
Using Reward Machines for High-Level Task Specification
and Decomposition in Reinforcement Learning

Rodrigo Toro Icarte 1 2 Toryn Q. Klassen 1 Richard Valenzano 3 Sheila A. McIlraith 1 2

Abstract
In this paper we propose Reward Machines – a
type of finite state machine that supports the spec-
ification of reward functions while exposing re-
ward function structure to the learner and support-
ing decomposition. We then present Q-Learning
for Reward Machines (QRM), an algorithm which
appropriately decomposes the reward machine
and uses off-policy q-learning to simultaneously
learn subpolicies for the different components.
QRM is guaranteed to converge to an optimal pol-
icy in the tabular case, in contrast to Hierarchical
Reinforcement Learning methods which might
converge to suboptimal policies. We demonstrate
this behavior experimentally in two discrete do-
mains. We also show how function approximation
methods like neural networks can be incorporated
into QRM, and that doing so can find better poli-
cies more quickly than hierarchical methods in a
domain with a continuous state space.

1. Introduction
A standard assumption in reinforcement learning (RL) is
that the agent does not have access to the environment model
(Sutton & Barto, 1998). This means that it does not know, a
priori, the transition probabilities or reward function mani-
fest in the environment. To learn optimal behavior, an RL
agent must therefore interact with the environment and learn
from its experience. While assuming that the transition prob-
abilities are unknown seems reasonable, there is less reason
to hide the reward function from the agent. Artificial agents
cannot inherently perceive reward from the environment;
someone must program those rewards functions (even if the
agent is interacting with the real world). Typically, though,

1Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada 2Vector Institute, Toronto, Ontario,
Canada 3Element AI, Toronto, Ontario, Canada. Correspondence
to: Rodrigo Toro Icarte <rntoro@cs.toronto.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

a programmed reward function is given as a black box to the
agent. The agent can query the function for the reward in
the current situation, but does not have access to whatever
structures or high-level ideas the programmer may have
used in defining it. However, an agent that had access to
the specification of the reward function might be able to use
it to decompose the problem and speed up learning. We
consider a way to do so in this paper.

Previous work on giving an agent knowledge about the
reward function focus on defining a task specification
language, usually based on sub-goal sequences (Singh,
1992a;b) or linear temporal logic (Li et al., 2017; Cama-
cho et al., 2017; Littman et al., 2017; Toro Icarte et al.,
2018; Hasanbeig et al., 2018), and then generate a reward
function towards fulfilling that specification. In this work,
we instead directly tackle the problem of defining reward
functions that expose structure to the agent. As such, our
approach is able to reward behaviors to varying degrees in
manners that cannot be expressed by previous approaches.

There are two main contributions of this work. First, we in-
troduce a type of finite state machine, called the Reward Ma-
chine, which we use in defining rewards. A reward machine
allows for composing different reward functions in flexi-
ble ways, including concatenations, loops, and conditional
rules. As an agent acts in the environment, moving from
state to state, it also moves from state to state within a re-
ward machine (as determined by high-level events detected
within the environment). After every transition, the reward
machine outputs the reward function the agent should use
at that time. For example, we might construct a reward
machine for “delivering coffee to an office” using two states.
In the first state, the agent does not receive any rewards, but
it moves to the second state whenever it gets the coffee. In
the second state, the agent gets rewards after delivering the
coffee. The advantage of defining rewards this way is that
the agent knows that the problem consists of two stages and
might use this information for decomposing it.

Our second contribution is to introduce an algorithm, called
Q-Learning for Reward Machines (QRM), that can exploit a
reward machine’s internal structure to decompose the prob-
lem and thereby improve sample efficiency. QRM’s task
decomposition does not prune optimal policies and uses q-

Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

learning to update each sub-task policy in parallel. We show
that QRM is guaranteed to converge to an optimal policy
in the tabular case, and also how to combine QRM with
deep reinforcement learning methods. Experiments in three
domains demonstrate that QRM can be effectively applied
in both discrete and continuous environments and can find
optimal policies in cases where hierarchical reinforcement
learning methods can only find suboptimal policies.

2. Preliminaries
2.1. Reinforcement Learning

The RL problem consists of an agent interacting with an
unknown environment (Sutton & Barto, 1998). As is stan-
dard, the environment is modeled as a Markov Decision
Process (MDP). An MDP is a tuple M = 〈S,A, r, p, γ〉
where S is a finite set of states, A is a finite set of actions,
r : S × A × S → R is the reward function, p(st+1|st, at)
is the transition probability distribution, and γ ∈ (0, 1] is
the discount factor.

A policy π(a|s) is a probability distribution over the actions
a ∈ A given a state s ∈ S. At each time step t, the agent
is in a particular state st ∈ S, selects an action at accord-
ing to π(·|st), and executes at. The agent then receives
a new state st+1 ∼ p(·|st, at) and a reward r(st, at, st+1)
from the environment. The process then repeats from st+1.
The agent’s goal is to find a policy π∗ that maximizes the
expected discounted future reward from every state in S.

The q-function qπ(s, a) under a policy π is defined as the
expected discounted future reward of taking action a in state
s and then following policy π. It is known that every optimal
policy π∗ satisfies the Bellman equations (where q∗ = qπ

∗
):

q∗(s, a) =
∑
s′∈S

p(s′|s, a)

(
r(s, a, s′) + γmax

a′∈A
q∗(s′, a′)

)

for every state s ∈ S and action a ∈ A. Note that, if q∗ is
known, then an optimal policy can be computed by always
selecting the action a with the highest value of q∗(s, a) in
every state s. In the next subsection, we explain how to use
the agent’s experience to estimate q∗.

2.2. Tabular Q-Learning

Tabular q-learning (Watkins & Dayan, 1992) is a well-
known approach for RL. This algorithm works by using
the agent’s experience to estimate the optimal q-function.
It begins with an initialization (often just a random initial-
ization) of the estimated value of every state-action pair
(s, a). We denote this estimate, which is called the q-value,
as q̃(s, a). On every iteration, the agent observes the cur-
rent state s and chooses an action a according to some
exploratory policy. One common exploratory policy is the

ε-greedy policy, which selects a random action with proba-
bility ε, and arg maxa q̃(s, a) with probability 1− ε. Given
the resulting state s′ and reward r(s, a, s′), this experience
is used to update q̃(s, a) as follows:

q̃(s, a)
α←− r(s, a, s′) + γmax

a′
q̃(s′, a′)

where α is an hyperparameter called the learning rate, and
we use x α←− y as shorthand notation for x← x+α ·(y−x).

Tabular q-learning is guaranteed to converge to an optimal
policy in the limit as long as each state-action pair is visited
infinitely often. This algorithm is an off-policy method
since it can learn from the experience generated by any
policy. Unfortunately, tabular q-learning is impractical when
solving problems with large state spaces. In such cases,
function approximation methods like DQN are often used.

2.3. Deep Q-Networks (DQN)

Deep Q-Network (DQN) (Mnih et al., 2015) is a method
which approximates q̃(s, a) ≈ q̃θ(s, a) using a deep neural
network with parameters θ. To train the network, mini-
batches of experiences (s, a, r, s′) are randomly sampled
from an experience replay buffer and used to minimize the
square error between q̃θ(s, a) and the Bellman’s estimate
r(s, a, s′) +γmaxa′ q̃θ′(s

′, a′). The updates are made with
respect to a target network with parameters θ′. The param-
eters θ′ are held fixed when minimizing the square error,
but updated to θ after a certain number of training updates.
The role of the target network is to stabilize learning. DQN
inherits the off-policy behavior from tabular q-learning, but
is no longer guaranteed to converge to an optimal policy.

Since its original publication, several improvements have
been proposed to DQN (a comprehensive summary was
recently provided by Hessel et al. (2018)). We con-
sider two of them: Double DQN (Van Hasselt et al.,
2016) and Prioritized Experience Replay (Schaul et al.,
2015). In short, double DQN decreases the overestima-
tion bias of DQN by selecting the next action a′ in the
Bellman’s estimate using q̃θ, i.e., the estimate is r(s, a, s′)+
γq̃θ′(s

′, arg maxa′ q̃θ(s
′, a′)). Prioritized experience replay

biases the mini-batch sampling from the replay buffer to-
wards experiences that the network is failing to predict. We
focus on these two extensions because they improve perfor-
mance while maintaining the off-policy nature of DQN.

3. Reward Machines for Task Specification
In this section, we introduce a novel type of finite state
machine, called a Reward Machine (RM). An RM takes
abstracted descriptions of the environment as input, and
outputs reward functions. The intuition is that the agent
will be rewarded by different reward functions at different
times, depending on the transitions made in the RM. Hence,

Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

A B

CD
c

c

m[

[[

[[

[o

(a) The office gridworld

u0start

u1 u2

u3

〈c ∧ ¬[, 0〉

〈¬c ∧ ¬[, 0〉

〈[, 0〉

〈o, 1〉
〈¬o ∧ ¬[, 0〉

〈¬o ∧ [, 0〉

〈true, 0〉

〈true, 0〉

(b) A reward machine

Figure 1. An example environment and one task for it

an RM can be used to define temporally extended (and as
such, non-Markovian relative to the environment) tasks and
behaviors. We then show that an RM can be interpreted
as specifying a single reward function over a larger state
space and consider what types of reward functions can be
expressed using a reward machine in a given environment.

As a running example, consider the office gridworld pre-
sented in Figure 1a. In this environment, the agent can move
in the 4 cardinal directions. It picks up coffee if at location
c, picks up the mail if at location m, and delivers the coffee
and mail to an office if at location o. The building contains
decorations, marked with the symbol [, which the agent
breaks if it steps on them. Finally, there are 4 marked loca-
tions: A, B, C, and D. In the rest of this section, we will
show how to define multiple tasks for an RL agent in this
environment using reward machines.

A reward machine is defined over a set of propositional
symbols P . Intuitively, P is a set of relevant high-level
events from the environment that the agent can detect. For
example, in the office gridworld environment, we can define
P = {c,m, o,[, A,B,C,D}, where event e ∈ P occurs
when the agent is at location e. Now we can formally define
a reward machine as follows:

Definition 3.1 (reward machine). Given a set of propo-
sitional symbols P , a set of (environment) states S, and
a set of actions A, a Reward Machine (RM) is a tuple
RPSA = 〈U, u0, δu, δr〉 where U is a finite set of states,
u0 ∈ U is an initial state, δu is the state-transition function,
δu : U × 2P → U , and δr is the reward-transition function,
δr : U × U → [S ×A× S → R].

An RM RPSA starts in state u0, and at each subsequent
time is in some state u ∈ U . At every step t, the RM
receives as input a truth assignment σt, which is a set that
contains exactly those propositions in P that are true in st.
For example, in the office gridworld, σt = {e} if the agent
is at a location marked as e, then the RM moves to the next
state ut+1 = δu(ut, σt) according to the state-transition
function, and outputs a reward function rt = δr(ut, ut+1)

u0start

u1

u2

u3

〈A, 0〉

〈¬A, 0〉

〈B, 0〉

〈¬B, 0〉

〈C, 0〉

〈¬C, 0〉

〈D, 1〉

〈¬D, 0〉

(a) Patrol A, B, C, and D

u0start

u1 u2

u3 u4

〈c, 0〉

〈¬c ∧ ¬m, 0〉

〈m, 0〉

〈¬m, 0〉

〈o, 1〉

〈¬o, 0〉

〈m, 0〉

〈c, 0〉

〈¬c, 0〉

〈true, 0〉

(b) Deliver a coffee and the mail

Figure 2. Two more reward machines for the office gridworld

according to the reward-transition function.

For our examples, we will be considering simple reward
machines, defined as follows:
Definition 3.2 (simple reward machine). A reward machine
RPSA = 〈U, u0, δu, δr〉 is simple if for each 〈u, u′〉 ∈
U ×U , there is some c ∈ R such that δr(u, u′)(s, a, s′) = c
for all 〈s, a, s′〉 ∈ S×A×S (i.e., the function r = δr(u, u

′)
is constant).

Figure 1b shows a graphical representation of a simple
reward machine for the office gridworld. Every node in
the graph is a state of the machine, u0 being the initial
state. Each edge is labelled by a tuple 〈ϕ, c〉, where ϕ is a
propositional logic formula over P and c is a real number.
An edge between ui and uj labelled by 〈ϕ, c〉 means that
δu(ui, σ) = uj whenever σ |= ϕ (i.e., the truth assignment
σ satisfies ϕ), and δr(ui, uj) returns a constant reward func-
tion equal to c. For instance, the edge between u1 and u3
labelled by 〈o, 1〉 means that the machine will transition
from u1 to u3 if the proposition o becomes true (regardless
of the truth assignment of the other symbols) and output
a reward function equal to one. Intuitively, this machine
outputs a reward of one if and only if the agent delivers
coffee to the office while not breaking any decoration. The
blue path in Figure 1a shows an optimal way to complete
this task, and the red path a sub-optimal way.

Now that we have defined a reward machine, we can use it to
reward an agent. The overall idea is to replace the standard
reward function in an MDP by a reward machine. To do so,
we require a labelling function L : S → 2P which assigns
truth values to the symbols in P given an environment state.
The labelling function produces the truth assignments that
are input to the RM.
Definition 3.3. An MDP with a Reward Machine (MDPRM)
is a tuple T = 〈S,A, p, γ,P, L, U, u0, δu, δr〉, where
S,A, p, and γ are defined as in an MDP, P is a set of propo-
sitional symbols, L is a labelling function L : S → 2P , and
U, u0, δu, and δr are defined as in an RM.

The reward machine in an MDPRM T is updated at every

Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

step of the agent in the environment. If the RM is in state u
and the agent performs action a to move from state s to s′

in the MDP, the RM moves to state u′ = δu(u, L(s′)) and
the agent receives reward r(s, a, s′), where r = δr(u, u

′).

In the running example (Figure 1), for instance, the reward
machine starts in u0 and stays there until the agent reaches
a location marked with [or c. If [is reached (i.e., a
decoration is broken), the machine moves to u2, from where
the agent cannot receive further rewards. In contrast, if c is
reached, the machine moves to u1. While the machine is
in u1, two outcomes might occur. The agent might reach a
[, in which case the machine moves to u2 and returns no
reward, or it might reach the office o, moving the machine
to u3 and receiving reward of 1.

Note that the rewards the agent gets may be non-Markovian
relative to the environment (the states of S), though they
are Markovian relative to the elements in S × U . When
making decisions on what action to take in an MDPRM, the
agent should consider not just the current environment state
st ∈ S but also the current RM state ut ∈ U .

A policy π(a|〈s, u〉) for an MDPRM is a probability distri-
bution over actions a ∈ A given a pair 〈s, u〉 ∈ S × U . We
can think of an MDPRM as defining an MDP with state set
S × U , as described in the following observation.

Observation 1. Given an MDPRM T = 〈S,A, p, γ, U, u0,
P, δu, δr, L〉, let MT = 〈S′, A′, r′, p′, γ′〉 be the MDP
defined such that S′ = S × U , A′ = A, γ′ = γ,

p′(〈s′, u′〉|〈s, u〉, a) =

{
p(s′|s, a) if u′ = δu(u, L(s′))

0 otherwise
,

and r′(〈s, u〉, a, 〈s′, u′〉) = δr(u, u
′)(s, a, s′). Then any

policy for MT achieves the same expected reward in T ,
and vice versa.

Finally, we note that reward machines can express any
Markovian and some non-Markovian reward functions. In
particular, given a set of states S, actions A, and proposi-
tional symbols P , the following properties hold:

1. Any Markovian reward function R : S ×A× S → R
can be expressed by a reward machine with one state.

2. A non-Markovian reward function R : S∗ × A →
R can be expressed using a reward machine if the
reward depends on the state history S∗ only to the
extent of distinguishing among those histories that are
described by different elements of a finite set of regular
expressions over P .

3. Non-Markovian reward functionsR : S∗×A→ R that
distinguish between histories via properties not express-
ible as regular expressions over P (such as counting
how many times a proposition has been true) cannot
be expressed using a reward machine.

In other words, RMs can return different rewards for the
same transition (s, a, s′) in the environment, for different
histories of states seen by the agent, as long as the his-
tory can be represented by a regular language. This means
that RMs can specify structure in the reward function that
includes loops, conditional statements, and sequence inter-
leaving, as well as behavioral constraints, such as the safety
constraints that are typical in safety critical systems. To
allow for structure beyond what is expressible by regular
languages requires that the agent has access to an external
memory, which we leave as future work.

4. Reward Machines for Task Decomposition
In this section, we introduce Q-learning for Reward Ma-
chines (QRM), an approach for learning policies for tasks
defined by reward machines. QRM learns one subpolicy per
state in the RM and uses off-policy learning to train each
subpolicy in parallel. Then, we present the convergence
guarantees of QRM and discuss its scalability with respect
to the size of the RM. We end the section by showing how
to combine QRM with Deep Learning.

4.1. Q-Learning for Reward Machines (QRM)

In this section, we describe a version of QRM that supports
both single and multi task learning of RMs.

Algorithm 1 shows pseudo-code for QRM. It receives as
input the set of propositional symbols P , the labelling func-
tion L, the discount factor γ, and a list of reward machines
Σ = [. . . 〈U i, ui0, δiu, δir〉 . . .] over P . The goal is to learn
an optimal policy for each of the tasks.

As a running example, consider the office gridworld and the
three RM tasks defined in Figures 1 and 2. The first task T0
rewards the agent when it brings coffee to the office without
breaking any decoration (Figure 1b). Task T1 rewards the
agent after patrolling locationsA,B, C, andD, in that order
(Figure 2a). The final task T2 rewards the agent when it
delivers a coffee and the mail to the office (Figure 2b).

QRM decomposes the tasks by learning one q-value function
per state in a reward machine. These q-functions are stored
in Q̃, and q̃ij ∈ Q̃ corresponds to the q-value function for
state j from task i. In the running example, Q̃ would have
13 q-value functions in total, as the RMs have 4, 4, and 5
states, respectively.

After setting Q̃, the algorithm has 3 nested loops. The first
loop is over the number of episodes that we are running
(line 3). Before running an episode, a task to run is selected
(line 4). While different curriculum learning techniques can
be used for task selection, we currently just repeatedly run
through the tasks in the same order that they appear in Σ. In
the running example, this means that, in the first episode, the

Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

Algorithm 1 Q-learning for Reward Machines (QRM).

1: Input: P , L, γ, Σ = [. . . 〈U i, ui0, δiu, δir〉 . . .].
2: Q̃← InitializeQValueFunctions(Σ)
3: for l = 0 to num episodes do
4: i← GetTask(Σ, l)
5: uip ← ui0; s← EnvInitialState()
6: for t = 0 to length episode do
7: if EnvDeadEnd(s) then
8: break
9: end if

10: a← GetActionEpsilonGreedy(q̃ip, s)
11: s′ ← EnvExecuteAction(s, a)
12: for q̃oj ∈ Q̃ {Learning loop} do
13: uok ← δou(uoj , L(s′))
14: r ← δor(uoj , u

o
k)

15: if EnvDeadEnd(s′) then
16: q̃oj (s, a)

α←− r(s, a, s′)
17: else
18: q̃oj (s, a)

α←− r(s, a, s′) + γmaxa′ q̃
o
k(s′, a′)

19: end if
20: end for
21: uip ← δiu(uip, L(s′)); s← s′

22: end for
23: end for

agent will try to deliver coffee to the office. In the second
episode, it will patrol. In the third, it will deliver coffee and
the mail. Then, it will go back to the first task and so on.

The second loop runs an episode on the current task for a
maximum number of steps (line 6). It contains the standard
RL steps whereby the agent starts in a state s, selects an
action a (line 10), executes a in the environment (line 11),
and learns from this experience (lines 12-20). The loop also
includes steps for keeping track of the current RM state uip,
where i is the task the agent is solving and p is the state id
inside that RM. Note that the agent selects actions using the
q-function corresponding to the current RM state qip. This
simply means that, while solving task i, the agent drives
exploration using the policies associated to task i.

The third loop is the learning loop (lines 12-20). This is
where, having just executed the action, the agent learns from
the experience (s, a, s′). Given that the labelling function
can detect which propositions, or events, from P are true
in s′, we can use the reward machines to compute how
much reward the agent would have received if the reward
machine had been in any RM state. In particular, for any RM
state uoj , the reward machine is used to determine the RM
state uok that the RM would transition to due to experience
(s, a, s′). The corresponding reward function is given by
r = δor(uoj , u

o
k). Therefore, the update to q̃oj is as follows:

q̃oj (s, a)
α←− r(s, a, s′) + γmax

a′
q̃ok(s′, a′)

Notice that the maximization step is over q̃ok, since those
q-values would be used as part of action selection in s′ since
the RM state would then be in uok.

As a concrete example, suppose that the agent is trying to
solve the patrol task T1. While exploring the environment,
it reaches the office o. This experience is not particularly
relevant for solving the patrol task. However, the agent can
still use it to learn how to reach the office and, thus, improve
its performance for the delivery tasks. The learning loop is
an implementation of this idea using q-learning.

4.2. Convergence Guarantees and Scalability

QRM decomposes each task into a set of sub-tasks. An
advantage of QRM with respect to alternative hierarchical
methods (such as, options (Sutton et al., 1999), MAXQ (Di-
etterich, 2000), and policy sketches (Andreas et al., 2017)) is
that QRM does not prune optimal policies when decompos-
ing the task. As such, it is guaranteed to converge to optimal
policies in the limit, as stated in the following theorem and
proven in the supplementary materials.

Theorem 4.1. Given a list of MDPRMs over the same
environment, Σ = [. . . 〈S,A, p, γ,P, L, U i, ui0, δiu, δir〉 . . .],
QRM converges to an optimal policy in the limit (when the
episode number and length go to infinity) for every MDPRM
in Σ.

QRM also learns every sub-task in parallel using off-policy
RL. This significantly reduces the amount of experience
needed to learn optimal policies, as we show in Section 5.
While updating each sub-task policy on each step of the
algorithm introduces a computational overhead, we can
alleviate this by parallelizing the learning loop (line 12,
Algorithm 1), as we did in our implementation. In cases
where the number of sub-tasks is intractably large, a simple
variant of QRM which only updates a random subset of
policies during the learning loop could be used.

4.3. Deep Q-Learning for Reward Machines (DQRM)

Extending QRM to use deep learning is straight-forward.
We just have to replace q-learning by Double DQN to
learn the sub-task policies. The rest of the approach, in-
cluding the task decomposition and methodology for com-
puting the sub-task rewards, remains the same. We in-
clude prioritized experience replay by assigning priorities
according to the networks average error across all sub-
tasks. Our source code is publicly available at https:
//bitbucket.org/RToroIcarte/qrm.

This deep version of QRM is able to solve tasks in environ-
ments with continuous state spaces and still take advantage
of task decomposition and off-policy learning. The price
is, however, to lose convergence guarantees (as DQN might
learn suboptimal policies for some tasks).

https://bitbucket.org/RToroIcarte/qrm
https://bitbucket.org/RToroIcarte/qrm

Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

5. Experimental Evaluation
In this section, we provide an empirical evaluation of QRM
and DQRM over domains with discrete and continuous state
spaces. In each domain, we ask the agent to solve multiple
tasks and report average performance across them. In our
experiments we aim to investigate the following:

• Does using off-policy RL to learn sub-tasks in parallel
improve the sample efficiency?

• Does our task decomposition help (D)QRM find better
policies than alternative hierarchical RL methods?

5.1. Baselines

We selected three baselines to compare against. The first
baseline, q-learning, learns each task individually using
standard q-learning (Watkins & Dayan, 1992) (for the con-
tinuous case, we use Double DQN (Van Hasselt et al., 2016)
with prioritized experience replay (Schaul et al., 2015)).
This baseline is intended to provide insights about whether
(D)QRM’s learning of sub-tasks in parallel (unlike in this
baseline) improves the sample efficiency.

The second baseline is a Hierarchical RL approach (HRL)
based on the option framework (Sutton et al., 1999). This
approach learns policies over macro-actions called options.
Each option is a tuple 〈Io, πo, To〉, where Io is a set of states
where the option can be started, πo is a policy to follow
when the option is being executed, and To is a set of states
where the option ends. Following Kulkarni et al. (2016),
we defined one option per event p ∈ P , that terminates
whenever p becomes true. Each policy πo is optimized in
parallel (using off-policy RL) to reach any state in To as soon
as possible. When solving tasks on continuous domains, we
use the Deep version (DHRL) of this approach proposed by
Kulkarni et al. with Double DQN and prioritized experience
replay. We note that optimizing locally for an option’s policy
may not allow HRL to find a globally optimal policy even
in the tabular case (as the red path in Figure 1a shows). This
behavior will be seen in the experiments below.

The third baseline augments HRL by pruning options that
do not lead to reward according to the RM (HRM-RM). For
example, when solving the patrol task (Figure 2 left) the
only option that makes sense to try at the beginning of the
episode is to go to A (the first position to patrol). As such,
HRL-RM is intended to be a fair comparison between QRM
and a hierarchy based approach that also exploits the reward
machine structure. However, this technique will still not
necessarily find a globally optimal policy.

The three baselines work over the cross-product MDP de-
fined in Observation 1. Thus, they learn from a Markovian
reward function, as usual.

10,000 20,000 30,000 40,000 50,000
0

0.2

0.4

0.6

0.8

1

Number of training steps

N
or

m
al

iz
ed

di
sc

ou
nt

ed
re

w
ar

d

Office World

(a) Performance over 4 tasks.

2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
0

0.2

0.4

0.6

0.8

1

Number of training steps

N
or

m
al

iz
ed

di
sc

ou
nt

ed
re

w
ar

d

Minecraft World

(b) Performance over 10 tasks.

Legend: Q-Learning HRL HRL-RM QRM

Figure 3. Results on discrete domains.

5.2. Experimental setup

We tested on discrete and continuous domains across multi-
ple tasks. Each task is encoded by a reward machine which
gives reward of one if and only if the task is completed
(see supplementary materials for more details). Some tasks
might require reaching an object while avoiding others (e.g.,
reach the mail box while avoiding decorations). For both
hierarchical RL baselines, we constructed the options such
that they consider those extra constraints.

We report performance every n steps on the environment
(where n is 100 steps in discrete domains and 1000 in con-
tinuous domains). Every n steps, we stop learning and
test the agent’s average performance across all tasks. For
each task, we normalize by using the maximal achievable
discounted reward from the initial state. Each algorithm
is independently tested over several runs. We report the
median performance and percentile 25 to 75 over the runs.

5.3. Results on Discrete Domains

We evaluated QRM and the three baselines on two grid-
worlds. In both domains, we use ε = 0.1 for exploration,
γ = 0.9, and α = 1. The first domain is the office world
described in section 3 (Figure 1a). We ask the agent to solve
4 tasks in this domain, including patrolling A, B, C, and
D (the patrol ends when D is reached, which is slightly
different from the task in Figure 2a, which is never com-
pleted), and bringing coffee and mail to the office without
breaking the decorations. We test these for 30 independent
trials on the map in Figure 1a. The results in Figure 3a show
that QRM learns to optimally solve each tasks quite quickly,
whereas hierarchical methods converge to suboptimal poli-
cies. The number of training steps was not enough for the
q-learning baseline to find an optimal policy.

We also tested in the Minecraft-like gridworld introduced by
Andreas et al. (2017). In this world, the grid contains raw
materials (such as grass, wood, and iron) that the agent can
extract and use to make new objects. Andreas et al. defined

Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

10 tasks to solve in this world, that consist of making an ob-
ject by following a sequence of sub-goals (called a sketch).
For instance, the task make a bridge consists of get iron, get
wood, and use factory. Note that Andreas et al.’s approach
must force an unnecessary ordering when extracting raw ma-
terials (in the example, the agent can actually collect wood
and iron in any order before using the factory). As reward
machines are more expressive than sketches, we encoded the
same 10 tasks, removing any unnecessary order constraints
while solving the task. Figure 3b shows performance over
10 randomly generated maps, with 3 trials per map. In this
domain, QRM also outperforms the three baselines while
hierarchical RL converges to a suboptimal policy.

The results on these domains suggest affirmative answers
to our experimental questions when using tabular represen-
tations. QRM seems to have the best of these two worlds:
it learns optimal policies (like q-learning) and it learns at a
comparable rate to Hierarchical RL methods.

5.4. Results on Continuous Domains

We tested the four approaches in the water world domain.
This domain has a continuous state space and is based on
Karpathy’s “WaterWorld” (2015). Our version differs in
that it is fully observable, and the reward depends on the
given task. The environment consists of a two dimensional
box with balls of different colors in it (see Figure 4a for an
example). Each ball moves in one direction at a constant
speed and bounces when it collides with the box’s edges.
The agent, represented by a white ball, can increase its
velocity in any of the four cardinal directions by a constant
factor. As the ball positions and velocities are real numbers,
this domain cannot be tackled using tabular RL.

We defined a set of 10 tasks for the water world over the
events of touching a ball of a certain color. For instance, one
simple task consists of touching a cyan ball after a blue ball.
Other more complicated tasks include touching a sequence
of balls, such as red, green, and blue, in a strict order , such
that the agent fails if it touches a ball of a different color
than the next in the sequence. The complete list of tasks can
be found in the supplementary material.

In these experiments, we use versions of our four approaches
that replace the tabular q-learning algorithm by Double
DQN with prioritized experience replay. All the approaches
uses the same feed-forward network with 6 hidden layers
and 64 ReLu units in each layer. The network’s input is a
vector consisting of the relative position and velocity of each
ball with respect to the agent and the absolute position and
velocity of the agent in the box. We trained the networks
using the Adam optimizer (Kingma & Ba, 2014) with a
learning rate of 1e − 5. On every step, we updated the q-
functions using 32 sampled experiences from a replay buffer
of size 50000. The target networks were updated every 100

(a) Domain illustration

5 · 105 1 · 106 1.5 · 106 2 · 106
0

0.2

0.4

0.6

0.8

1

Number of training steps

N
or

m
al

iz
ed

di
sc

ou
nt

ed
re

w
ar

d

Water World

(b) Results
Legend: DDQN DHRL DHRL-RM DQRM

Figure 4. Results in the water world domain.

training steps. We set ε as 0.1 and the discount factor γ as
0.9. Our Double DQN implementation was based on the
code from OpenAI Baselines (Hesse et al., 2017).

Figure 4b shows the results on 10 randomly generated water
world maps. DQRM significantly outperforms our three
baselines. This is particularly notable for two reasons. First,
DQN is known to be unstable and, as such, training a sub-
policy using experience from a different task might cause
task interference, thereby destabilizing learning. This seems
to not be the case in this domain. Second, while tabular
QRM is expected to eventually outperform the hierarchical
baselines since it is guaranteed to converge to an optimal
policy, DQRM provides no such guarantee. Nevertheless,
DQRM is outperforming hierarchical RL alternatives.

The results in the water world are encouraging. They show
potential for DQRM to become a standard methodology
for decomposing and learning multiple tasks in complex
environments. They also suggest affirmative answers to our
experimental questions. Still, further study is needed.

6. Related Work
Hierarchical reinforcement learning is the standard, and
most successful, methodology to exploit task decomposi-
tion in RL. Some foundational HRL works include H-DYNA
(Singh, 1992a), MAXQ (Dietterich, 2000), HAMs (Parr &
Russell, 1998), and Options (Sutton et al., 1999). The role
of the hierarchy is to decompose the task into a set of sub-
tasks that are reusable and easier to learn. However, none
of these approaches can guarantee convergence to optimal
policies. The reason is that hierarchies constrain the policy
space and thus, since the hierarchy and reward functions are
independent, HRL methods can potentially prune optimal
policies. This is the main difference with respect to our ap-
proach. In our case, the reward machine is actually defining
the reward function. As such, we can decompose the task,
guarantee convergence, and also exploit off-policy learning
to improve subpolicies in parallel.

Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

That said, reward machines and QRM incorporate three
main ideas from the Hierarchical RL literature. The first is
to represent the hierarchy using some form of finite state
machine, which can be tracked back to HAMs. In fact, our
q-learning baseline is equivalent to transforming the RM
into a HAM and solve it using HAM-Q. The second idea is
to learn subpolicies in parallel using an off-policy method,
which has been used when learning option policies. Finally,
the idea of including rewards into the hierarchy is also used
by options and MAXQ, though these rewards are decoupled
from the actual reward function in these methods. It will be
interesting to study which other insights from HRL can be
exploited by reward machines.

Singh (1992a;b) proposed an alternative to HRL which de-
fines tasks as sequence of sub-goals. Independent policies
are trained to achieve each sub-goal, and then a gating func-
tion learns to switch from one policy to the next. The same
idea was exploited by policy sketches (Andreas et al., 2017)
but without the need for an external signal when a sub-goal
is reached. In contrast, reward machines are considerably
more expressive than sub-goal sequences and sketches, as
they allow for interleaving, loops, and compositions of en-
tire reward functions. Indeed, regular expressions can be
captured in finite state machines.

Another popular approach to task decomposition is to trans-
form a single-agent problem into a multi-agent setting. The
overall idea is to train separate agents using different reward
functions and then have an arbiter combine the agents’ opin-
ions about which action to perform next (Karlsson, 1994;
Russell & Zimdars, 2003; van Seijen et al., 2016). From
these approaches, only (Russell & Zimdars, 2003) is guar-
anteed to converge to an optimal policy, and only if the sum
of the agents’ rewards is equal to the global reward. In con-
trast, our approach to task decomposition does not require
an arbiter and always converges to an optimal policy.

Different task specification languages have been proposed
for RL. The approach of Williams et al. (2017) learns a
natural language parser from single goal instructions to a
sparse reward function. In contrast, Fasel et al. (2009) define
an elaborate programming language for task specifications.
This language allows for specifying rewards, actions, macro
actions, advice, and task decomposition, among other things.
In both cases, it is unclear if tasks can be decomposed
while still ensuring convergence to optimality, or if sub-task
policies can be optimized in parallel.

Recently, there has been significant interest in using Linear
Temporal Logic (LTL) to specify tasks in RL (Li et al., 2017;
Littman et al., 2017; Toro Icarte et al., 2018; Hasanbeig
et al., 2018). An LTL formula describes a pattern (e.g.,
“Eventually, the agent is at the key, and then eventually the
agent is at the door”) that might be satisfied (or violated) by
a sequence of states. These approaches then use RL to find

a policy that tries to satisfy the LTL formula. They are able
to learn from non-Markovian task specifications and their
language is quite expressive. However, reward machines
can reward various behaviors to varying degrees as opposed
to just rewarding the agent for completing tasks.

Reward machines are also related to reward shaping (Ng
et al., 1999) as both allow for improving sample efficiency
without compromising convergence guarantees. However,
they exploit different principles for doing so. While reward
shaping relies on guiding the exploration by providing artifi-
cial rewards to the agent, RMs rely on decomposing the task
by exposing the reward structure to the agent. Combining
these approaches is a promising direction for future work.

7. Discussion and Concluding Remarks
In this paper we introduced the notion of reward machines
– a form of finite state machine that can be used to specify
the reward function of an RL agent. Reward machines sup-
port the specification of arbitrary rewards, including sparse
rewards and rewards for temporally extended behaviors. Re-
ward machines can expose structure in the reward function
and, in so doing, can speed up learning as demonstrated in
our experiments. We proposed a means of q-learning for
reward machines (QRM) which decomposes the reward and
uses off-policy learning to simultaneously learn subpolicies
for the different components. QRM is guaranteed to con-
verge to an optimal policy in the tabular case, in contrast to
Hierarchical Reinforcement Learning.

We believe there is significant potential in reward machines
beyond what has been described in this paper. For one, re-
ward machines can decrease the overhead of defining new
tasks in a given environment since, having defined a set of
relevant events, creating a new reward machine is straight-
forward. In fact, it would be possible to automatically create
random tasks and their corresponding natural language de-
scriptions using reward machines. This would allow for
generating training data for a deep network that could learn
to map natural language commands into policies in the same
way that functional programs are available as training data
for learning how to interpret questions in CLEVR (Johnson
et al., 2017).

Reward machines also act as a small amount of memory
for the agent. This feature would simplify learning when
solving tasks in domains with partial observability.

Finally, as reward machines are a form of finite state ma-
chine, they can be created to correspond to sentences in
many different formal languages, including regular expres-
sions and various procedural programming languages. In
future work, we plan to exploit these relationships to inves-
tigate novel behavioral specification languages for RL that
can be mapped to reward machines and solved using QRM.

Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

Acknowledgements
We gratefully acknowledge funding from the Natural
Sciences and Engineering Research Council of Canada
(NSERC). The first author also gratefully acknowledges
funding from CONICYT (Becas Chile).

References
Andreas, J., Klein, D., and Levine, S. Modular multitask

reinforcement learning with policy sketches. In Proceed-
ings of the 34th International Conference on Machine
Learning (ICML), pp. 166–175, 2017.

Camacho, A., Chen, O., Sanner, S., and McIlraith, S. A.
Non-Markovian rewards expressed in LTL: Guiding
search via reward shaping. In Proceedings of the 10th
Symposium on Combinatorial Search (SOCS), pp. 159–
160, 2017.

Dietterich, T. G. Hierarchical reinforcement learning with
the MAXQ value function decomposition. Journal of
Artificial Intelligence Research, 13:227–303, 2000.

Fasel, I., Quinlan, M., and Stone, P. A task specification
language for bootstrap learning. In Proceedings of the
8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 1169–1170, 2009.

Hasanbeig, M., Abate, A., and Kroening, D. Logically-
constrained reinforcement learning. arXiv preprint
arXiv:1801.08099, 2018.

Hesse, C., Plappert, M., Radford, A., Schulman, J., Sidor,
S., and Wu, Y. OpenAI baselines. https://github.
com/openai/baselines, 2017.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Os-
trovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M.,
and Silver, D. Rainbow: Combining improvements in
deep reinforcement learning. Proceedings of the 32nd
AAAI Conference on Artificial Intelligence (AAAI), pp.
3215–3222, 2018.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L.,
Zitnick, C. L., and Girshick, R. B. CLEVR: A diagnostic
dataset for compositional language and elementary visual
reasoning. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
1988–1997, 2017.

Karlsson, J. Task decomposition in reinforcement learning.
In Proceedings of the 1994 AAAI Spring Symposium on
Goal-Driven Learning, pp. 46–53, 1994.

Karpathy, A. REINFORCEjs: WaterWorld demo.
2015. URL http://cs.stanford.edu/people/
karpathy/reinforcejs/waterworld.html.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenen-
baum, J. Hierarchical deep reinforcement learning: In-
tegrating temporal abstraction and intrinsic motivation.
In Proceedings of the 29th Conference on Advances in
Neural Information Processing Systems (NIPS), pp. 3675–
3683, 2016.

Li, X., Vasile, C. I., and Belta, C. Reinforcement learning
with temporal logic rewards. In Proceedings of the 2017
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3834–3839, 2017.

Littman, M. L., Topcu, U., Fu, J., Isbell, C., Wen, M., and
MacGlashan, J. Environment-independent task speci-
fications via GLTL. arXiv preprint arXiv:1704.04341,
2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Ng, A. Y., Harada, D., and Russell, S. J. Policy invariance
under reward transformations: Theory and application to
reward shaping. In Proceedings of the 16th International
Conference on Machine Learning (ICML), pp. 278–287,
1999.

Parr, R. and Russell, S. J. Reinforcement learning with
hierarchies of machines. In Proceedings of the 11th Con-
ference on Advances in Neural Information Processing
Systems (NIPS), pp. 1043–1049, 1998.

Russell, S. J. and Zimdars, A. Q-decomposition for rein-
forcement learning agents. In Proceedings of the 20th
International Conference on Machine Learning (ICML),
pp. 656–663, 2003.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952,
2015.

Singh, S. Reinforcement learning with a hierarchy of ab-
stract models. In Proceedings of the 10th National Con-
ference on Artificial Intelligence (AAAI), pp. 202–207,
1992a.

Singh, S. Transfer of learning by composing solutions of
elemental sequential tasks. Machine Learning, 8(3-4):
323–339, 1992b.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

https://github.com/openai/baselines
https://github.com/openai/baselines
http://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html
http://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html

Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning

Sutton, R. S., Precup, D., and Singh, S. Between MDPs and
semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

Toro Icarte, R., Klassen, T. Q., Valenzano, R., and McIlraith,
S. A. Teaching multiple tasks to an RL agent using LTL.
In Proceedings of the 17th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
2018. to appear.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings
of the 30th AAAI Conference on Artificial Intelligence
(AAAI), pp. 2094–2100, 2016.

van Seijen, H., Fatemi, M., Romoff, J., and Laroche, R.
Separation of concerns in reinforcement learning. arXiv
preprint arXiv:1612.05159, 2016.

Watkins, C. J. C. H. and Dayan, P. Q-learning. Machine
learning, 8(3-4):279–292, 1992.

Williams, E. C., Rhee, M., Gopalan, N., and Tellex, S.
Learning to parse natural language to grounded reward
functions with weak supervision. In Proceedings of the
2017 AAAI Fall Symposium on Natural Communication
for Human-Robot Collaboration, 2017.

