap cost. However, as shown in Figure

6.2, for a region consisting of multiple superpixels, simply summing the unary features

will double count the gaps along the internal boundaries shared by adjacent superpixels.

We thus define pairwise features to cancel them out:

φclo(x,yp,q) =
∑

b∈∂̄(p,q)

1[yp=yq=1]g(x, b) (6.7)

The gap G(x,y) of region y is thus the sum of the unary features, minus twice the

pairwise features. In summary, the closure cue contributes the weighted energy:

Eclo(x,y) = wT
clo

(∑

p

φclo(x, yp)− 2
∑

p,q

φclo(x,yp,q)

)
(6.8)

6.2.4 Symmetry

Symmetry is a powerful regularity in objects. While symmetry captures interactions

among all parts of an object, this must be balanced with the need for a low-order energy.
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Coarse superpixels help by expanding the spatial scope of each unit, however superpixel

size must also be limited in order to preserve boundary recall. Overall, it is a computa-

tional challenge to capture grouping by symmetry.

We follow the approach of [59] of “outsourcing” symmetry to a region-based symmetry

detector [58], and biasing our energy to detected symmetric parts. Formally, given a set

T of region-scoped, scored symmetric parts, we define pairwise potentials that prefer to

merge superpixels when they fall in the same symmetric part. For every pair (p, q) ∈ A(S)

we define:

φsym(x,yp,q) = 1[yp 6=yq ] max
s∈S(p,q)

score(s), (6.9)

where the max considers symmetric parts T (p, q) ⊆ T that overlap p and q by at least

τ = 0.75, and selects the best-scoring one. A value of zero is assigned when T (p, q) is

empty. Non-maximum suppression is applied over all superpixel pairs so that at most

one symmetric part contributes to each pair. Overall, the symmetry cue penalizes labeled

regions that cut through symmetric parts, via the weighted energy:

Esym(x,y) = wT
sym

∑

p,q

φsym(x,yp,q). (6.10)

6.2.5 Object scale

The grouping energies above accumulate higher costs for regions with more superpix-

els, and thus the energy is artificially biased toward smaller regions and needs to be

normalized by the region’s size. To do so, we subtract unary features φarea scaled by

a factor |λ| from the energy, with the effect of accommodating larger regions as |λ| in-

creases. Practically, a non-zero λ is necessary to remove trivial solutions. We define
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φarea(x, yp) = 1[yp=1]area(p), which contributes the negative quantity:

Eλ
scale(x,y) = λ

∑

p

φarea(x, yp). (6.11)

A diverse set of solutions can be obtained with different values of λ. Note that the

cost of selecting an individual superpixel is influenced by the magnitude of λ against

other potentials: a very large |λ| will more than offset the other potentials and cause all

superpixels to be selected. Since potentials are empirically below 1, we can obtain all

solutions by varying λ within [−1, 0].

6.3 Parametric energy minimization

The domain Y over which the energy (6.1) is minimized is too large for exhaustive search,

but when written as a sum of unary and pairwise potentials, the energy is seen to have

the required structure for an efficient solution. When submodular pairwise potentials are

guaranteed by requiring w ≥ 0, and λ is held at a fixed non-positive value, the problem

ŷ = arg min
y
Eλ(x,y,w) (6.12)

can be solved exactly by a maxflow algorithm. Solving (6.12) for all values λ ∈ [λmin, λmax]

simultaneously is known as a parametric problem, and can be done via parametric

maxflow. Furthermore, since the linear term φ0 measures area, the monotonicity prop-

erty is satisfied that guarantees a solution set of size linear in |S| [53]. See Figure 6.3 for

a visualization of the solution set in an input image.

We rewrite (6.1) in a linear form that is amenable to large-margin learning [113]

by stacking the features and weights of individual cues together. Specifically, we de-

fine a weight vector w = (w0,w1,w2) where w0 = 1, and a feature vector φλ =

(−λΦ0,−Φ1,−Φ2). We can then rewrite Eλ(x,y,w) = −wTφλ(x,y) and thus rewrite
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Figure 6.3: Given the input image and superpixel segmentation shown in the first row,
our approach defines a parametric problem whose solution set is shown in the second
row. Optimal labelings are listed in order of increasing λ ∈ [−1, 0].

(6.12) as:

ŷ(x,w) = arg max
y

wTφλ(x,y). (6.13)

Finally, the structured prediction function (6.13) is generalized to a set of solutions over

a range of λ:

Ŷ (x,w) = {ŷλ(x,w) : λ ∈ [−1, 0]}. (6.14)

6.4 Parametric Min-Loss learning

When a ground truth region g annotates an object in input image x, the quality of the

set Ŷ (x,w) of predicted regions can be evaluated against g. In the evaluation of region

proposals, for example, Jaccard similarity is considered by the Average Best Overlap
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(ABO) metric [116]. In S-SVM learning [113], a task loss `(ŷ,y) measures the mismatch

of a structured prediction ŷ against y. To measure the mismatch of a set Ŷ of structured

predictions, however, we generalize the task loss to a set in the following way:

L(Ŷ ,y) = min
ŷ∈Ŷ

`(ŷ,y), (6.15)

where the min-task loss (6.15) says that the quality of the entire set Ŷ of predictions

is the quality of the best prediction. As in standard S-SVM, the task loss ` is defined

to be amenable to loss-augmented inference [113] and decomposes into a sum of unary

losses. Each unary loss uses vp, as defined below, to measure the mismatch of superpixel

p against the ground truth region g as follows:

`(ŷ,y(g)) =
1

|g|
∑

p

|p|





vp ŷp = 0

1− vp ŷp = 1,

(6.16)

where vp is the fraction of p’s pixels that lie in g.

The weights of (6.1) are ideally learned by minimizing L(Ŷ , y) in w, but in order

to circumvent difficulties arising from non-convexity and discontinuities, we develop a

related loss function H(w) that is easier to minimize. Our derivation of H(w) follows a

strategy based on the (structured) hinge loss (see, e.g. Def. (6.1) in [87]): as the hinge

loss is an upper bound of the task loss, we derive a min-hinge loss that is an upper bound

of the min-task loss [45]. We first write the hinge loss for parametric maxflow as follows,

with dependence on the training example (x,y) omitted for brevity:

h(w, λ) = max
ŷ

`(ŷ,y) + wTφλ(x, ŷ)−wTφλ(x,y). (6.17)
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Algorithm 1 Parametric Min-Loss

Require: {φλ(x, ·),y, `}Nn=1 . energy potentials, ground truth, task loss
Ensure: w∗ ≥ 0 . positive weights for pairwise submodularity

1: τ ← 0 . set iteration counter
2: repeat
3: τ ← τ + 1 . increment iteration counter
4: w(τ) ← StructuredSVM({φλ(τ)(x, ·),y, `}Nn=1) . solve S-SVM
5: for n← 1 . . . N do
6: {(λi,yi)} ← ParametricMaxflow(−`(yn)−wTφ(xn), [−1, 0]) . solve min-hinge
7: hi ← `(yn,yi) + wT[φλi(xn,yi)− φλi(xn,yn)],∀i . solve min-hinge

8: λ
(τ)
n ← λarg minhi . solve min-hinge

9: end for
10: until converged or maxed out

11: return w∗ ← w(τ)

The min-hinge loss H(w) then takes the minimum of h(w, λ) over a range of λ:

H(w) = min
λ∈[−1,0]

h(w, λ). (6.18)

Unlike in standard S-SVM, the loss function H(w) is not guaranteed to be convex,

however it is shown that H is an upper bound for L [45].

Accounting for all training examples {(xn,yn)}Nn=1 where each yn is a ground truth

region, we obtain the regularized min-hinge minimization problem:

min
w

1

2
||w||2 +

C

N

N∑

n=1

min
λn∈[−1,0]

hn(w, λn). (6.19)

Although solving (6.19) is an NP-hard problem, we can derive an efficient solution by

rewriting the problem as:

min
w

min
{λn}

1

2
||w||2 +

C

N

N∑

n=1

hn(w, λn) (6.20)

and decomposing it into two simpler problems that we identify as λ-update and standard

S-SVM. Our algorithm, summarized in Algorithm 1, alternates between holding w fixed

and optimizing the λ’s, and holding the λ’s fixed and solving S-SVM.



Chapter 6. Learning to generate grouping hypotheses 112

−0.3 −0.25 −0.2 −0.15

2000

4000

6000

8000

10000

12000

hinge loss at λ

h
(λ

)

λ

Figure 6.4: The convex function h(λ) sampled at breakpoints (left), and iterates of λ
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over time τ for each n in a subset of training examples, where later iterations (higher τ)
are represented by warmer colors (right).

Fixing w, we obtain N independent problems that can be solved in parallel. Each

problem amounts to solving parametric minimization of the hinge-loss:

arg min
λ∈[−1,0]

h(w, λ) (6.21)

Since the function h(w, λ) is the maximum of 2|S| linear functions, it is convex and

piecewise-linear. It follows that h(w, λ) reaches its minimum value at one of the λ break-

points, and so we need only to search for the breakpoint that evaluates to a minimum.

The set of breakpoints {λi} and their solutions {yi} are found by solving the parametric

maxflow problem:

∀λ ∈ [−1, 0],min
ŷ
−`(ŷ,y)−wTφλ(x, ŷ) (6.22)

To solve (6.21), we exhaustively evaluate h(w, λ) for each λi using yi. We note that λ

has monotonic coefficients and thus there are at most O(|S|) breakpoints [53] containing

the solution. See Figure 6.4 for an illustration.
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With {λn} fixed, problem (6.19) reduces to a single, standard S-SVM problem:

w = arg min
w

1

2
||w||2 +

C

N

N∑

n=1

hn(w, λn) (6.23)

We solve (6.23) with the constraint w ≥ 0 using the cutting-plane implementation of

[99].

Although the learning algorithm alternates between minimizing w and λ, the learning

goal for region proposals is to optimize the weights. Minimization in λ reflects the

selection of the best region by a ground truth oracle, and prediction has no access to such

an oracle. Moreover, in the absence of a specified object category, bottom-up grouping

cues are the only means of predicting region proposals.

6.5 Diversification

Diversification is an important step toward achieving recall without a specified object

category. Typically, diverse proposals are generated based on local features sampled

from different parts of the image, often called seeds [15, 46, 94]. In a given image, we

sample seeds that make assumptions about object properties such as image location and

color distribution. An energy function that is biased with a particular seed will then yield

proposals that are customized toward a particular location or color distribution. Pooling

together proposals associated with different seeds allows us to cover a wide range of

conditions with greater precision.

Location. We use individual superpixels to seed image locations, with a total of

|S| seeds. As shown in Figure 6.5, each seed p defines unary features that discourage

selecting yq = 1 depending on q’s “distance” from p. This is encoded for any superpixel

q with a cost based on the maximum distance of q from p. For non-compact superpixels,

this promotes compactness by encouraging smaller, nearby regions to be “annexed” first

(regardless of their color).
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Figure 6.5: A location-based seed is sampled on the motorcyclist’s back, which induces
the unary potentials as shown. Warmer colors represent higher costs.

Figure 6.6: A color-based seed is sampled on the pair of foreground-background color
distributions, which induces the unary potentials as shown.

Color similarity. Here, we seed image colors (without considering proximity) using

a Gaussian mixture model applied to the color space. Specifically, we seed foreground-

background pairs of color distributions. For any given seed, each superpixel q has a

likelihood under the foreground distribution and a likelihood under the background dis-

tribution. The higher the likelihood ratio, the lower the cost of assigning yq = 1. An

example is provided in Figure 6.6.

In our application, diversification is complementary to PML. While learning accounts

for diversity over scale in λ, here the energy is further diversified in location and color.

Moreover, learning and diversification balance each other out, as the grouping cues com-

bined in the energy have a tempering effect on diversification seeds, e.g. by helping a seed

centered on a location to adapt to irregular shapes.
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6.6 Postprocessing

All solutions pooled over diversification seeds enter a pipeline of postprocessing steps.

First, we process each solution y ∈ Y to ensure that contiguous regions are considered

for recall. We find connected components efficiently in superpixel space, and include the

largest M = 2 connected components as region proposals.

We then remove artefactual regions in the form of empty labelings and labelings that

are within a very high percentage of the image’s total area. We filter out redundant re-

gions in the form of duplicate labelings and clusters of labelings that are similar in overlap.

Similarly to [15], we perform agglomerative clustering of labelings by intersection-over-

union overlap, and consider clusters of labelings that exceed a very high overlap threshold.

For each cluster, we keep the labeling with the best closure and discard the rest. Closure

is efficiently computed using the gap cost G(x,y).

Finally, we rank the proposals to allow a small number of proposals to be selected.

We cast this as a problem of assigning a classification score to each region that indicates

how object-like it is. Unlike the perceptual grouping problem above, this is a verification

step in which higher-order relations are more easily captured over the full region scope.

We turn to convolutional neural networks as they yield good categorization results. The

final network layers are fully connected, and can be thought of as learned, mid-level

features that encode category-independent information that is relevant for categorization.

Specifically, to extract a feature vector for a given region proposal R, we place a cropping

box tightly around R, and warp the cropped image to normalized dimensions. After

normalizing pixel values, we evaluate OxfordNet and retain layer 20 as a 4096-dimensional

feature vector. Like R-CNN [42], we then trained a SVM classifier on the feature to

assign ‘object’ or ‘non-object’ to each R, and trained a logistic regressor to map the

output margin to a score between 0 and 1.

We obtained features for positive and negative training examples by sampling from

the training images of the VOC 2012 segmentation subset. For each image, we use
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Figure 6.7: Comparison with perceptual grouping methods Multicue [59] and Superpixel
Closure [66] (far left), and CPMC [15] and Selective Search [116] (left) on VOC’12. Com-
parison with MCG [5] and perceptual grouping methods on COCO’14 (middle). See text
for comparisons with more recent methods like GOP [55] and RIGOR [46]. Parametric
Min-Loss learning improves segment overlap as weights evolve (right). Diversification
alone, using location- and color-based seeds, is able to bring us quite far, however the
remaining performance gap is achieved by learning a combination of mid-level cues (far
right).

the ground truth boxes as positive examples, and a matching number of random boxes

as negative examples.

6.7 Results

For quantitative evaluation, the segmentation subset of VOC 2012 provides a set of

images containing different objects annotated with at least one ground truth region per

image. We apply Parametric Min-Loss on the train subset and evaluate our trained

method on the val subset. We use P to denote the set of proposed regions to be

evaluated, and G to denote the corresponding set of ground truth regions. For all pairs

(p ∈ P , g ∈ G) contained by the same image, we consider the Jaccard similarity J (p, g) =
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Figure 6.8: Accuracy improvement due to ranking the proposals.

|p∩g|
|p∪g| to score the quality of a potential match. The Average Best Overlap (ABO) metric

[116] is defined over all images as follows:

ABO(k) =
1

|G|
∑

g∈G

max
p∈P(k)

J (p, g),

where P(k) represents the top k regions proposed for g’s image. Plots sample ABO on

increasing values of k to show the trade-off between recall and the number of proposals.

The improvement in recall due to ranking is shown in Figure 6.8.

Our method requires a single superpixel layer as preprocessing. We found that non-

compact superpixels, e.g. Felzenszwalb & Huttenlocher [32], yielded better results than

compact superpixels, e.g. SLIC [1]. Results in this paper were generated using UCM [4],

thresholded at k = 0.1.

Overall results. We first compare our method with two recent perceptual grouping

methods most similar to ours, in Figure 6.7 (far left). Superpixel Closure [66] used para-

metric maxflow to group superpixels into regions of minimum closure cost, while Multicue

[59] used S-SVM to train a parametric energy function that combines appearance, clo-

sure, and symmetry cues. We improve on these methods via a holistic learning framework

and effective diversification. While both methods were quantitatively evaluated only on
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Figure 6.9: Example region proposals found for images from VOC 2012. Red masks
denote ground truth, green masks denote the corresponding top proposals (from left to
right).

the Weizmann Horse Database, we evaluate on VOC 2012 val segmentations and COCO

2014 val segmentations.

Our results are comparable with leading region proposal methods such as Selective

Search [116] and CPMC [15] on VOC 2012 val, as shown in Figure 6.7 (left). At 1585

proposals, GOP [55], RIGOR [46], MCG [5], and CMPC achieve 75.1, 74.4, 69.8, and

64.9 ABO, respectively, while ours achieves 65.2 ABO, so we are outperformed by the

most recent methods. Ours takes a similar approach to Selective Search in using regional

features to group superpixels, however we train a combination of cues and find minimum

energy regions, allowing “better focused” proposals. Our level of recall, however, is more

comparable to that of CPMC’s for higher numbers of proposals. While we achieve higher

recall with learning and effective diversification, our simple ranking procedure with a

SVM classifier does less for precision than the sophisticated overlap regressors of CPMC.
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The runtime of our unoptimized Matlab implementation is, on average, several sec-

onds per image, excluding preprocessing (gPb-UCM superpixels). Although this is not

competitive with state-of-the-art runtime, there are unexploited opportunities to further

optimize and parallelize the implementation of mid-level cues to obtain speed-ups.

In Figure 6.9, we show some example region proposals. For the images of the airplane,

bird, and cat, our approach does well at separating figure from ground. For images of

more complex scenes such as the dinner table, over- and undersegmentation occurred due

to low contrast or in objects of highly heterogeneous appearance.

Learning. The second part of our results focuses on learning. We note that S-

SVM is a natural baseline for Parametric Min-Loss due to the structure of the iterative

algorithm. Specifically, we track the energy functions corresponding to weights as they

evolve over iterations (indexed by τ), where the first iteration corresponds to S-SVM

with initial λ values. We initialize λ’s to −0.01, as done in Multicue [59]. As shown in

Figure 6.7 (right), successive energy functions yield better recall, iteratively improving

on the S-SVM baseline. Additionally, since recall is measured by segment overlap, the

result also shows that Parametric Min-Loss and its surrogate are effective approximating

training objectives. Finally, in Figure 6.7 (far right), we show the impact of learning a

combination of mid-level cues as distinguished from our diversification steps based on

location and color seeds. Diversification alone brings us quite far, however the remaining

gap in performance is achieved by learning a combination of mid-level cues. This shows

that learning is complementary to diversification.

6.8 Conclusion

We introduced Parametric Min-Loss (PML), a novel structured learning framework for

parametric energy functions, and demonstrated it in the context of region proposal gener-

ation. Our perceptual grouping method learns how to combine multiple cues to generate
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a set of figure-ground region proposals. By applying the MCL optimization strategy to

parametric maxflow, we bridge the gap between learning and inference for parametric

energy functions. Moreover, our framework supports efficient superpixel-based diversifi-

cation that yields a diverse set of region proposals that competes favorably with recent

state of the art on VOC 2012. In future work, we plan to use our general framework

to learn how we can integrate other classical grouping cues to improve region proposal

generation.



Chapter 7

Conclusions

We began in Chapter 1 with an historical overview of perceptual grouping, starting

with the bottom-up cues of the Gestalt principles. Subsequently, we saw that methods

in computer vision have progressed from clean, segmented inputs to natural images of

scenes containing multiple cluttered objects. Likewise, object recognition can now handle

important sources of variability such as part deformation. More recently, we have seen

a shift from sliding window proposals to region proposals of arbitrary shape and size.

Bottom-up grouping is regaining momentum as a counterpart to object detection, and is

a promising area in which to explore the importance of mid-level grouping cues.

We traced older and more recent developments in the field to equip ourselves with

an intellectual basis for advancing the field. In doing so, we identified a set of issues in

perceptual grouping that we set out to tackle. These are 1) the challenge of managing

the complexity of searching for plausible figure-ground segmentations in cluttered and

occluded scenes, and more specifically, the lack of mid-level knowledge in current region

proposal methods, 2) the challenge of handling a wide range of input variability in a

robust way, notably reducing the sensitivity to properties of lower importance such as

object appearance, and combining information from multiple grouping cues to widen the

domain of applicability, and 3) the challenge of learning to do perceptual grouping in an

121
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image from training data, in particular by performing prediction jointly in the full image

rather than at independent image locations, and addressing the lack of multiple-output

models that are necessary to capture the structure of bottom-up grouping.

We proceeded to Chapter 3 on object categorization to provide additional support

to the issues of perceptual grouping. Specifically, we adopted the approach of automatic

perceptual grouping as a scalable alternative to expensive manual annotations, and ad-

dressed the issue of computational complexity. Secondly, we handled within-category

variation by choosing a shape feature that yielded dramatic improvements, demonstrat-

ing the importance of feature representation when dealing with the issue of variability.

We then outlined the plan of attack in our thesis in three steps, and presented our

work starting with Chapter 4. Like all Gestalt grouping cues, symmetry is a ubiqui-

tous regularity that our visual system has evolved to focus on to help us perceptually

organize images of scenes. In the absence of an object prior, symmetry is a powerful

cue for detecting parts whose configurations, in turn, can help manage search in a large-

scale recognition task. The symmetric part detection framework of [65] draws on the

power of the medial axis while avoiding its pitfalls. However, it suffers from some serious

limitations that limit its ability to detect more general classes of symmetric parts. In

our first contribution, we have addressed these limitations by introducing a number of

extensions to [65], including both a richer yet more flexible model for symmetry, a multi-

scale framework, and a discrete optimization formulation based on the regularity of good

continuation. The resulting framework significantly outperforms that of [65], offering an

improved perceptual grouping framework for recovering symmetric parts without a priori

knowledge of scene content.

In Chapter 5, we proceeded up a level of abstraction to express multiple grouping

cues in a unified framework. Mid-level cues are ubiquitous and transcend individual

object classes, yet can be leveraged effectively only in combination. We have presented a

method to combine appearance, closure, and symmetry, and demonstrated the usefulness



Chapter 7. Conclusions 123

of each cue. We have also demonstrated the effectiveness of using mid-level cues to resolve

ambiguity with a limited budget of proposals, and shown that our model complements

diversification techniques when a large number of proposals is affordable.

Finally in Chapter 6, we introduced a novel structured learning framework for percep-

tual grouping that learns how to combine multiple cues to generate a set of figure-ground

region proposals. By adapting a loss function from MCL, we enable parametric en-

ergy functions to be trained to generate the best set of region proposals. Moreover, our

framework supports an efficient diversification strategy that yields a diverse set of region

proposals that competes favorably with the state of the art. Additionally, our learning

formulation was developed specifically for bottom-up grouping, however the framework

could be applied to other “multiple diverse” problems as well.

In summary, we have addressed the issues of complexity, variability, and learning

in the following ways. Our work in symmetric part detection and multi-cue grouping

combined mid-level cues of symmetry and closure and addressed the challenge of compu-

tational complexity with dynamic programming and parametric maxflow, respectively.

This work also addressed the challenge of handling variability by adding invariance to

important classes of variation, namely bending and tapering, and by integrating informa-

tion from multiple grouping cues. Finally, our work in multi-cue grouping and learning

to generate proposals addressed the challenge of learning to combine cues jointly over

the full image, and developing a multiple-output learning framework that is suitable for

bottom-up grouping. Quantitative results with respect to baselines demonstrate that we

have taken encouraging steps forward, however a long path ahead still remains.

7.1 Limitations and future work

As we have mentioned, we have by no means reached our destination, but have only taken

a few steps forward with many more to follow. Just as we outlined our steps forward at
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Figure 7.1: In addressing the challenge of obtaining superpixels that accurately model
maximal discs, we compare image superpixels that yield correct discs (left), with a more
difficult image that yields the correct discs only for areas of sufficient color contrast. Our
method in Chapter 4 depends on the segmentation accuracy of superpixels as maximal
discs.

the outset in Chapter 1, having the results behind us allows us now to identify current

limitations, and outline possible steps to continue forward in future work.

Our work in Chapter 4 added invariance to bending and tapering to improve robust-

ness, and thereby widened the domain of applicability. There are, however, other types

of robustness to be addressed, such as occlusion. With symmetry comes the benefit

of compositionality (of object parts), representing another direction in which to move

forward. Aside from other types of symmetry like rotation and translation, medial sym-

metry composes a larger structure called the medial axis transform (MAT) that can serve

as a powerful part-based representation of an object. The part-based approach to mod-

elling objects has the advantage of being able to recognize the parts of an object that

survive occlusion. Future work will thus address the problem of part grouping to yield

part configurations whose relational information offers the discriminative power to prune

a large database down to a small number of promising candidates.

There is an additional limitation of the superpixel grouping framework used in [58]

and [65] that can be addressed. By grouping superpixels under the medial axis model,

these methods assume that a symmetric part is composed from regions, each of which

is compact in size, yet fully spans the part along its width, i.e. from the boundary on

one side of the axis to the boundary on the other. While it is convenient to use existing

superpixel algorithms to produce the required regions, superpixels do not always satisfy
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Figure 7.2: The top few region proposals in an image with little background clutter (left),
compared with the top few region proposals in an image with background clutter (right).
The latter proposals undersegment the horse by including parts of the background fence.
Looking closely at the T-junctions where the horse occludes the fence, however, shows
that the proposed segment violates foreground-background regularities. This example
suggests that more advanced features, such as T-junction regularities, could have helped
to avoid undersegmenting proposals and improve precision.

the requirements above. Specifically, over- and undersegmentation errors that violate

the requirements will limit the recall achievable by the framework (see Figure 7.1 for

an example). Superpixels, however, remain a useful preprocessing step, and future work

can try to contain the effects of superpixel errors within the medial axis framework. We

have seen how region proposals successfully used diversification to handle bottom-up

segmentation errors. One can thus follow the same strategy by formulating and solving

the subproblem of producing “maximal disc” proposals. Another way is to take the

contour-based approach, which is inherently free from region-based errors.

Another direction to pursue is more cue integration with other cues. While we followed

this approach in Chapter 5 with non-symmetry cues, there are other types of symmetry

that are worth exploiting. For example, detection of rotational and translation symmetry

[57] is an active research area that explores regularities that are as ubiquitous as reflective

symmetry. These approaches, however, are typically followed in isolation from other cues

and evaluated on specialized datasets, and thus offer little or no cue integration. Overall,

there is a long way to go in developing symmetry as a unified framework for segmentation

and recognition. Continued progress, however, will yield many benefits.

In Chapter 5, we combined the cues of appearance, closure, and symmetry, and

thereby widened the domain of applicability beyond those consisting purely of symmetric



Chapter 7. Conclusions 126

shapes or shapes with closed boundaries. Therefore, incorporating more cues will further

extend the domain of applicability and thereby improve robustness. For example in

classic line drawings, various restrictions on local combinations of line types appearing at

their junctions have been applied as a useful constraint for 3D interpretation (e.g., Waltz

labeling). Junction cues can thus be incorporated as cues for figure-ground labeling in real

images of cluttered scenes. Of particular interest are T-junctions due to their simplicity

and association with occluding boundaries. Generally, features can be designed and

extracted at superpixel intersection points to measure various properties of junctions

(see Figure 7.2 for an example).

Modelling cue combination as a trainable parameter allowed us to leverage the method-

ology of machine learning, however the formulation used a loss function that did not

account for multiple output hypotheses. This is an open problem and an emerging re-

search area known as “multiple diverse” problems, and spans areas as varied as natural

language systems and assistive technologies. In the context of bottom-up grouping, there

is no standard way to model such a loss function, however Chapter 6 proposed such a

way.

In Chapter 6, we designed a loss function for parametric energy minimization for

learning to group bottom-up. It was demonstrated that the learning framework was

complementary to diversification, a technique that is crucial for recall. However, this was

demonstrated only for a subset of the proposed diversification, in particular only up to

what λ allowed us to model. In our case, we used the area feature φ0 as the coefficient

of λ to model diversity in object scale. In light of competing region proposal methods

(like Selective Search) where diversification is employed in multiple variables (different

color spaces and segmentation parameters), one can imagine a generalization of (1.1) to

replace the scalar parameter λ with a vector parameter. Accordingly, one can explore

the possibility of extending the parametric maxflow algorithm to minimize the resulting

energy function for multiple values of the vector parameter.
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Figure 7.3: We compare a dinner table that is homogeneously white and easy to group
(left), with a dinner table that is multi-colored with objects placed on top that is difficult
to group (right). One approach to this combinatorial problem is to continue to develop
higher-order cues, like symmetry, that can potentially do more intelligent bottom-up
grouping.

Apart from generalizing parametric maxflow to multiple parameters, one can also

explore different ways of modelling λ. In our case we have used the area feature φ0,

however φ0 need only satisfy mild mathematical constraints, and one could try to learn

a feature φ0 that maximizes recall. Generally speaking, diversification allows a method

to adapt to different conditions by exhaustively testing different parameter values, with

the drawback of dramatically lowering precision. Hence, if we can leverage the learning

approach to diversify with better precision, we can significantly advance the approach of

region proposals.

As a method for region proposals that uses diversification, our approach has the same

limitations as any diversification technique that exhaustively explores possible group-

ings. As illustrated in Figure 7.3, objects that are highly heterogeneous are likely highly

oversegmented, making it unlikely for the object to be proposed due to the number of

segments that need to be correctly grouped. One way to view this problem is a lack

of higher-order cues, like symmetry, that can perform bottom-up grouping of segments

more accurately.

These are some possible directions to follow, however there are potentially many other

promising directions. What is certain is that there is a long way to go in managing search

complexity, improving robustness to input variability, and optimizing performance, before

we can give computers the benefit of perceptual grouping.
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