
I/O in Haskell
Generally, I/O functions in Haskell have type IO a, where a could be any
type. The purpose and use of a will be explained later.
We call these “commands” or “actions”, for we think of them as performing
the side effect of I/O, unlike ordinary, pure functions.

• To output a character:

putChar :: Char -> IO ()

e.g., putChar ’c’

• To output a string:

putStr :: String -> IO ()

e.g., putStr "Hello"

FP Lecture 11 1



Chaining I/O Actions

How do we perform several I/O actions in sequence? Use the do construct.

• To perform the previous two commands in sequence:

do putChar ’c’
putStr "Hello"

The overall type is IO (), taken from the last command.

• To perform those two commands, then loop back:

myloop :: IO ()
myloop = do putChar ’c’

putStr "Hello"
myloop

FP Lecture 11 2



Commands That Return Data

What is the function that reads a character, and how do we use it?
This is where the a in IO a comes in. The character input function is:

getChar :: IO Char

It says, “getChar is a command that returns a character”.
(In retrospect, IO () returns “void”.)

do c <- getChar --this is how we obtain the character
--c is now a Char and you can use it, e.g.,
putChar c
--more reading and writing
d <- getChar
putChar d

FP Lecture 11 3



Commands That Return Data
The getLine command reads a whole line and returns it as a string:

getLine :: IO String

The return command does nothing but just returns data:

return :: a -> IO a

Example: a command that reads a line and returns the length:

getLineLength :: IO Int
getLineLength = do s <- getLine

return (length s)
-- example use
do len <- getLineLength

print len

FP Lecture 11 4



Detecting End of File

The isEOF command returns True iff there is nothing more to read:

isEOF :: IO Bool

Note: this is like Pascal, not C. Also, Hugs does not implement it; instead,
it implements hugsIsEOF, which is like C.
A command that reads characters and prints them until the end.

dump = do b <- isEOF
if b then return ()

else do c <- getChar
putChar c
dump

FP Lecture 11 5



Exceptions
What if you read past the end? An exception will be thrown.
I/O Exceptions are of type IOError. You can catch them with:

catch :: IO a -> (IOError -> IO a) -> IO a

The first argument is the normal command to perform, and the second is
the exception handler. If the normal command throws an exception, the
exception is passed to the exception handler.
In the handler, you can determine if the exception is caused by eof-of-file:

isEOFError :: IOError -> Bool --in module IO

You can also re-throw the exception with:

ioError :: IOError -> IO a

FP Lecture 11 6



Exception Example
The getLineLength command rewritten to return 0 on all exceptions:

getLineLength = do s <- getLine
return (length s)

‘catch‘
\ -> return 0

The dump command rewritten using catch (rethrows non-eof exceptions):

dump = do c <- getChar
putChar
dump

‘catch‘
\e -> if isEOFError e then return ()

else ioError e

FP Lecture 11 7



More Exception-Handling Commands
The IO.try command performs your command and catches all exceptions:

try :: IO a -> IO (Either IOError a)
try f = catch (do r <- f

return (Right r))
(\e -> return (Left e))

The IO.bracket command is similar to Java try-finally:

bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
bracket alloc fin m = do x <- alloc

rs <- try (m x)
fin x
case rs of Right r -> return r

Left e -> ioError e

FP Lecture 11 8



The Magic of IO a Explained

The IO a type is really a state transformer—a function that maps old state
to new state. Generally, state transformers belong to the Monad class:

class Monad m where return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
c >> d = c >>= \ -> d

• return simply returns data and keeps the state unchanged

• (>>=) runs the first command and passes its return value and resulting
state to the second command—a glorified function composition

• (>>) is like (>>=) but discards the return value of the first command.

FP Lecture 11 9



The Magic of do Explained

The do construct is just syntactic sugar. It is translated to monad operators:

• do m becomes m

• do { m; n; ... } becomes m >> do { n; ... }

• do { v <- m; n; ... } becomes m >>= \v -> do { n; ... }

Example:

do c <- getChar
putChar c
return c

is simply: getChar >>= (\c -> putChar c >> return c)

FP Lecture 11 10



(blank)

FP Lecture 11 11



(blank)

FP Lecture 11 12


