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Introduction

We will present a framework for

1. iterated belief revision and update

}
Shapiro et al. (2011)

2. modeling of action and change

3. allowing a simple qualitative specification of what the agent
considers plausible
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The situation calculus (Reiter, 2001)

Key points:

• Situations represent histories of actions performed starting
from an initial situation.

• Properties that can vary among situations are described using
fluents, which are predicates (or functions) whose last
argument is a situation term, e.g. P(x , s).

Some notation:

• S0 is the actual initial situation.

• do(a, s) is the situation that results from performing action a
in situation s.

• do([a1, . . . , ak ], s) is the situation resulting from performing
actions a1, . . . , ak in order from s.
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The situation tree

Figure copied from Reiter (2001, Figure 4.1).
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Multiple situation trees

Figure copied from Reiter (2001, Figure 11.7).
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Action theories for the situation calculus

The standard way of axiomatizing domains is with some variation
of basic action theories (Reiter, 2001).

Basic action theories

• initial state axioms, which describe the initial situation(s)

• successor state axioms (SSAs), specifying for each fluent
how its value in a non-initial situation depends on the previous
situation

• (sometimes) sensing axioms

• and also some other types (precondition axioms, unique
names axioms, foundational axioms)
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Iterated belief change in the situation calculus

Shapiro et al. (2011)’s approach has these main points:

• There is an epistemic accessibility relation between
situations.

• Each initial situation is assigned a numeric plausibility level.

• The agent believes what is true in all the most plausible
epistemically accessible situations.

• Sensing actions can make more situations inaccessible
(plausibility levels never change).
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Deriving plausibilities with only-believing

Schwering and Lakemeyer (2014) had an approach for specifying
plausibility levels in their modal version of the situation calculus.

• B(α⇒ β) holds if β is true in all the most plausible accessible
α-worlds.

• O(α1 ⇒ β1, . . . , αk ⇒ βk) holds only given a particular
unique assignment of plausibility values.

• an assignment that entails
∧

i B(αi ⇒ βi )
• determined like in System Z (Pearl, 1990)
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Issues with only-believing

1. lack of independence:

O(True⇒ P, True⇒ Q) 6|= B(¬P ⇒ Q)

2. can only specify a finite number of plausibility levels:

We can write
O(True⇒ (∀x)P(x))

But this is not grammatical:

O((∀x).True⇒ P(x))
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Cardinality-based circumscription

Popular idea in non-monotonic reasoning:

Instead of considering what is true in all models of a sentence,
consider what is true in preferred models.

Cardinality-based circumscription:

• the preferred models are those where the cardinalities of
particular predicates are minimized (Liberatore and Schaerf,
1997; Sharma and Colomb, 1997; Moinard, 2000)

• can be described using second order logic

• closely related to lexicographic entailment (Benferhat et al.,
1993; Lehmann, 1995)
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Determining the plausibility of situations

How can we apply this to situation calculus?

• Introduce abnormality fluents, whose values vary in different
initial situations.

• Define the plausibility of a situation by the number of
abnormal atoms true there.

• We can also consider priorities – see paper.

How to specify the initial accessibility relation?

• Use only-knowing (Lakemeyer and Levesque, 1998).

• OKnows(φ, s) says that the situations that are epistemically
accessible from s are those where φ is true.

13 / 26



Example

S0

Ab,¬P

s1

¬Ab,P

s2

Ab,P

s3

¬Ab,¬P

• The accessible situations (from S0) are those in which
¬Ab ⊃ P is true.

• The set of most plausible accessible situations is {s1}.
• P is true at all the most plausible accessible situations.

• The agent believes P in S0.
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Immutable abnormality action theories

Differ from Shapiro et al.’s theories in that we

• include an axiom of the form OKnows(φ, S0) to specify the
initial accessibility relation,

• redefine plausibility in terms of abnormality,

• have SSAs for the abnormality fluents (specifying that they
never change),

• and include an additional axiom ensuring the existence of
enough initial situations among the foundational axioms.
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Example 1: independently plausible propositions

Initial state axioms:
¬P(S0) ∧ ¬Q(S0)

OKnows((¬Ab1 ⊃ P) ∧ (¬Ab2 ⊃ Q), S0)

Successor state axioms:

P(do(a, s)) ≡ P(s) Q(do(a, s)) ≡ Q(s)

Sensing axioms:

SF(senseP, s) ≡ P(s) SF(senseQ, s) ≡ Q(s)
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Example 1: independently plausible propositions

Initially, the accessible situations from S0 are those initial situations
where (¬Ab1 ⊃ P) ∧ (¬Ab2 ⊃ Q) is true.

Ab1,¬P
Ab2,¬Q

Ab1,¬P
¬Ab2,Q

¬Ab1,P
Ab2,¬Q

¬Ab1,P
¬Ab2,Q

Ab1,P
Ab2,Q

Ab1,¬P
¬Ab2,Q

¬Ab1,P
Ab2,¬Q

¬Ab1,P
¬Ab2,Q

Ab1,P
Ab2,Q

Ab1,P
¬Ab2,Q

¬Ab1,P
Ab2,Q︸ ︷︷ ︸

0 abnormalities
︸ ︷︷ ︸

1 abnormality
︸ ︷︷ ︸
2 abnormalities
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Example 1: independently plausible propositions

After performing senseP, the situations where P differs from its
true value (false) become inaccessible.
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Example 1: independently plausible propositions

¬P(S0) ∧ ¬Q(S0)

OKnows((¬Ab1 ⊃ P) ∧ (¬Ab2 ⊃ Q), S0)

SF(senseP, s) ≡ P(s) SF(senseQ, s) ≡ Q(s)

P(do(a, s)) ≡ P(s) Q(do(a, s)) ≡ Q(s)

Proposition

Let Σ be the immutable abnormality action theory described
above. Then

Σ |= Bel(P ∧ Q, S0)

Σ |= Bel(¬P ∧ Q, do(senseP, S0))

Σ |= Bel(¬P ∧ ¬Q, do([senseP, senseQ], S0))
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Example 2: infinitely many plausibility levels

Initial state axioms:

Conspirator(x , S0)

OKnows
(
(∀x)¬Ab(x) ⊃ ¬Conspirator(x), S0

)
Successor state axioms:

Conspirator(x , do(a, s)) ≡ Conspirator(x , s)

Sensing axioms:

SF(reveal(x), s) ≡ Conspirator(x , s)
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Example 2: infinitely many plausibility levels

Conspirator(x , S0)

OKnows
(
(∀x)¬Ab(x) ⊃ ¬Conspirator(x), S0

)
Conspirator(x , do(a, s)) ≡ Conspirator(x , s)

SF(reveal(x), s) ≡ Conspirator(x , s)

Proposition

Let Σ be the immutable abnormality action theory described
above, and let c1,c2,c3, . . . be constant symbols. Then for any k ,

Σ |= Bel
(

(∀x)Conspirator(x) ≡
(∨k

i=1 x = ci

)
,

do([reveal(c1), . . . ,reveal(ck)], s)
)
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Why not use regular (subset-based) circumscription?

s1

Ab1

s1

Ab1

s2

Ab2

s3

Ab1 ∧ Ab3

22 / 26



Why not use regular (subset-based) circumscription?

s1

Ab1

s1

Ab1

s2

Ab2

s3

Ab1 ∧ Ab3

Cardinality-based and regular circumscription agree that s1 and s2

are the most plausible accessible situations.
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s1

Ab1

s1

Ab1

s2

Ab2

s3

Ab1 ∧ Ab3

Cardinality-based and regular circumscription agree that s1 and s2

are the most plausible accessible situations.

Now suppose that s1 becomes inaccessible (e.g. due to sensing).
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Why not use regular (subset-based) circumscription?

s1

Ab1

s1

Ab1

s2

Ab2

s3

Ab1 ∧ Ab3

• Cardinality-based circumscription: s2 is now the most plausible
accessible situation

• Regular circumscription: not only s2 but s3 is now a most
plausible accessible situation

• leads to violation of AGM postulates (Alchourrón et al.,
1985)
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Exogenous actions

What if we allowed abnormality fluents to change over time?

• Mutable abnormality action theories can be used to model
exogenous actions.

• Exogenous actions were previously considered by Shapiro and
Pagnucco (2004), but unlike them we can model that

• some exogenous actions are more plausible than others, and
• the non-occurrence of an exogenous action can be

implausible.

• See paper for details.
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Example: the fate of abandoned money

• onStreet(s): money is on the street
• steal: the exogenous action of money being stolen

S0

onStreet
Ab

steal
do(steal, S0)

¬onStreet
¬Ab
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Conclusion

Summary:

We’ve presented a way of specifying plausibility levels for use in the
situation calculus, that avoids some of the issues with Schwering
and Lakemeyer’s approach.

• We can easily specify propositions as being independently
plausible.

• We can specify infinitely many plausibility levels.

Future work:

• using abnormalities in modelling non-deterministic actions

• applications to story understanding
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