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Abstract

The traditional view in epistemic logic says that agents see all logical consequences

of the information they have, but this would give agents capabilities far beyond what

humans display or what is physically realizable. A theory that aims to specify behavior

for intelligent agents should provide more realistic guidelines for what reasoning is

expected from the agents. To work towards developing such a theory, we introduce an

epistemic logic which combines a three-valued version of neighborhood semantics with

a mechanism for talking about the amount of effort used in drawing conclusions. We

discuss the advantages of this logic over some preceding approaches. However, we also

argue that further work is needed to find a notion of effort that can better describe

human performance, and make some suggestions for how this could be done.
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1 Introduction

Much work within the field of artificial intelligence, especially in the knowledge represen-

tation community, has focused on finding more efficient ways to solve complicated puzzles.

In a critical remark, Brooks (1990) famously noted that elephants don’t play chess, yet still

have an interesting level of intelligence. We may also note that most of the reasoning that

people engage in day-to-day does not seem to involve complicated planning or scheduling

problems. While in chess games people may have to calculate carefully, most tasks – even

intellectual tasks beyond the ability of elephants, like casual reading – tend to involve much

less effort. That commonsense reasoning is easy is not incidental, but rather what makes

such reasoning widespread and useful in everyday life. Part of understanding common sense

is knowing what it does not encompass, e.g. being able to solve complicated puzzles that

merely happen to mention commonplace objects like piggy banks or broken eggs.

We would like to have a formal system that tells us which inferences are reasonably easy

for an agent to make and which are hard – an epistemic logic in which we can say that

things are obvious (or a doxastic logic, but we will not be distinguishing between belief and

knowledge). Let us note that the standard approach in epistemic logic, following Hintikka

(1962), does not fit our purpose at all. In the standard approach, an agent’s uncertainty

about the world is modeled with a set of “possible worlds”, each of which is associated with

a truth assignment that describes one of the different ways the agent thinks reality might

be. The agent believes whatever is true in all the worlds. If all sentences in a set Γ are true

in every world, then so is any sentence α that is a logical consequence of Γ. Hence the agent

believes all logical consequences of its beliefs.

This unrealistic property, termed “logical omniscience” (or “deductive omniscience”), has

inspired considerable discussion in the literature. That knowledge and belief in (Hintikka,

1962) were modeled as being “much too strong” was pointed out in (Castañeda, 1964), an

otherwise largely positive book review. Hocutt wrote that real people are “logically obtuse”

rather than omniscient. Stalnaker (1991) wrote that

[A]ny kind of information processing or computation is unintelligible as an activ-

ity of a deductively omniscient agent. It is hard to see what a logic of knowledge

could be for if it were a harmless simplification for it to ignore these activities

that are so essential to rationality and cognition.

Hintikka (1962, Section 2.10) suggested an alternative interpretation (albeit an inter-

pretation he did not favor) of his modal “knowledge” operator as indicating what follows

from the agent’s knowledge, rather than the knowledge itself. This interpretation was taken

by Levesque (1984), who wrote that logical omniscience characterizes “implicit belief”, but

that “explicit” (i.e real) beliefs should be described by a different logic.

The distinction between implicit and explicit belief is useful, and one that we will fre-
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quently refer to. However, a single type of explicit belief is not really enough. The amount

of effort that an agent is expected to apply to a problem will depend on context. Therefore,

we will be following the line of research developed in (Liu et al., 2004; Liu, 2006; Lakemeyer

and Levesque, 2013, 2014) in which there is an infinite family of “levels of belief”.

An intuitive understanding of a level of belief is that a sentence is in a level if it can

be concluded with an amount of effort that is bounded by the number of that level. So,

instead of talking about what agents do believe, the logics in these papers describe what

agents would believe, conditioned on their spending a given amount of effort. An autonomous

agent would need to have some mechanism to determine how much effort was appropriate

to spend in a given situation. The logics are not meant to define such a mechanism, but

to specify the behavior of a reasoning service that an agent with such a mechanism could

make use of. For an idea as to how such a service could be used, see Kowalski (1995),

which suggested defining agents to cyclically consume inputs, reason for a bounded amount

of time, and take action. The bound would provide a compromise between operating in a

deliberative and reactive manner.

The logic we will be developing in this paper is in large part inspired by the logic ESL
from Lakemeyer and Levesque (2014). However, the semantics of ESL are defined in a rather

ad hoc and syntactic way, whereas ours will be based on neighborhood semantics.

1.1 Effort and human reasoning

There are at least two ways in which having a formal measure of effort would be useful.

Firstly, as we have said, we want to describe the complexity of tasks that we want a machine

to be able to perform. Secondly, agents with introspection could reason about the difficulty

of tasks in interesting ways.

To give an example of the first use of dealing with effort, let us consider the task of story

understanding, i.e. of being able to answer questions about natural language narratives, a

major challenge in AI research (see Mueller (1999)). If we try to model story understanding

without taking effort into account, we might come up with something like Reiter (2000),

who wrote that

[W]e suggest that, in their full generality, narratives are best viewed as non-

deterministic programs [... W]e define what it means to query a narrative, and

discover that this task is formally identical to proving the correctness of programs

as studied in computer science.

Querying a narrative, for Reiter, means asking questions about what holds after the actions

described in the narrative occur. Reiter’s point in viewing narratives as programs is that

narratives are not just linear sequences of actions but may contain features associated with

programs, like loops (e.g. a character may be described as performing an action until some
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outcome is reached). The point is valid, but the problem with viewing narratives in “their

full generality”, is that that tells us nothing about to what extent we expect agents to

understand them.

If we consider naturally occurring narratives, as found for example in works of fiction or

news articles, then a couple of points are apparent:

1. Narratives are not, for the most part, designed to be puzzles.

2. To the extent that a narrative contains complicated puzzles, we are not surprised when

a human reader fails to figure them out.

So, it is only in the abstract limit that narratives can be arbitrary programs, and we do not

expect people to be able to answer all “queries” of a narrative. A theoretical understanding

of human narrative understanding should, therefore, tell us what sort of complexity in

narratives people can actually deal with.

Let us move on to consider introspective uses of effort. Autoepistemic logic (see (Moore,

1985)) allows for drawing conclusions based on what is and is not known. For illustration,

consider Moore’s well-known example of autoepistemic reasoning:

[I]f I did have an older brother I would know about it; therefore, since I don’t

know of any older brothers, I must not have any.

If we formalize “know” in the brother example in the traditional (logically omniscient)

manner, then determining whether “I don’t know of any older brothers” may be very difficult.

A better formalization might capture the following idea, which is probably what we normally

really mean if we say that we would know if we had an other brother:

If I had an older brother, it would be obvious to me that I did.

Some notion of effort would clearly be useful in formalizing that. Moore’s brother problem

was formalized in (Elgot-Drapkin and Perlis, 1990, Section 6.2) by equating knowing α with

having already drawn the conclusion that α. This may suffice for the brother problem in

particular, but is not very flexible.

For a more complicated example of agents reasoning about their own knowledge, consider

the following problem:

A classroom is full of students, about to write an exam. The instructor announces

(truthfully) that the exam only requires material from up to chapter five in the

textbook, and that she expects the exam to be easy.

Formalize how the instructor’s announcement might help the students.

Unlike the contrived puzzles often considered in epistemic logic (e.g. the “muddy children”

problem discussed at length in (Fagin et al., 1995)), this problem actually describes some-

thing that could plausibly occur in everyday life. Furthermore, the machinery provided by
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standard epistemic logics (even dynamic epistemic logic, see (van Ditmarsch et al., 2007))

does not seem to be of much help in capturing the important aspects of this problem.

Dealing with the instructor’s expectation of the exam being easy clearly requires some

notion of effort (and perhaps a great deal more, as the students and instructor might disagree

in various ways on what is easy). The knowledge that the test only covers up to chapter five

also has interesting consequences. Suppose, for example, that the test contains the following

question:

Name a general who won a major victory in 1976.

Now, the student may reasonably guess that the answer is a name that was mentioned in

the first five chapters. So the student may be able to answer correctly, despite not actually

recalling anything about what the general did, for example if General Alcazar was the only

general mentioned in those chapters. Of course, more generally, the answer might not be

simply “mentioned in” a chapter, but rather derivable from the information in the chapter,

perhaps using a method described in the chapter.

So that a student can do well on a test does not necessarily mean that they really know

much about the subject matter. Formalizing the sort of reasoning we have been describing

could conceivably have applications in education. Unfortunately, the logic we will be pre-

senting in this paper is rather too limited to deal with the examples we have presented here.

In particular, it will not incorporate any sort of introspection, and – unlike ESL (Lakemeyer

and Levesque, 2014) – our logic will be propositional instead of first-order. However, we hope

that it may inform future research.

2 Background

2.1 Preliminaries

2.1.1 Mathematical notation

Suppose S and T are sets. We will write S → T to denote the set of all functions from S

to T . The power set of S, i.e. the set of all subsets of S, will be denoted by P(S). If ≺ is a

partial order, then min≺(S) is the set of minimal elements of S according to ≺.

2.1.2 Logic

A propositional logic is defined by three things: a language (set of sentences), a set of

semantic objects, and a satisfaction relation between semantic objects and sentences (which

indicates which semantic objects make which sentences true). The language determines the

syntax of the logic, while the semantic objects and satisfaction relation together determine

the semantics.
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Let us assume that we have some non-empty set (possibly infinite) Φ of symbols, that

we will call atomic symbols or atoms. The propositional language L (Φ) is defined by the

grammar

α ::= p | (α ∧ α) | ¬α

where p ∈ Φ. As is conventional, ∧ is meant to be understood as a conjunction operator

and ¬ as a negation operator. We can define other operators like disjunction, the material

conditional, and equivalence as the usual abbreviations:

(α ∨ β) := ¬(¬α ∧ ¬β)

(α ⊃ β) := (¬α ∨ β)

(α ≡ β) := ((α ⊃ β) ∧ (β ⊃ α))

Finally, we define the complement of a formula:

α =

α1 if α = ¬α1 for some formula α1

¬α otherwise

Lowercase Latin characters p, q, r, . . . will typically be used to denote atoms in Φ, and

Greek letters α, β, γ, . . . to denote sentences of L (Φ). We may use subscripts on letters.

The length of a sentence α, written len(α), is defined inductively as follows:

len(p) = 1

len(¬α) = 1 + len(α)

len((α ∧ β)) = 3 + len(α) + len(β)

Definition 1 (atoms mentioned by a sentence). For α ∈ L (Φ), the set of atoms mentioned

by α, written at(α), is defined inductively as follows:

• at(p) = {p}

• at(¬α) = at(α)

• at((α1 ∧ α2)) = at(α1) ∪ at(α2)

In other words, the atoms mentioned by a sentence are just those that appear in the

sentence when it is written down.

We will be considering two different logics using the language L (Φ), the classical two-

valued logic and a three-valued logic (specifically, Kleene’s three-valued logic from (Kleene,

1938)). The two classical truth values are T (“true”) and F (“false”), and for three-valued
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logic there is a third truth value that we will call N. Let

C := {T,F}

and let

K := {T,F,N}.

The semantic objects of three-valued logic are functions, called truth assignments, from

the set Φ→ K. We will denote the satisfaction relation of three-valued logic by �K. For

v ∈ Φ→ K and α ∈ L (Φ), v �K α iff v′(α) = T, where v′ ∈ L (Φ) → K is the function

defined in terms of v as follows:

• v′(p) = v(p) for p ∈ Φ

• v′(¬α) =


T if v′(α) = F

F if v′(α) = T

N if v′(α) = N

• v′(α ∧ β) =


T if v′(α) = T and v′(β) = T

F if v′(α) = F or v′(β) = F

N otherwise

We can identify an element of Φ→ K with the set of literals it makes true (a literal is

an atom or the negation of an atom). This enables us to compare elements of Φ→ K with

the subset relation, to talk of them being finite or infinite, and to take intersections and

(sometimes) unions. Note that if u ∈ Φ→ K and v ∈ Φ→ K, u∪ v might not be an element

of Φ→ K, because there might be some p ∈ Φ such that both p ∈ u ∪ v and ¬p ∈ u ∪ v.

Definition 2 (compatibility). We say that u ∈ Φ→ K and v ∈ Φ→ K are compatible,

written u ♥ v, if u ∪ v ∈ Φ→ K.

Given the three-valued logic we have described, we can think of classical two-valued

logic as a restriction of it, which differs only in that truth functions cannot map any atom

to N. That is, the semantic objects in classical logic are elements of Φ→ C (we can view

Φ→ C as a subset of Φ→ K by identifying functions with their graphs), and the satisfaction

relation �C in classical logic is just the restriction of �K to two-valued truth functions, i.e.

�C = {〈v, α〉 ∈ �K : v ∈ Φ→ C}.
The valid sentences or tautologies of a logic are those which are satisfied by every seman-

tic object. If α is a sentence in the language of a logic with satisfaction relation �, then we

will write � α to indicate that α is valid in that logic. Note that there are no valid sentences

in Kleene’s three-valued logic, since ∅ ∈ Φ→ K and ∅ does not make any sentence true. For
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a set of sentences Γ, we will write Γ � α if every semantic object that makes every γ ∈ Γ

true also makes α true. We may write γ � α to mean {γ} � α.

In any logic, the proposition expressed by a sentence is the set of semantic objects that

satisfy that sentence. For classical and three-valued logics, let us introduce some notation

to denote the propositions expressed by sentences:

JαKC := {v ∈ Φ→ C : v �C α}

JαKK := {v ∈ Φ→ K : v �K α}

We will also find the following definition useful:

TαU := min
⊂

(JαKK)

That is, TαU is the set of truth assignments making α true while assigning classical truth

values to as few atoms as possible. For example, TpU = {{p}}, where by {p} we indicate the

unique truth function that makes the literal p true but makes no other literals true. Other

illustrative examples are T¬pU = {{¬p}}, T(p ∨ q)U = {{p}, {q}} and T(p ∧ q)U = {{p, q}}.
If there are an infinite number of atoms, JαKK is always either infinite or empty, while

TαU is always finite and all elements of it are finite. Note that for any α, β ∈ L (Φ), v �K β

for all v ∈ JαKK if and only if v �K β for all v ∈ TαU.

2.2 Logical omniscience and alternatives

As we said in the introduction, the standard approach in epistemic logic results in ascribing

logical omniscience to agents. We can illustrate the standard approach, in a simplified form,

as follows. Consider the language {Bα : α ∈ L (Φ)}, where the intended reading of Bα, for

α ∈ L (Φ), is “α is believed”, i.e., believed by the agent (for simplicity we will not consider

the multiagent case, nor the case of nested beliefs). We will use sets of truth assignments

as semantic objects (the idea is that a set of truth assignments expresses the different ways

the agent thinks the world could be). A set W of truth assignment makes Bα true if every

one of the truth assignments in W makes α true in classical logic:

W � Bα if, for all w ∈W , w �C α

Note that, for Γ ⊆ L (Φ),

{Bγ : γ ∈ Γ} � Bα iff Γ �C α

So we see that this approach to modeling belief has absolutely nothing to say about cogni-

tive limitations or the complexity of reasoning. An agent’s reasoning is just what classical
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propositional logic allows. (The traditional approach is not quite as vacuous as our simplified

version here, as it does provide for things like nested beliefs, but those elements are not our

concern here.)

There have been numerous proposals for epistemic logics that avoid logical omniscience.

We will briefly discuss some of them below, with emphasis on the approaches that we will be

borrowing elements from. For more information, the reader is referred to the survey papers

(McArthur, 1988; Sim, 1997; Moreno, 1998; Whitsey, 2003).

One alternative way of modeling belief is the deduction model of belief, due to Konolige

(1984). In this deduction model, agents believe a set of sentences that is closed under some

set of proof rules. The set of proof rules can be incomplete, so the agents are not required

to believe all logical consequences of their beliefs. Levesque (1984) criticized the deduction

model because choosing proof rules was an ad hoc process.

Another rather syntactic approach is the logic of “general awareness”, described in (Fagin

and Halpern, 1988). This approach takes the traditional possible world semantics and adds

an extra component, the set of sentences the agent is “aware” of. Belief works as in the

traditional manner, except that agent can only believe formulas that are in the awareness

set. Clearly, this approach allows the agent’s reasoning power to be arbitrarily limited by

appropriate choice of the awareness set. We could imagine modeling different amounts of

effort with different awareness sets. However, determining what goes into these awareness

sets seems to be an entirely extralogical procedure. Konolige (1986) also criticized the logic

of general awareness, writing that

The practice of mixing sentential and possible-world elements in the semantics

does not preserve the elegance of the latter, or offer any essential insight into

the psychological nature of explicit belief.

A more semantic approach was taken by Levesque (1984, 1989), who argued that explicit

belief should be modeled by a more limited logic than classical logic. He described a semantics

(related to relevance logic) based on “situations”, which we can think of as functions from

Φ→ K. For v ∈ Φ→ K, a satisfaction relation can be defined by v �E α if v′(α) 6= F, where

v′ is defined in terms of v as described for Kleene’s logic. An agent could then be modeled

with a set of situations, instead of a set of possible worlds. The logic is much weaker than

classical logic; for example, {p, (¬p ∨ q)} 6�E q because the situation v such that v(p) = N

and v(q) = F satisfies both p and (¬p ∨ q). To strengthen the logic in a controlled way,

we could parameterize the satisfaction relation by a set of atoms that are required to take

classical truth values, as shown in Schaerf and Cadoli (1995).

However, (Levesque, 1984)’s notion of explicit belief was criticized by Vardi (1986), who

wrote that

[T]he agents in Levesque’s model turn out to be perfect reasoners in Anderson’s
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and Belnap’s relevance logic. Unfortunately, it does not seem that agents can

reason perfectly in relevance logic any more than in classical logic.

The approach was later criticized by Levesque himself (Lakemeyer and Levesque, 2002) for

being too weak in some cases (like the simple {p, (¬p ∨ q)} 6�E q example) and sometimes

requiring too much reasoning from agents (in a first-order version of the approach).

Duc (2001, Chapter 5) presents a logic with numbered knowledge operators, where the

numbers are meant to indicate bounds on how much time it would take to verify that the

formulas in question are true. However, most of the work in defining what those bounds

would be for particular sentences is not done by the logic, but by cost functions that a user

of the logic would have to provide.

A rather different way to deal with logical omniscience is provided by step-logics (Elgot-

Drapkin, 1988; Elgot-Drapkin and Perlis, 1990). Step-logics are intended to model beliefs

changing over time, rather than just specify static properties of belief. At each step in time,

the agent has a finite set of believed sentences, and makes a finite number of observations

(which are also sentences). The agent has an inference function that determines, based on

the history of belief and observation sets, what sentences will constitute its belief set at

the next step. In SL7, the step-logic described in most detail, the inference function is

determined by a set of proof rules: at step i + 1, the belief set will contain each sentence

that can be derived from the union of step i’s belief set and observation set using one proof

rule application.

We could equate effort with time, and think of SL7 as measuring effort in terms of the

length of a proof (in a proof system in which rules can be used in parallel). In general, proof

length is an obvious way to measure effort. However, Crawford and Etherington (1998) ar-

gued that reasoning by a particular technique called unit propagation is useful and should

be supported by a semantics for tractable inference, even though such reasoning may in-

volve long chains of steps. In the next section, we will look a logic that incorporates unit

propagation directly into its semantics.

2.2.1 Levels of belief

We will describe a logic that we will call LL, which is essentially a fragment of the logic

ESL from (Lakemeyer and Levesque, 2014). Alternatively, LL can be seen as a propositional

version of the logic SL described in (Liu et al., 2004; Liu, 2006; Lakemeyer and Levesque,

2013) with a modified splitting rule. By examining LL we will be able to see features and

limitations of those logics that are relevant to us.

The syntax of LL is given by the grammar below, in which k is any nonnegative integer

and α ∈ L (Φ) (except that disjunction instead of conjunction is taken as a primitive
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operator):

ϕ ::= Bkα | (ϕ ∨ ϕ) | ¬ϕ

An intuitive reading of Bkα is that “upon being queried about the truth of α, confirma-

tion takes at most k effort”, though for brevity we suggest the conventional reading “α is in

level k”. We can think of B0 as being an explicit belief operator. It matters that disjunctions

are considered primitive, because clauses are built into the semantics.

Definition 3 (clause). A literal is a clause, and if c1 and c2 are clauses, then so is (c1∨ c2).

We may sometimes identify a clause with the set of literals it contains; in such a context, we

also consider the empty set to be a clause (the empty clause can be thought of as representing

a contradiction).

Unit propagation, usually considered a proof-theoretic notion, is also used in the seman-

tics.

Definition 4. Let S be a set of clauses. Then UP(S), the closure of S under unit propaga-

tion, is the least superset of S such that if {`} ∈ UP(S) and c ∈ UP(S), then c\{`} ∈ UP(S).

Unit propagation is often defined so as to also remove clauses that are supersets of

included unit clauses (probably because without such removal, the closure under unit prop-

agation may be exponentially larger than the original set – with such removal, the closure

can be computed in linear time). We will not make that part of our definition, though,

since removing subsumed clauses does not change what inferences are licensed if we allow

ourselves to reason by subsumption as well.

The semantic objects of LL are sets of clauses. The satisfaction relation is defined in-

ductively as follows:

1. S �LL (ϕ ∨ ψ) iff S �LL ϕ or S �LL ψ

2. S �LL ¬ϕ iff S 6�LL ϕ

3. S �LL Bkα iff at least one of the following holds:

(a) k = 0, α is a clause, and there exists c ∈ UP(S) such that c ⊆ α

(b) α = (α1 ∨ α2), and S �LL Bkα1 or S �LL Bkα2

(c) α = ¬(α1 ∨ α2), and S �LL Bk¬α1 and S �LL Bk¬α2

(d) α = ¬¬α1, and S �LL Bkα

(e) k > 0 and there exists p ∈ Φ such that both S∪{p} �LL Bk−1α and S∪{¬p} �LL
Bk−1α
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Rules (1) and (2) deal with logical connectives outside the scope of modal operators. The

interesting rules are the various part of rule (3).

Note how rule (3a) allows for reasoning using unit propagation and subsumption at

level 0. Rules (3b-d) allow for building up beliefs syntactically in various ways. Rule (3e)

determines how higher levels of belief are constructed by splitting cases (i.e., either p is

true, or it isn’t) and considering lower levels. The idea of using the depth of case-splitting

allowed as a measure of effort can also be found in more proof-theory oriented papers like

(Finger, 2004; D’Agostino and Floridi, 2009; D’Agostino et al., 2013). The notions of effort

in (Crawford and Kuipers, 1991; Dalal, 1996; Crawford and Etherington, 1998) are also

related.

The reader might also be reminded of the DPLL algorithm, which is based around unit

propagation and case-splitting as well.

The numbered belief operators are increasingly powerful (if a formula is believed at level

k, then it will also be believed at level k+1), and any classical consequence of S will appear

in some (sufficiently high) level of belief. Liu et al. (2004) proposes defining a reasoning

service in terms of levels of belief as follows: if you want to determine whether α can be

derived using k effort from a “knowledge base” (i.e. a sentence) KB, you can ask whether

B0KB ⊃ Bkα is valid. (Liu et al., 2004, Theorem 6) showed that, in the propositional version

of SL, whether B0KB ⊃ Bkα is valid can be determined in polynomial time – if k is held

constant.

Unfortunately, the rather syntactic way the semantics are defined results in many sen-

tences not being in a level even when intuitively they seem to follow – without the need to

reason by cases – from other sentences in the level. For example, B0(p∨ q) ⊃ B0(p∨¬¬q) is

not valid in LL, since (p∨¬¬q) is not a clause. For a more elaborate example of the same sort

of thing, recall that we are for LL defining conjunction in terms of the primitive disjunction

operator, i.e. (α ∧ β) = ¬(¬α ∨ ¬β). Suppose we define a new disjunction operator ∨′ by

(α∨′ β) := ¬(¬α∧¬β). Then 6�LL B0(p∨ q) ⊃ B0(p∨′ q), since (p∨′ q) = ¬¬(¬¬p∨¬¬q) is

not a clause (nor the double negation of a clause). Furthermore, associativity fails to hold

within modal operators, since e.g. 6�LL B0((p ∨ q) ∨ ¬¬r) ⊃ B0(p ∨ (q ∨ ¬¬r)). Note though

that �LL B0((p∨ q)∨ r) ⊃ B0(p∨ (q ∨ r)) because ((p∨ q)∨ r) and (p∨ (q ∨ r)) are clauses.

A more serious problem than those that we have mentioned above is that we have

B0((p ∧ q) ∨ (r ∧ s)) �LL (B0(p ∧ q) ∨ B0(r ∧ s)).

To illustrate why this is a problem, suppose we believe that there will be extreme weather

– either it will be very hot and wet, or else very cold and dry. If we formalize this using

two atoms – one atom for “hot and wet” and one for “cold and dry” – then of course from

a belief in the disjunction of those atoms we can not (and should not) be able to conclude

which one is true. The weird thing is that if we use four atoms – one each for ”hot”, ”wet”,
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”cold”, and ”dry” – and group them appropriately with conjunctions, then LL says that

there must be a belief as to which of the extreme conditions it will be.

So use of LL is highly sensitive to how things are formalized. The idea that at heart an

agent’s knowledge consists of a set of disjunctions of literals seems to be without philosoph-

ical or psychological motivation. In section 3, we will seek to combine levels of belief with a

form of neighborhood semantics to ameliorate this issue.

2.2.2 Neighborhood semantics

Neighborhood semantics (sometimes called Montague-Scott semantics) for modal logic were

suggested by Montague (1968) and Scott (1970). Various forms of these semantics have been

used in AI for modeling belief; a survey can be found in (Sim, 1997, Section IV-B).

In this section we will sketch descriptions of a simple form of neighborhood semantics

with only one agent and no support for nested beliefs.

The semantic objects are (two-valued) epistemic states, defined below:

Definition 5. A (two-valued) epistemic state is an element of P(P(Φ→ C)), i.e. a set of

sets of truth assignments from Φ→ C.

The intuition is that if M is an agent’s epistemic state, then for each V ∈M, the agent

thinks the world is described by one of the truth assignments in V . If the agent were logically

omniscient, it would therefore think that the real world corresponded to one of the truth

assignments in
⋂
M. However, the point of the semantics is that agents do not have to be

logically omniscient, i.e. explicit belief can be modeled.

There are two established ways in which we might go about defining how the satisfaction

relation treats explicit belief, namely, the strict and loose neighborhood semantics. Let us

introduce two modal operators, [=] and [⊆], one for each type of explicit belief. The strict

neighborhood semantics defines explicit belief by

M � [=]α if there exists V ∈M such that V = JαKC

while the loose neighborhood semantics defines it by

M � [⊆]α if there exists V ∈M such that V ⊆ JαKC

Note that V ⊆ JαKC iff v �C α for every v ∈ V .

The “strict” and “loose” terminology and the [=] and [⊆] notation are from (Areces and

Figueira, 2009). Both types of semantics have long been considered in AI research; Vardi

(1986) used strict neighborhood semantics, and loose neighborhood semantics were used by

the “logic of local reasoning” from (Fagin and Halpern, 1988, Section 6).
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The intuitive way to understand the strict neighborhood semantics is to view an epistemic

state as simply a set of every proposition that the agent explicitly believes. A problem with

this semantics, noted by Vardi (1986) and others, is that if an agent believes a sentence α,

then the agent believes any β equivalent to α (so, for example, if the agent believes any one

tautology, then the agent believes all tautologies).

From the point of view of the loose neighborhood semantics, an epistemic state is not

the set of everything believed, because inferences can be made from each proposition in

the epistemic state. Note that if α �C β and M � [⊆]α, then M � [⊆]β. This is closer to

logical omniscience (some authors have defined logical omniscience as being exactly this), but

the agent still cannot bring together information from separate propositions. For example,

consider

{JpKC, JqKC} 6� [⊆](p ∧ q)

or

{JpKC, J(p ⊃ q)KC} 6� [⊆]q.

Strict neighborhood semantics are the basis for the “active logic” described in (Nirkhe

et al., 1995, Section 4). In this logic, time is represented, and epistemic states expand over

time, which is meant to model an agent reasoning. However, as was criticized by (Jago,

2006, Section 4.4.2), all tautologies are believed from time 0 on.

2.2.3 Three-valued neighborhood semantics

Both the strict and weak neighborhood semantics are in a sense too strong, as exemplified

in the way they treat belief in tautologies. As we will describe in this section, by basing

neighborhood semantics on Kleene’s three-valued logic, which has no tautologies, we can go

some way towards improving matters. Three-valued neighborhood semantics do not appear

to be nearly as much discussed in the literature, though they are described (under the name

of “belief cell” semantics) by McArthur (1988, Section 4.2), recounting an unpublished paper

by Levesque.

We will relax the definition of an epistemic state to allow it to involve three-valued truth

assignments.

Definition 6 (epistemic state). An epistemic state is an element of P(P(Φ→ K)), i.e. a

set of sets of truth assignments from Φ→ K.

We can view two-valued epistemic states as a special case, in which none of the functions

involved has N in its image.

The point of three-valued epistemic states is not that the agent thinks that the world is

really three-valued. Rather, a three-valued truth assignment provides a partial description

of the world. Let us make a definition:
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Definition 7 (compatibility with an epistemic state). If M is an epistemic state and u ∈
Φ→ K, then we say that u is compatible with M if for each V ∈ M there is some v ∈ V
such that v ♥ u.

If an agent’s epistemic state is M, then the agent (implicitly) thinks that the two-valued

truth assignment that corresponds to the real world is compatible with M.

Definition 8 (b). Let U ⊆ Φ→ K and V ⊆ Φ→ K. Then V b U if for every v ∈ V , there

is some u ∈ U such that u ⊆ v.

Proposition 1. Let V ⊆ Φ→ K and α ∈ L (Φ). Then v �K α for all v ∈ V iff V b TαU.

Proof. We prove both directions:

• Suppose V b TαU. Let v ∈ V . Then there is some u ∈ TαU such that u ⊆ v. Since

u �K α (by the definition of TαU), v �K α.

• Suppose v �K α for all v ∈ V . Then V ⊆ JαKK. Since (by definition) TαU = min⊂ JαKK,

it follows that for every v ∈ V , there is some u ∈ TαU such that u ⊆ v. Hence V b TαU.

This establishes the result.

Note that if U ⊆ Φ→ C and V ⊆ Φ→ C, then V b U iff V ⊆ U .

We can define a new modal operator [b] which can be thought of as the three-valued

analogue to [⊆] as follows:

M � [b]α if there exists V ∈M such that V b TαU

How does [b] compare with [⊆] as an explicit belief operator? It is true that if α �K β

and M � [b]α, then M � [b]β. However, this is often a much less onerous requirement

for the agent to fulfill than the classical version of that. Consider that to decide whether

{J(p ∨ q)KC} � [⊆]α holds an agent may have to reflect not just on the truth values of p and

q, but also on the atoms in α (since, for example, α might be a tautology). On the other

hand, to determine if {T(p ∨ q)U} � [b]α all that has to be done is check whether both of

the two truth assignments in T(p ∨ q)U make α true. This is easy, especially since each truth

assignment in T(p ∨ q)U is undefined on every atom but one.

We could also create a three-valued version of the strict neighborhood semantics, but we

will not look into that here. We would like epistemic states to be, instead of enumerations

of everything believed (which would often be infinite), reasonably compact objects which

could be physically realized in a relatively straightforward way.

Let us make one last definition:
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Definition 9 (atoms mentioned by an epistemic state). For M an epistemic state, the set

of atoms mentioned by M is the set

at(M) := {p ∈ Φ : ∃V ∈M,∃v ∈ V such that v(p) 6= N}.

Of course, if M is a two-valued epistemic state, then at(M) = Φ.

3 A logic combining neighborhood semantics and levels

of belief

While the idea of levels of belief in LL is appealing, the use of sets of clauses as semantic

objects makes the semantics of LL limited in quirky ways. We will introduce a new logic

which is similar to LL but replaces sets of clauses with epistemic states from three-valued

neighborhood semantics.

3.1 Closure properties

As a prelude to developing our logic, let us consider modeling closure properties in neigh-

borhood semantics. We would like for an agent to have some ability to combine information

from different elements of its epistemic state, without requiring unrealistic reasoning powers.

For example, we might like for explicit belief in α and in β to make (α ∧ β) also explicitly

believed. How can this be achieved?

One obvious approach (followed in e.g. (Vardi, 1986, Section 4)) is to impose a restriction

on the set of semantic objects. Let us first make a definition:

Definition 10 (e). For U, V ∈P(Φ→ K), let U e V := {u∪ v : u ∈ U, v ∈ V, and u ♥ v}.

The intuition behind e is that it is the semantic version of the ∧ operator. Note that

TαU e TβU = Tα ∧ βU. Also, if none of the functions in U or V assign the value N to any

atom, then U e V = U ∩ V .

Now, a restriction on semantic objects could be to require an epistemic state M to

satisfy that if U ∈ M and V ∈ M, then U e V ∈ M. Unfortunately, this sort of ap-

proach makes epistemic states much too strong. To illustrate, suppose that M is such that

{TγU : γ ∈ Γ} ⊆M for some set of sentences Γ. Then, in order to fulfill the requirement

it must be that T
∧

ΓU ∈ M. That means that the agent explicitly believes all the logical

consequences (in Kleene’s logic) of Γ.

To avoid requiring so much power, we will therefore leave the semantic objects alone. In

our logic, we will instead expand the satisfaction relation by providing additional conditions

under which explicit belief exists. This is like the approach that LL takes, of course.
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However, this does not mean that restricting the set of semantic objects may not some-

times be useful. Closure under unit propagation plays an important role in LL. We can

define a condition for epistemic states that will play a similar role for us.

Definition 11 (harmonization). Let M be an epistemic state. The harmonization of M,

written H(M), is the least superset of M satisfying the following condition: if V and {u}
are elements, then so is {v ∈ V : v ♥ u}.

An epistemic state M is said to be harmonized if M = H(M). The idea behind harmo-

nization is to give a semantic generalization of the proof-theoretic notion of unit propagation.

Harmonizing an epistemic state does not confer anything like logical omniscience; for exam-

ple, if M = {T(p ∨ q)U,T((p ∨ q) ⊃ r)U} then M is already harmonized and yet M 6� [b]r.

Proposition 2. Let S be a set of clauses, and let MS = {TcU : c ∈ S}. Then c ∈ UP(S) iff

TcU ∈ H(MS).

Proof. Given u, v ∈ Φ→ K where u = {`1} and v = {`2}, note that v ♥ u iff `1 6= `2. Also

note that if c is a clause, then TcU = {{`} : ` ∈ c}.
Therefore, if V = TcU for some clause c, and u = {`}, then

{v ∈ V : v ♥ u} = {v ∈ {{`′} : `′ ∈ c} : v 6= {`}} = {{`′} : `′ ∈ c} \ {{`}} = Tc \ {`}U.

So the result follows.

We are now almost ready to formally define a logic based on three-valued neighborhood

semantics that has a version of levels of belief. First, though, let us make a definition.

Definition 12 (expansion). Let M be an epistemic state and α ∈ L (Φ). Then the expansion

of M by α, written M[α], is the epistemic state H(M ∪ {TαU}).

M[α] could be thought of as the epistemic state that results from the agent learning or

being told α. M[α] might also be a state temporarily entered when the agent assumes α for

the sake of argument. A major reason for our using harmonization is so that, if α “obviously”

conflicts with the information in M, M[α] will include the empty set (and so make every

level of belief contain every sentence). This allows for reasoning by contradiction.

3.2 Syntax

Our logic will use the modal language M (Φ), which is defined by the grammar below, in

which α ∈ L (Φ), and k is any nonnegative integer.

ϕ ::= Bα | Bkα | [b]α | [α]ϕ | (ϕ ∧ ϕ) | ¬ϕ

Note that sentences of L (Φ) cannot appear outside the scope of a modal operator. Also,

[α] is the only sort of modal operator for which other modal operators can be in its scope.
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3.3 Semantics

The semantic objects of our logic are harmonized epistemic states.

We will next define a satisfaction relation inductively. To make the induction well-

founded we will have to use a slightly more complex order on sentences than just length.

In preparation for defining this order, we will inductively define two functions f, g mapping

M (Φ) to integers.

f(Bα) = f([b]α) = −1

f(Bkα) = k

f([α]ϕ) = f(¬ϕ) = f(ϕ)

f((ϕ ∧ ψ)) = max(f(ϕ), f(ψ))

Note that f(ϕ) is the value of the highest subscript in ϕ if there is one, and −1 otherwise.

We next define g:

g(Bα) = g(Bkα) = g([b]α) = 1 + len(α)

g([α]ϕ) = 2 + len(α) + g(ϕ1)

g((ϕ ∧ ψ)) = 3 + g(ϕ) + g(ψ)

g(¬ϕ) = 1 + g(ϕ)

If we consider the Bk and [b] operators to have length 1, then g(ϕ) is the length of ϕ.

Recall the purpose of f and g is to define a partial order on sentences. Let us say that

ϕ ≺ ψ if 〈f(ϕ), g(ϕ)〉 lexicographically precedes 〈f(ψ), g(ψ)〉, i.e. if f(ϕ) < f(ψ) or if both

f(ϕ) = f(ψ) and g(ϕ) < g(ψ).

Now we can say that the satisfaction relation, �, is defined by induction on the order ≺
as follows:

1. M � Bα iff, for each w ∈ Φ→ C that is compatible with M, w �C α

2. M � [b]α iff there exists V ∈M such that V b TαU

3. M � [α]ϕ iff M[α] � ϕ

4. M � (ϕ ∧ ψ) iff M � ϕ and M � ψ

5. M � ¬ϕ iff M 6� ϕ

6. M � Bkα, where k is a nonnegative integer, iff at least one of the following holds:

(a) k = 0 and M � [b]α

(b) α = (α1 ∧ α2), and M � Bkα1 and M � Bkα2
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(c) α = ¬(α1 ∧ α2), and M � Bk¬α1 or M � Bk¬α2

(d) α = ¬¬α1 and M � Bkα1

(e) k > 0 and there exists p ∈ Φ such that both M � [p]Bk−1α and M � [¬p]Bk−1α

Rule (1) defines B as an implicit belief operator, which is easily seen to be characterized

by logical omniscience. Suppose Γ �C α. If M � Bγ for every γ ∈ Γ, then each w ∈ Φ→ C
compatible with M makes every element of Γ true, and so must make α true as well. Hence

M � Bα.

The definition of [b] that we have seen before is repeated by rule (2). Rule (3) defines

an operator for expansion by α, which could be compared to a public announcement of α in

dynamic epistemic logic (van Ditmarsch et al., 2007). Rules (4) and (5) make connectives

outside the scope of modal operators behave in their traditional ways.

The various parts of rule (6) define the infinite family of operators {Bk : k ≥ 0}. The

sentence Bkα can be read, as in LL, as saying that α is in level k. Though we still have the

operator [b], we will think of B0 as indicating a form of explicit belief. Rule (6a) ensures that

level 0 contains every α for which [b]α is true. Rule (6b) allows for forming conjunctions from

conjuncts that are separately believed. Note that this rule means that whether a sentence is

in a level depends not just on what proposition it expresses, but also on its syntactic form.

For example, that ((α∨¬β)∧β) was in a level would not necessarily mean that (α∧β) was

also. The rules (6c) and (6d) allow other simple ways of syntactically building up beliefs.

Rule (6e) describes how the higher levels of belief are formed from the lower ones (the same

way as in LL). When k effort is allowed, reasoning by cases can be done, nested up to a

depth of k.

3.4 Properties

In many ways, our logic behaves like LL. However, the analogues in LL of our epistemic

states are sets of clauses, which are a much less expressive class of objects. To make an

epistemic state M restricted in an analogous way, we would have to require that every

V ∈M be finite (we typically would want that anyway) and, more seriously, that for each

v ∈ V , exactly one atom is mapped to a non-N value by v. An obvious advantage of our

more expressive semantic objects is that, unlike in LL, we have

B0((p ∧ q) ∨ (r ∧ s)) 6� (B0(p ∧ q) ∨ B0(r ∧ s))

since, for example, if M = {T((p ∧ q) ∨ (r ∧ s))U} then M � ((p ∧ q) ∨ (r ∧ s)) but also

M � (¬B0(p∧ q)∧¬B0(r ∧ s))). Furthermore, because we define the satisfaction relation in

a less syntactic way, we do not inherit LL’s fiddliness over what is and isn’t a clause. This

is shown by, for example, how we have � B0(p ∨ q) ⊃ B0(p ∨ ¬¬q), unlike in LL.
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In this section we prove various properties of our logic. Our first proposition clarifies the

relationship between our logic and LL:

Proposition 3. Let S be a set of clauses, and let M = H({TcU : c ∈ S}). If S �LL Bkα

(where α contains only ∨ and ¬ operators), then M � Bkα (where the ∨ operators in α are

expanded out in terms of ∧).

Proof sketch. The proof can be made by comparing the semantics of LL and our logic,

which are rather similar. The only interesting point is this: Suppose that α is a clause, and

there exists c ∈ UP(S) such that c ⊆ α. By Proposition 2 we have that TcU ∈M. For each

v ∈ TcU, v � α, so M � [b]α.

Proposition 4. Let Γ ⊆ L (Φ) and suppose that M = H({TγU : γ ∈ Γ}). Then M � Bα if

and only if Γ �C α.

Proof sketch. The “if” direction follows from logical omniscience and the fact that M � Bγ

for each γ ∈ Γ. For the “only if” direction, note that each w ∈ Φ→ C that makes every

γ ∈ Γ true is compatible with M, so if M � Bα, then each such w must satisfy α, so

Γ �C α.

Lemma 1. If M � Bkα and M′ is a harmonized epistemic state such that M ⊆ M′, then

M′ � Bkα.

Proof idea. This can be shown by induction on k.

Lemma 2 (monotonicity of expansions). Let α, β ∈ L (Φ). If M � Bkα, then M[β] � Bkα.

Proof. M ⊆M[β].

Proposition 5 (levels are cumulative). � Bkα ⊃ Bk+1α

Proof. Suppose M � Bkα. Pick any p ∈ Φ. By Lemma 2, M � [p]Bkα and M � [¬p]Bkα.

Proposition 6 (level soundness). � Bkα ⊃ Bα.

Proof idea. This can be shown by induction on k.

Definition 13 (strictly finite). An epistemic state M is strictly finite if all of the following

hold:

• M is finite

• for every V ∈M, V is finite

• for every V ∈M, each v ∈ V is finite.

21



Proposition 7 (eventual completeness). Suppose that M is strictly finite. If M � Bα, then

there is some k such that M � Bkα.

Proof. Suppose that M � Bα. Let n = |at(M)∪ at(α)| (since M is strictly finite, n is finite).

Let m be the number of atoms p such that either TpU ∈ M or T¬pU ∈ M. We will prove

that M � Bn−mα, by induction on n−m.

The base case, where n −m = 0, is straightforward. If there is some atom p such that

both TpU ∈ M and T¬pU ∈ M, then because M is harmonized, ∅ ∈ M and so M � B0α.

Otherwise, let w be the truth assignment that makes p true iff TpU ∈ M and false iff

T¬pU ∈ M. Note that if w is not compatible with M, then ∅ ∈ M (again, because M is

harmonized), and so M � B0α. Otherwise, M � Bα iff w �C α. If w �C α, then using rules

(6b-d) in the semantics it is possible to show that M � B0α.

For the inductive step, suppose that n−m > 0. Let p ∈ Φ be such that neither TpU ∈M

nor T¬pU ∈M. Since M � Bα, it is also the case that M[p] � Bα and M[¬p] � Bα. Therefore,

by the inductive hypothesis, M[p] � Bn−m−1α and M[¬p] � Bn−m−1α. Hence M � Bn−mα

by rule (6e) in the semantics.

Note that the proof of (Lakemeyer and Levesque, 2014, Theorem 3) is similar.

The next two observations hold for LL as well:

Observation 1. � Bk(α ∧ β) ≡ (Bkα ∧ Bkβ)

Observation 2. � Bk¬¬α ≡ Bkα

3.4.1 Associativity

We now will go about considering associativity within the scope of modal operators. Recall

from our discussion of LL that Bk(α ∨ (β ∨ γ)) 6�LL Bk((α ∨ β) ∨ γ). We will see that our

logic works differently.

Lemma 3. � Bk(α ∨ β) ⊃ Bk(α ∨ (β ∨ γ))

Proof. Suppose that M � Bk(α ∨ β), that is, that M � Bk¬(¬α ∧ ¬β). We want to show

that therefore M � Bk(α ∨ (β ∨ γ), that is, that M � Bk¬(¬α ∧ ¬¬(¬β ∧ ¬γ)). We prove

this by induction on k.

If k = 0, there are two cases to consider.

• Rule (6a) applies, in that M � [b](α ∨ β).

Since (α ∨ β) �K (α ∨ (β ∨ γ)), M � [b](α ∨ (β ∨ γ)), so M � B0(α ∨ (β ∨ γ)).

• Rule (6c) applies: either M � Bk¬¬α or M � Bk¬¬β.

If M � Bk¬¬α, then by rule (6c) M � Bk¬(¬α ∧ ¬¬(¬β ∧ ¬γ)).

If M � Bk¬¬β, then by (6c) M � Bk¬(¬β ∧ ¬γ), by (6d) M � Bk¬¬¬(¬β ∧ ¬γ), and

by (6c) M � Bk¬(¬α ∧ ¬¬(¬β ∧ ¬γ)).
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Now we want to show that � Bk+1(α ∨ β) ⊃ Bk+1(α ∨ (β ∨ γ)) given the inductive

hypothesis that � Bk(α ∨ β) ⊃ Bk(α ∨ (β ∨ γ)). So, suppose M � Bk+1(α ∨ β). There are

again two cases. Again, rule (6c) might apply; this works as shown previously. The other

case is that rule (6e) applies and there exists p ∈ Φ such that both M � [p]Bk(α ∨ β)

and M � [¬p]Bk(α ∨ β). By the inductive hypothesis, M � [p]Bk(α ∨ (β ∨ γ)) and M �

[¬p]Bk(α ∨ (β ∨ γ)), so M � Bk+1(α ∨ (β ∨ γ)) by rule (6e).

Note that Lemma 3 does not hold in LL. Consider the setup S = {(p ∨ q)}. Then

S �LL B0(p ∨ q) ∧ ¬B0(p ∨ (q ∨ ¬¬r))).

Proposition 8. � Bk((α ∨ β) ∨ γ) ≡ Bk(α ∨ (β ∨ γ))

Proof. We will show that � Bk((α ∨ β) ∨ γ) ⊃ Bk(α ∨ (β ∨ γ)) (the other direction of

implication works symmetrically). Note that ((α ∨ β) ∨ γ) = ¬(¬¬(¬α ∧ ¬β) ∧ ¬γ) and

(α ∨ (β ∨ γ)) = ¬(¬α ∧ ¬¬(¬β ∧ ¬γ)). Suppose M is such that M � Bk((α ∨ β) ∨ γ). The

proof is by induction on k.

If k = 0 there are two cases to consider:

• Rule (6a) applies: M � [b]((α ∨ β) ∨ γ).

Then, because ((α ∨ β) ∨ γ) �K (α ∨ (β ∨ γ)), M � [b](α ∨ (β ∨ γ)) and so M �

B0(α ∨ (β ∨ γ)).

• Rule (6c) applies: M � Bk¬¬¬(¬α ∧ ¬β) or M � Bk¬¬γ.

If M � Bk¬¬¬(¬α∧¬β), then by Observation 2, M � Bk¬(¬α∧¬β), i.e. M � Bk(α∨β).

Then by Lemma 3, M � Bk(α ∨ (β ∨ γ)).

If M � Bk¬¬γ, by (6c) we have that M � Bk¬(¬β ∧ ¬γ). Then by (6d) we have

M � Bk¬¬¬(¬β ∧ ¬γ), and finally by (6c) we have M � Bk¬(¬α ∧ ¬¬(¬β ∧ ¬γ)).

Now, for the inductive step, where k > 0. If rule (6c) applies this works as when k = 0. If

rule (6e) applies then we can apply the inductive hypothesis to each of the split cases to get

the desired result.

That associativity also works for conjunctions can be demonstrated very simply by re-

lying on Observation 1, as shown below (because Observation 1 is true for LL, this result

can be shown for LL as well).

Proposition 9. � Bk((α ∧ β) ∧ γ) ≡ Bk(α ∧ (β ∧ γ))

Proof. We will show that � Bk((α ∧ β) ∧ γ) ⊃ Bk(α ∧ (β ∧ γ)) (the other direction of

implication works symmetrically). Suppose M � Bk((α∧β)∧γ). By applying Observation 1

(twice), we see that M � Bkγ, M � Bkα, and M � Bkβ. Then by using rule (6b) twice we

get that M � Bk(α ∧ (β ∧ γ)).
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3.4.2 Distributivity

Now we will consider whether we get distributivity of conjunction over disjunction and vice

versa within belief modalities. As we will see, with our logic, each of the distribution rules

work in only one direction. This is unsurprising, since that was also shown to be the case

for the similar logic SL (see Liu, 2006, Section 5.3.3).

Proposition 10. � Bk((α ∧ β) ∨ (α ∧ γ)) ⊃ Bk(α ∧ (β ∨ γ))

Proof. Suppose that M � Bk((α∧β)∨ (α∧γ)), that is, that M � Bk¬(¬(α∧β)∧¬(α∧γ)).

We will show that Bk(α ∧ (β ∨ γ)), that is, that M � Bk(α ∧ ¬(¬β ∧ ¬γ)). The proof is by

induction on k.

If k = 0, then there are two cases to consider:

• Rule (6a) applies: M � [b]((α ∧ β) ∨ (α ∧ γ)).

Since ((α∧β)∨ (α∧γ)) �K (α∧ (β∨γ)), M � [b](α∧ (β∨γ)), so M � B0(α∧ (β∨γ)).

• Rule (6c) applies: M � Bk¬¬(α ∧ β) or M � Bk¬¬(α ∧ γ).

If M � Bk¬¬(α∧β), then by Observation 2 and Observation 1, M � Bkα and M � Bkβ.

Using rules (6b-d) it can be shown that M � Bk(α ∧ ¬(¬β ∧ ¬γ)). The case where

M � Bk¬¬(α ∧ γ) is similar.

For the inductive step, where k > 0, there are again two cases. If rule (6c) applies, the

situation works as shown previously. If (6e) applies, by using the inductive hypothesis with

each of the split cases and then applying rule (6e) we get the desired result.

The converse of Proposition 10 does not hold in general. For example, if M = {TpU,T(q ∨ r)U},
then M � B0(p ∧ (q ∨ r)) but M 6� B0((p ∧ q) ∨ (p ∧ r)).

Proposition 11. � Bk(α ∨ (β ∧ γ)) ⊃ Bk((α ∨ β) ∧ (α ∨ γ))

Proof. Suppose that M is such that M � Bk(α∨(β∧γ)), that is, that M � Bk¬(¬α∧¬(β∧γ)).

We will show that therefore M � Bk((α ∨ β) ∧ (α ∨ γ)), i.e. that M � Bk(¬(¬α ∧ ¬β) ∧
¬(¬α ∧ ¬γ)). The proof is by induction on k.

If k = 0, then there are two cases to consider:

• Rule (6a) applies: M � [b](α ∨ (β ∧ γ)).

Then, because (α ∨ (β ∧ γ)) �K ((α ∨ β) ∧ (α ∨ γ)), M � B0((α ∨ β) ∧ (α ∨ γ)).

• Rule (6c) applies: M � Bk¬¬α or M � Bk¬¬(β ∧ γ).

In either case, it is a straightforward task to show that M � Bk((α ∨ β) ∧ (α ∨ γ)).

The inductive step is also straightforward and similar to in previous proofs that we have

shown.
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Note that, as with the converse of Proposition 10, the converse of Proposition 11 does

not hold. For example, if M = {Tp ∨ qU,Tp ∨ rU}, then M � B0((p ∨ q) ∧ (p ∨ r)) but

M 6� B0(p ∨ (q ∧ r)).

3.5 A reasoning service

Our logic can be used to specify a reasoning service in the following way: after being told

the sequence of sentences α1, α2, . . . , αn (and nothing else), the service will, given an input

sentence β and integer k, return “Yes” if

∅[α1][α2] · · · [αn] � Bkβ,

and “No” otherwise. Equivalently (because of Lemma 1), we could phrase the question as

determining whether

� [α1][α2] · · · [αn]Bkβ.

Of course, it would be possible to define all sorts of other reasoning services, e.g. the service

that, given α1, . . . , αn, β, finds the least k (if it exists) for which � [α1][α2] · · · [αn]Bkβ.

However, we will restrict our attention to the first one.

3.5.1 Complexity

We now want to consider the computational complexity of the reasoning service we have

described, in other words, the complexity of deciding the validity of sentences that are of

the form [α1][α2] · · · [αn]Bkβ. Note that we will not be addressing the more general question

of the complexity of deciding whether arbitrary sentences of the logic are valid.

Note that sometimes the harmonization of a set may be exponentially larger than the

set itself. For example, consider the family of sets {Mi : i ∈ {0, 1, 2, . . . }} where

Mn = {T(p1 ∨ p2 ∨ · · · ∨ pn ∨ q)U,T¬p1U,T¬p2U, . . .T¬pnU}

Then H(Mn) is exponentially larger than Mn, since T(
∨

Γ) ∨ qU ∈ H(Mn) for each Γ ⊆
{pi : 1 ≤ i ≤ n}. Obviously, for our purposes there is not normally a need to explicitly

compute all those elements, as the following observation shows:

Proposition 12. M � Bkα iff min⊂(M) � Bkα.

Proof sketch. For the “if” direction, note that since min⊂(M) ⊆M, if min⊂M � Bkα then

M � Bkα (by Lemma 1). The “only if” direction can be shown by induction and noting

that M � [b]α, then min⊂(M) � [b]α.

Corollary 1. If M′ is a harmonized epistemic state such that min⊂(M) ⊆M′ ⊆M, then

M � Bkα iff M′ � Bkα
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Proof. If M � Bkα, then by Proposition 12 min⊂(M) � Bkα, and then, by Lemma 1,

M′ � Bkα. On the other hand, if M′ � Bkα, then by Lemma 1, M � Bkα.

Now, the following algorithm h is such that min⊂H(M) ⊆ h(M) ⊆ H(M):

function h(M):

for each singleton {v} ∈M:

for U ∈M:

if U 6= {u ∈ U : u ♥ v}:
return h({{w ∈W : w ♥ v} : W ∈M})

return M

That min⊂H(M) ⊆ h(M) ⊆ H(M) can be seen from how the function h is basically

just repeatedly applying the rule that harmonization is based on – if W ∈M and {v} ∈M,

then {u ∈ W : u ♥ v} is added – to all elements W ∈ M, except that each time the rule

is applied some elements that are supersets of others may be discarded. Note that h(M) is

always harmonized:

Lemma 4. h(M) = H(h(M))

Proof. Let us name as Mfinal the parameter passed to the final recursive call in h. Since

this is the last call, it must be the case that there are no U ∈Mfinal and {v} ∈Mfinal for

which U 6= {u ∈ U : u ♥ v}. This means that Mfinal is harmonized.

Lemma 5. h runs in polynomial time, on a strictly finite input.

Proof sketch. In each new recursive call the input size has always been strictly reduced,

so there will not be more recursive calls than the combined size of all elements of M.

Furthermore, it is clear that within each call, only a polynomial amount of work is done.

Now, the (rather boring) algorithm Q below computes whether M � Bkα, given M, α,

and k.

function Q(M, α, k):

if α = ¬¬α1:

return Q(M, α1, k)

if k = 0:

for V ∈M:

if v �K α for all v ∈ V :

return T

if α = (α1 ∧ α2):

if Q(M, α1, k) and Q(M, α2, k):
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return T

if α = ¬(α1 ∧ α2):

if Q(M,¬α1, k) or Q(M,¬α2, k):

return T

if k > 0:

for p ∈ at(M) ∪ at(α):

if Q(h(M ∪ {TpU}), α, k − 1) and Q(h(M ∪ {T¬pU}), α, k − 1):

return T

return F

Proposition 13 (correctness). Suppose M is a strictly finite harmonized epistemic state.

Then M � Bkα if and only if Q(M, α, k) = T.

Given how much the algorithm looks like the semantics, this proposition is not very

surprising. The only point worth remarking upon is how the only atoms that need to be

used in the splitting rule are those mentioned by either the epistemic state or α.

Proposition 14 (complexity). For constant k and strictly finite M, Q(M, α, k) can be

computed in polynomial time.

Proof idea. This can be seen by inspection and induction.

As we said previously, for our reasoning service we will want to determine whether

� [α1][α2] · · · [αn]Bkβ. To do so, we can execute

decide({α1, α2, . . . , αn}, β, k),

where the decide function is constructed as shown below:

function decide(Γ, k, β)

return decide_helper({TγU : γ ∈ Γ}, β, k)

function decide_helper(M, β, k)

return Q(h(M), β, k)

It follows from Lemma 5 and Proposition 14 that, when k is treated as a fixed constant,

decide helper(M, β, k) can be computed in polynomial time. Therefore, for decide(Γ, β, k)

to run in polynomial time for constant k it would suffice that, for each γ ∈ Γ, TγU can be

computed in polynomial time.

Unfortunately, this is not the case in general. For example, if a sentence γ is in conjunctive

normal form (i.e. is a conjunction of clauses, where a clause is a disjunction of literals) then

TγU may be exponentially larger than γ. However, if γ is in disjunctive normal form (i.e. is
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a disjunction of conjunction of literals), then TγU can be computed in polynomial time, as

shown by the following observation:

Observation 3. Suppose that

γ =
∨

1≤i≤n

∧
1≤j≤mi

`ij

for some integers n,m1, . . . ,mn, where each `ij is some literal. Then

TγU = min
⊂

({`ij : 1 ≤ j ≤ mi} : 1 ≤ i ≤ n and `ij 6= `ik for any j, k ∈ {1, . . . ,mi}}).

So, in conclusion, we have the following result:

Proposition 15. For α1, . . . , αn in disjunctive normal form, any sentence β, and k a

constant, whether � [α1][α2] · · · [αn]Bkβ can be computed in polynomial time.

Requiring α1, . . . , αn to be in disjunctive normal form may seem like a serious constraint,

since converting a sentence into that form may take exponential time. However, for knowl-

edge representation purposes, we may often be dealing with large collections of facts which

are individually simple – i.e. the number n of sentences may grow to be very large, but each

sentence typically remains small. In such a case it could be practical to convert each of the

sentences into disjunctive normal form. If we have a knowledge base KB which is structured

as a large conjunction of facts, then the idea would be to break apart the conjunction and

convert each conjunct separately, rather than converting the entire conjunction.

4 Evaluating effort

Thus far, we have spoken of effort mostly without reference to concrete problems, but only as

an abstraction. We will now take a small step towards rectifying this matter by considering

the difficulty of solving Sudoku puzzles. A Sudoku board is a 9x9 grid of cells, where cells

are grouped into nine 3x3 regions. Each cell can contain a number from N = {1, 2, 3, . . . , 9}.
In a starting configuration, some of the cells have numbers given in them, while the rest are

empty. The goal is to write a number chosen from N into each of the initially empty cells

in such a way that each row, column, and region contains all distinct numbers. The initial

configuration is required to be such that there is a unique way of filling in the board that

meets the goal. Figure 1 shows one possible starting configuration.

Sudoku has some disadvantages as an example problem. As a puzzle game it may be,

even at its easiest, harder (for people) than a lot of commonsense reasoning. Unfortunately,

for most commonsense reasoning it’s very unclear how to delimit the inputs and background

knowledge involved. So we will consider Sudoku; as it turns out, even from it, we will be

able to get some ideas regarding possible issues with our logic.
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Figure 1: A Sudoku game (from Royle (2012)) with 17 given numbers

Lynce and Ouaknine (2006) considered Sudoku as a SAT problem. Using a large set of

puzzles that each had 17 given numbers1, they found that with their “extended” encoding

(which contained some logically redundant clauses), about half of the puzzles could be

solved using unit propagation alone, and all of them could be solved if closure under both

unit propagation and the “failed literal rule” was used. (The failed literal rule allows a literal

` to be concluded if assuming ` and doing unit propagation reveals a contradiction.) Henz

and Truong (2009) showed, using the same extended encoding as Lynce and Ouaknine, that

there were some puzzles (with more than 17 given numbers) which could not be solved using

just unit propagation and the failed literal rule.

So, if we encode Sudoku puzzles as Lynce and Ouaknine did, then some (but not all) of

them can be solved with unit propagation. By Proposition 2, if we create an epistemic state

corresponding to the encoding of a puzzle that can be solved with unit propagation, then

each move in the solution to the puzzle will be at level 0 in our logic. Perhaps that shows

that we are not discriminating effort in a fine-grained enough way. An easy Sudoku puzzle

is still a puzzle, which takes a notable amount of time for a person to complete. So even the

lowest level of belief may require some “puzzle mode” (Levesque, 1988) reasoning.

There is a caveat here, in that how many puzzles can be solved with unit propagation

depends on exactly how we encode a puzzle. Lynce and Ouaknine did also have a “minimal”

encoding for Sudoku with which unit propagation was unable to solve any puzzles. However,

Lynce and Ouaknine’s extended encoding differs from the minimal encoding only by adding

117 is the minimal number of given numbers required for a puzzle to have a unique solutions, according
to McGuire et al. (2012), though this had not yet been proven in 2006.
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clauses saying things that any human Sudoku player would find obvious, like that each cell

contains at most one number, or that each number appears at least once in a row (these

facts are of course derivable from the minimal encoding, but not by unit propagation). So

it is not clear how to encode puzzles in a way such that obvious properties of them can be

derived, but not their solutions.

The problem for us with Sudoku may be that unit propagation is in some ways too

powerful. In the next section, we suggest this is because it requires agents to remember too

many things.

4.1 Memory

If you try to solve a Sudoku puzzle without writing anything down – i.e. without filling

in the numbers you have worked out so far – it probably will seem much more difficult.

Similarly, that the given numbers in the initial state remain before your eyes the entire time

you’re working on the puzzle is helpful. That Sudoku is solved on paper obscures some of

the ways in which memory is required in reasoning.

Among measures of effort, proof length could be considered a baseline. We would like for

anything fancier to show some advantage. But it seems reasonable to predict that the moves

that could easily be derived in Sudoku without writing anything down would be those that

had a short proof. To get closure under unit propagation, or closure under most anything

else, requires you to remember what you have concluded so far so that you can build upon

it.

Another important thing about memory and Sudoku is that it is easy to remember

the rules, which can be described in a single paragraph. However, expressing the rules as

propositional clauses in an obvious way seems to obscure their structure – we would never

present the rules to a human by listing thousands of constraints on individual cells. Given

such a list, a human would have to sift through it to discover the patterns that a normal

description would make obvious. This would not be easy at all, unless perhaps we cheated

by arranging the list in a systematic way, so that the ordering itself provides information

beyond the contents. If the order is random, e.g. like

Cell 〈4, 7〉 can either have a 2 or a 3 or a 9 or a 6 or a 5 or a 4 or a 7 or an 8 or

a 1, and cell 〈3, 9〉 can either have a 4 or a 6 or a ...

then it’s very hard to make sense of them. Without discovering the features of the usual

descriptions, but just having a jumble of thousands of constraints, a person (even a logician!)

would probably not be able to play very well at all. The person might have to consult a

written copy of the rules constantly to remember which numbers are allowed to go where.

Even if the human can memorize all the rules, will those memories be appropriately indexed

so that relevant rules can be efficiently retrieved when needed?
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For illustration, it may help to consider taking a set of propositional clauses expressing

the constraints of the game, and perturbing them in idiosyncratic ways. For example, you

might make it so that row three is allowed to have two 7’s, column six may or may not have

a 9, and various other things of that sort, carefully chosen so as to ensure the constraints

overall are still satisfiable. Let us call the resulting game Corrupted Sudoku. The rules

of Corrupted Sudoku probably could not be summarized as concisely as Sudoku’s, even

though their propositional representation could be about the same size. Consequently, a

human might find it hard to play Corrupted Sudoku merely because it’s hard to remember

the rules. Even if our system of levels of belief accurately described how difficult people find

Sudoku, the system would predict that Corrupted Sudoku should be the same.

Most if not all popular puzzle games have very simple first-order descriptions, probably

much smaller than any propositional representation of them. Therefore, looking at such

games to determine how our notion of effort in propositional logic correlates with human

difficulty may be systematically misleading.

Another thing that human players know about Sukoku is that a puzzle can be solved by

just considering the puzzle itself – most world knowledge is irrelevant. A player may split

cases to solve a puzzle, but they won’t bother with splitting completely irrelevant cases, like

“either the conservatives will win the next election, or they won’t”. The way our levels of

belief are designed, how difficult it is to compute what is at a given level depends on the size

of the whole knowledge base. So, having a large amount of political knowledge, for example,

could make an agent much slower at Sudoku, which is undesirable.

5 Extensions

We now consider various, rather speculative, ways in which our logic from section 3 might

be extended or modified.

5.1 A parameterized logic

The logic we have described in section 3 incorporates a number of features that may seem

somewhat arbitrary. We might wonder about alternatives to harmonization (especially given

our criticism of unit propagation in the last section), or if the rather syntactic rules (6b-d)

in the semantics should be replaced by other syntactic rules. To aid reflection on this, we

will construct a family of logics defined by three parameters 〈hyp, d,R〉, so as to highlight

possible ways our logic could be modified.

The parameters are explained below:

• hyp is a function from epistemic states and literals to epistemic states – the idea is

that hyp(M, `) is the result of an agent with state M hypothesizing that ` is true, as

with the M[`] function from our logic in section 3.
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• d is some function from trees (in the graph theory sense) to some measure of their

size.

• R is a set of proof rules.

Given a set of proof rules R and set of sentences Γ, let us write CR(Γ) to denote the

closure of Γ under R, i.e the superset of Γ that includes all sentences that can be derived

from Γ using the rules.

Definition 14. Λhyp is the set of all rooted trees whose nodes are epistemic states and are

such that for any node M in the tree, if M′ is a child of M then M′ = hyp(M, `) for some

literal `.

Definition 15. The relation
R,hyp

⊆ Λhyp ×L (Φ) is the least relation such that all of the

following hold:

• T
R,hyp

α, where T has root M, if there is some V ∈M such that v �K α for all v ∈ V

• T
R,hyp

α, where T has root M, if M has children M1 = hyp(M, `) and M2 =

hyp(M, `), which are the roots of trees T1 and T2 respectively, and T1 R,hyp
α and

T2 R,hyp
α

•
R,hyp

=
{
〈T, α〉 : T ∈ Λhyp and α ∈ CR

({
β ∈ L (Φ) : T

R,hyp
β
})}

Note that if two relations satisfy these three properties, then so does their intersection, so

there does always exist a least relation satisfying the properties.

Definition 16. The relation
R,hyp

d
between epistemic states and modal formulas is defined

by

• M
R,hyp

d
Bkα if there exists T ∈ Λhyp with root M such that d(T ) = k and T

R,hyp
α

• M
R,hyp

d
(ϕ ∧ ψ) if M

R,hyp

d
ϕ and M

R,hyp

d
ψ

• M
R,hyp

d ¬ϕ if not M
R,hyp

d
ϕ

With the right choice of parameters in
R,hyp

d
, we can more or less emulate our logic from

section 3: let hyp(M, `) = M[`] = H(M ∪ {T`U}), let d be depth, and let R consist of proof

rules corresponding to rules (6b-d) in our semantics, i.e. introduction rules for conjunctions,

negated conjunction, and double negation. (Note that in section 3 we also restricted the

satisfaction relation to harmonized epistemic states only.)

Clearly, we could use other measures of the size of a tree, other proof rules, and could

replace the use of harmonization in hyp with something else. The choices made have historical

basis in Lakemeyer and Levesque (2014), but have not been subject to much scrutiny. We
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could, for instance, replace harmonization with this strictly stronger closure condition: if

U ∈M and V ∈M, then {u ∈ U : u ♥
⋂
V } ∈M. Of course,

⋂
V is the intersection of the

truth assignments in V , and if V = {v}, then
⋂
V = v.

However, given that we have argued that even unit propagation is too strong, a better

direction of change might be to make hyp capture fewer inferences. We could set hyp(M, `)

to simply be the function

z(M, `) := {{v ∈ V : v 6�K ¬`} : V ∈M} ∪ {T`U}.

The informal interpretation of this is that hypothesizing ` just involves adding a belief in

` and removing beliefs that contradict `. Note that if we had used z(M, `) instead of M[`]

we would still have been able to prove eventual completeness. Also, using z might make

the depth of case-splitting more correlated with human memory use (because the memory

requirements of harmonization would be eliminated).

5.1.1 On the bushiness of trees

Let us turn to thinking of alternatives to depth. Sometimes, when cases are split, one of the

cases is very easy to refute. Unit propagation can be thought of as case-splitting in which one

of the cases can be immediately thrown away. Only considering the depth of case-splitting

may not give a very accurate idea of how much effort is really being spent, because among

trees of a given depth, some have many more nodes than others.

An alternative measure to depth is the Horton-Strahler number, which has been de-

scribed as “a measure of ‘bushiness’ for trees” (Helmert et al., 2014, p. 39), and which has

been used in analyzing the difficulty of SAT instances (see Ansótegui et al. (2008)).

Definition 17 (Horton-Strahler number, see (Ansótegui et al., 2008, Definition 1)). The

Horton-Strahler number of a case-splitting tree T , written hs(T ), is define recursively as

follows:

• If T has only one node, hs(T ) = 0.

• If T ’s root node has two children, let T1 and T2 be the subtrees rooted by those children.

If hs(T1) = hs(T2), then hs(T ) = hs(T1) + 1. Otherwise, hs(T ) = max(hs(T1), hs(T2)).

There is an interesting relation between Horton-Strahler numbers and unit propagation

(see (Ansótegui et al., 2008, Lemma 4)). It can be seen that if M = {TcU : c ∈ Γ} for some

set of clauses Γ, then for any c ∈ UP(Γ) it is the case that M ∅,z
hs

B1c. So using Horton-

Strahler numbers are an elegant way to incorporate some ability to do unit propagation

without including in the semantics any reference to harmonization. An example of this in

action follows:
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Example 1. Let Γ = {(¬p∨ q), (¬q ∨ r),¬r} and M = {TcU : c ∈ Γ}. Note that ¬p and ¬q
can be derived from Γ by unit propagation.

The tree from Λz shown below has a Horton-Strahler number of 1, and its root is M.

M =

{T¬p ∨ qU,T¬q ∨ rU,T¬rU}

z(M, r) =

{T¬p ∨ qU,T¬q ∨ rU, ∅,TrU}
z(M,¬r) =

{T¬p ∨ qU,T¬qU,T¬rU}

z(z(M,¬r), q) =

{T¬p ∨ qU, ∅,T¬rU,TqU}
z(z(M,¬r),¬q) =

{T¬pU,T¬qU,T¬rU}

It can be seen from this tree that M ∅,z
hs

B1¬p and M ∅,z
hs

B1¬q.

5.2 Introspection

Our logic does not feature any introspection, but as we said in the introduction, we expect

that incorporating that would have interesting applications. For now, we will just note a

problem with the introspection featured in the logic LB from (Lakemeyer and Levesque,

2013) (aside from introspection, LB was otherwise similar to SL). According to (Lakemeyer

and Levesque, 2013, Proposition 2), the following is valid in LB, for any nonnegative integers

k and j:

Bkα ⊃ BjBkα

Note that this means that determining what sentences are in any level, even level 0, cannot

be easier than determining what sentences are in level k, for arbitrarily high k. If, as in

(Lakemeyer and Levesque, 2013), mere decidability rather than tractability is the main

concern, this may not cause a problem, but clearly for our purposes we would have to do

something different.

5.3 Other possibilities

Parikh (1987) defined a knowledge algorithm as consisting of a database and a procedure

that, given an input question and a resource bound, works up to the bound, and then either

answers the question or says “I don’t know”. Also, in a feature that might be interesting to

extend our logic with, the database may be updated as a result of the query. This could be

used to model Socratic questioning, where a series of well-chosen questions make the agent
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realize what it (implicitly) knew all along (see Crawford and Kuipers (1989) for an existing

approach to formalizing this).

Parikh also suggested that, in some cases, the agent may know that an implicit belief

does not exist. McCarthy (1977) gave the example of being sure that you will not be able

to, by reasoning alone, determine whether the president is currently standing. Our levels

of belief can be thought of as approximations of implicit belief from below; it would be

interesting to have approximations from above, that would identify sentences that were

obviously neither believed nor disbelieved. See (Schaerf and Cadoli, 1995) and (Finger and

Wassermann, 2007) for existing approaches at this.

Finally, let us note that one of the advantages some authors have found with neighbor-

hood semantics is that agents can have conflicting beliefs without believing everything. Un-

fortunately, our eventual completeness result means that in our logic agents can ultimately

derive anything from contradictory beliefs. Some further mechanism would be needed to

prevent this.

6 Conclusion

In the introduction, we discussed (Reiter, 2000)’s idealized model of narratives. It’s in-

teresting to note that Reiter implemented a query evaluator for narratives that used an

incomplete theorem prover using unit propagation and a form of case-splitting. However,

for Reiter these seemed to be merely ad hoc implementation details. In contrast, the position

of this paper is that the limitations of reasoning should be incorporated into the theory of

intelligent reasoning.

As we have shown, the approach we have taken, in incorporating neighborhood semantics,

has some advantages over the preceding work (Liu et al., 2004; Liu, 2006; Lakemeyer and

Levesque, 2013, 2014) it is based on. By not relying on sets of clauses as semantic objects,

our logic avoids being so sensitive to minor syntactic variations. We retain the hierarchy of

levels of increasing inferential power, which can be used to define a (sometimes) tractable

reasoning service.

Ultimately, though, our approach remains rather disconnected from human reasoning.

We still measure effort in the same way as preceding work, and a reflection on the difficulty

of Sudoku puzzles suggests that this way does not capture all the constraints that people

operate under. We have made some suggestions for ways in which our logic might be modi-

fied, but how to address this issue effectively remains unclear. For future work, we suggest

that a more psychological turn should be taken, and that evaluations be made based on

comparisons with human performance.

A direction in which our work could be extended, which may appeal also to AI researchers

who have less interest in cognitive science, would be to develop notions of effort that could
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model various sorts of abstract resource bounds (e.g. time or certain types of memory). Ar-

tificial agents may have resource bounds that are quantitatively very different from people’s

– for example, an artificial agent may not have such a drastically limited working memory

capacity – but they still cannot act with logical omniscience, except in very simple circum-

stances. By specifying precisely how reasoning is limited, possibilities may arise to make

proofs and give guarantees about behavior in more realistic circumstances.
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