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Abstract

In sequential decision making, objective specifica-
tions are often underspecified or incomplete, ne-
glecting to take into account potential (negative)
side effects. In this paper we investigate how
to avoid side effects in a classical planning set-
ting. We formalize several versions of side-effect-
minimizing objectives for use in classical planning.
We also study the notion of minimizing side effects
in the context of a planning environment where
multiple independent agents co-exist in a shared en-
vironment. We consider how side effects may com-
promise or prevent agents in the shared environ-
ment from achieving goals or executing plans that
they would have otherwise been able to achieve,
had the acting agent not executed their plan, and
propose means to generate plans that minimize
such negative side effects. Finally, we show how
side-effect-minimizing plans can be computed via
STRIPS planning with soft goals.

1 Introduction
Sequential decision making – planning – relies on the speci-
fication of an objective; typically a final-state goal condition
in the case of symbolic planning, or a reward function in the
case of reinforcement learning. Such objectives tend to be
underspecified or incomplete, enabling the AI, pursuant of its
objective, to realize additional (often discretionary) changes
to the environment, which we refer to as side effects. In some
cases these side effects are of little consequence, while in
other cases they may change the environment in ways that
are highly undesirable. Amodei et al. [2016] give the exam-
ple of a robot breaking a vase that it wasn’t explicitly told
not to break, noting that “for an agent operating in a large,
multifaceted environment, an objective function that focuses
on only one aspect of the environment may implicitly ex-
press indifference over other aspects of the environment”. A
number of approaches for avoiding or learning to avoid neg-
ative side effects have recently been developed for Markov
Decision Processes (MDPs) and related formalisms [Zhang
et al., 2018; Krakovna et al., 2019; Turner et al., 2020;
Krakovna et al., 2020; Saisubramanian et al., 2020a]. Here,

we explore how to avoid side effects in the context of sym-
bolic planning. Awareness and avoidance of undesirable side
effects is central to robust and reliable symbolic planning, in
particular, and sequential decision making more generally.

The underspecification of objectives is but one of a series
of representation and reasoning challenges that have faced
the reasoning about action and planning communities over
the years. The frame problem sought to deal with the chal-
lenge of parsimoniously encoding the non-effects of actions
within a transition system model in a manner that would ren-
der the intended interpretation [McCarthy and Hayes, 1969].
The qualification problem, perhaps still unsolved satisfacto-
rily, sought to deal with the challenge with enumerating all
the preconditions of an action [McCarthy, 1977]. McCarthy’s
well-known quip on this topic related to the car not starting if
there is a potato in the tailpipe. Common to addressing many
of these challenges was determining how to fill in what was
not stated in a manner that was both systematic and common-
sensical. Common to the solutions was a notion of minimiza-
tion – minimizing change in the case of the frame problem,
where techniques such as circumscription were used to min-
imize change in certain fluents while allowing others to vary.
We see avoiding side effects as one aspect of an objective in-
terpretation problem that, at times, appeals to minimization.

The impact of the underspecification of planning objec-
tives and the threat of negative side effects has always ex-
isted, but has been amplified as planning is increasingly ap-
plied or transferred to open world environments where the
complete effects of actions cannot always be foreseen, im-
mediately observed, or codified. Interestingly, whether a side
effect is construed as negative or positive is often determined
by those affected by the change. In the absence of definitive
information, a conservative stance is for an acting agent plan-
ning to achieve a goal to generate a plan that minimizes all
side effects – to leave the world in a state as close to the way
it was prior to the execution of its plan.

In a multiagent setting, side effects can be assessed in the
context of their impact on the agency of other agents. Here,
we consider how one agent’s actions may prevent other agents
from achieving goals or executing plans that they would have
otherwise been able to achieve, and propose means to gen-
erate plans that minimize such negative side effects (given
knowledge about possible goals or plans of other agents).

The main contributions of this paper are the following:



1. We characterize the notion of side effect in classical
planning.

2. We formalize several versions of side-effect-minimizing
objectives for use in classical planning. These character-
izations are realized via a notion of minimizing change
in general, or change specific to particular properties.

3. We characterize classes of negative side effects that re-
late to the impact of an acting agent’s plan on other
agents’ ability to subsequently realize their goals and
plans. This is in contrast to some recent work in side ef-
fects that takes into account only how the agent’s actions
will affect its own future abilities [Krakovna et al., 2019;
Turner et al., 2020; Krakovna et al., 2020].

4. We propose mechanisms for computing side-effect-
minimizing plans in STRIPS planning problems by com-
piling the task of achieving that objective into a STRIPS
problem with soft goals [Keyder and Geffner, 2009],
which can then be solved using established techniques.

2 Preliminaries
In this section we review definitions and notation related to
classical planning.

Notation relating to sets. Given a set A, we will use the
notation |A| to denote the cardinality of A, and A∗ to denote
the set of all finite sequences of elements from A. We some-
times abbreviate a sequence a1, . . . , ak as ~a.

We define a planning problem in terms of a state transition
system following Ghallab et al. [2004, p. 17] and Ghallab et
al. [2016, Definition 2.1].

Definition 1 (State-transition system). A state-transition sys-
tem is a tuple 〈S,A, δ〉 where S is a finite set of states, A is a
finite set of actions, and δ : S ×A→ S is a partial function.

Notation. We extend the definition of δ to take a sequence
of actions as an argument. If δ(s0, a1) = s1, δ(s1, a2) =
s2, . . . , δ(sk−1, ak) = sk, then δ(s0, a1, . . . , ak) = sk.

Definition 2 (Planning problem). A planning problem is a tu-
ple P = 〈Σ, s0, SG〉 where Σ = 〈S,A, δ〉 is a state-transition
system, s0 ∈ S is the initial state, and SG ⊆ S is the set of
goal states.

Definition 3 (Plan for P). Given a planning problem P =
〈Σ, s0, SG〉 and a sequence of actions π = a1, a2, . . . , ak,
π ∈ A∗, π is a plan for P iff δ(s0, a1, . . . , ak) ∈ SG.

In the above definitions we make no commitment to the
nature of the states in our planning problem. They could be
comprised of pixels or propositions. In symbolic planning, a
state is typically defined in terms of a set of propositions that
establish the truth or falsity of properties of the state. In clas-
sical planning a state s is represented compactly in terms of
the set of propositions (fluents) that are true in the state and
all fluents not in the set are regarded as false, like a database.
The transition function is similarly represented compactly in
terms of a set of database operations that add or delete propo-
sitions from the database when an action is performed. The
truth or falsity of all other propositions persists (the frame as-
sumption). This class of planning problems is referred to as

STRIPS. Following Geffner and Bonet [2013, p. 24], we have
the following definition:
Definition 4 (STRIPS planning problem). A STRIPS plan-
ning problem is a tuple 〈F, I,A,G〉 where F is a finite set of
propositional symbols, I ⊆ F represents the initial state, A
is the finite set of actions, and G ⊆ F represents the goal.
Furthermore, an action a ∈ A is represented by three sets of
atoms: the “Add list” Add(a), the “Delete list” Del(a), and
the “Precondition list” Pre(a).

A STRIPS problem 〈F, I,A,G〉 represents a planning
problem 〈Σ, s0, SG〉 where Σ = 〈S,A, δ〉 is such that S =
2F , s0 = I , SG = {s ∈ S | G ⊆ s}, and δ is as follows:

δ(s, a) =

{
(s \ Del(a)) ∪ Add(a) if Pre(a) ⊆ s
undefined otherwise

Given a set of fluents F , we will write L(F ) to denote
the set of Boolean formulas over those fluents, i.e., formulas
constructed using negation (¬), conjunction (∧), disjunction
(∨), and so on as usual. A literal is either an atomic for-
mula f ∈ F or its negation ¬f . We define the set of literals
lits(F ) = F ∪ {¬f | f ∈ F}. Given a literal `, we may write
` for the complementary literal, i.e. f = ¬f and ¬f = f .

Given a STRIPS state s ⊆ F and formula ϕ ∈ L(F ), we
will write s |= ϕ if ϕ is true under the truth assignment which
maps all the fluents in s to true and all the fluents in F \ s to
false. Sometimes we will treat a set ϕ ⊆ F of atoms as their
conjunction.

3 Minimizing (Negative) Side Effects
In this section we formalize several versions of side-effect-
minimizing objectives for use in classical planning.

As suggested informally in Section 1, a side effect of a plan
is any change to the state, resulting from the execution of the
plan, that was not prescribed explicitly as part of the goal. We
define a plan that minimizes change as follows.
Definition 5 (Side-effect minimizing plan). Given a plan-
ning problem P = 〈Σ, s0, SG〉 where Σ = 〈S,A, δ〉, and
a distance function d : S × S → [0,∞), a plan π for P is
side-effect minimizing iff there is no plan π′ for P such that
d(δ(s0, π

′), s0) < d(δ(s0, π), s0).
The distance function is a proxy for measuring the differ-

ence or change between two states – above, the goal state
and the initial state – and our objective is to minimize such
change. Depending on how the distance function is defined,
it can be used to minimize all change or change with addi-
tional qualifications. (Despite it being called “distance”, the
function does not have to be symmetric.)

The side-effect minimizing objective in Definition 5 could
be viewed as a classical planning version of the “very naive
approach” to side effects discussed by Amodei et al. [2016]:

A very naive approach would be to penalize state
distance d(si, s0) between the present state si and
some initial state s0. Unfortunately, such an agent
wouldn’t just avoid changing the environment—it
will resist any other source of change, including
the natural evolution of the environment and the ac-
tions of any other agents!



This “naivety” does not stand out so much in our context,
since a standard assumption of classical planning “excludes
the possibility of actions by other actors, or exogenous events
that are not due to any actor” [Ghallab et al., 2016, p. 20].

Note that Definition 5 minimizes the distance (the change)
between the initial state and the goal state – the state of the
world after the plan has been executed. It is often important
to consider to what extent intermediate states realized during
the execution of a plan deviate from the initial state. Con-
sider, for example, a plan to buy groceries. It may be more
efficient to unlock and open the house door, exit the house, go
to the store, buy groceries, return home, enter the house, and
then close and lock the door, having left the door to the house
open (and vulnerable to other events) for much of the dura-
tion of the plan, restoring it to its locked state at the end of the
outing. In such cases it might make sense to favour plans that
minimize the duration of side effects by aggregating the dis-
tances between the initial state and each successive state on
the path of the plan, as shown below. Such a criterion could
be used on its own or to further distinguish equally preferred
side-effect minimizing plans following Definition 5.
Definition 6 (Within-plan side effect minimization). Given a
planning problem P = 〈Σ, s0, SG〉 where Σ = 〈S,A, δ〉, and
a distance function d : S × S → [0,∞), a plan a1, . . . , ak ∈
A∗ for P is within-plan-side-effect minimizing iff there is no
plan b1, . . . , b` ∈ A∗ for P such that∑̀
i=1

d(δ(s0, b1, . . . , bi), s0) <

k∑
i=1

d(δ(s0, a1, . . . , ai), s0).

For the purposes of this paper, we will focus on side effects
that hold after the execution of a plan, per Definition 5.

3.1 Minimizing Side Effects in STRIPS
In the case where a planning problem is represented in
STRIPS, having a vocabulary of fluents gives an obvious way
to define side effects and measure distance between states.
Definition 7 (STRIPS side effects). Let 〈F, I,A,G〉 be a
STRIPS planning problem, and π a plan that solves it. Then
f ∈ F is a side effect of π if f ∈ δ(I, π) but f /∈ I and
f /∈ G. Furthermore, if f /∈ δ(I, π) but f ∈ I , we will say
the literal ¬f is a side effect of π.

Intuitively, a literal is a side effect of π if π changes the
literal’s truth value even though the goal didn’t specify that
the truth value should change. Side effects are not necessar-
ily spurious. They are often causally necessary to achieve-
ment of the goal via a particular plan. However they may
not be necessary to the achievement of a goal in all cases. We
could distinguish between necessary side effects in relation to
a planning problem – those that occur in every plan to achieve
the goal G, and contrast these with discretionary side effects
– those that arise and that may (or may not) be causally neces-
sary w.r.t. a particular subset of plans. Necessary side effects,
and their relation to landmarks [Hoffmann et al., 2004], are
discussed further in Appendix A.1.
Definition 8 (The set SideEffect(P, π)). Given a STRIPS
planning problem P = 〈F, I,A,G〉 and a plan π ∈ A∗,
SideEffect(P, π) denotes the set of literals that are side-
effects of π w.r.t. P (as described in Definition 7).

One simple idea is to try to find a plan for a planning prob-
lem that minimizes the number of side effects.
Definition 9 (Side-effect minimizing plan (STRIPS version)).
Given a STRIPS planning problem P = 〈F, I,A,G〉 and
associated plan π for P , π is a side-effect minimizing plan
iff there is no plan π′ for P such that |SideEffect(P, π′)| <
|SideEffect(P, π)|.

This can be viewed as an instantiation of Definition 5
with a distance function defined so that d(δ(I, π), I) =
|SideEffect(P, π)|. It makes no attempt to distinguish side
effects that are in any sense negative.

The determination of whether a side effect is negative or
positive is often domain specific – perhaps characterized by
the utility associated with the effect in question. For exam-
ple, changing some fluents (e.g., one representing whether a
vase is broken) could be given greater “weight” than chang-
ing others. Such domain-specific details could be built into a
domain-tailored distance function. In the section that follows,
we propose and characterize classes of negative side effects
that relate, in general terms, to the impact an acting agent has
on other agents, and are domain independent in the sense that
they rely on general properties of the planning problem spec-
ification.

4 Effects of Plans on Other Agents

(a) (b)

Figure 1: The robot truck ( ), beaver ( ), and raccoon ( ) can
move to adjacent cells, but cannot pass through walls ( ) or each
other. The robot wants to get to the factory ( ), but each cell it
touches is contaminated with oil ( ), after which it cannot be visited
by animals. If the robot just goes directly to the factory – following
the blue path in (a) – then in the resulting state (b) the beaver is
unable to reach the tree ( ) or wood ( ), and the raccoon is unable
to go wash its hands in the fountain ( ). If the robot can clean
up contaminated cells, but has a limited budget for doing so, how
should it modify its plan to minimize side effects on the animals?

To this point, our planning problems have implied the exis-
tence of a single agent – the acting agent, who is conceiving
and executing plans. Here we introduce an environment in
which there are multiple agents, co-existing in a shared envi-
ronment – each with its own actions, goals and plans that it
wishes to be able to execute at some point. We provide this
environment to introduce classes of (negative) side effects.

Figure 1 introduces an example that we will use as an il-
lustration throughout this section, in which a robot truck’s ac-
tions may prevent other agents – here, animals – from achiev-
ing their goals or from following particular paths.



(a) By cleaning the circled cells,
the robot will allow the beaver to
reach either the tree or the wood.

(b) The robot will allow the
beaver to reach the tree and the
raccoon to reach the fountain.

(c) The robot will allow the rac-
coon to reach the fountain by a
path on the right edge.

Figure 2: In each image, the robot truck plans to follow the same blue path to the factory. The circled
cells in each image are the ones that the robot will clean in that plan (after contaminating them).

Figure 3: Possible animal plans:
The beaver could go to the tree
(green path) or the wood (brown
path), and the raccoon could go
to the fountain (gray path).

We claim that important classes of negative side effects are
those that preclude agents operating in a shared environment
from realizing possible goals or plans they might have been
able to realize had the acting agent not executed its plan. We
argue that the acting agent should therefore construct plans
that minimize such negative side effects; i.e, that they should
conceive and prefer plans that minimize the effect that the
plans’ execution will have on other agents’ (and possibly their
own) ability to achieve their goals or plans in the future.

In the rest of the section, we first describe the setup we
will consider – a multiagent planning environment in which
agents co-exist. This is followed by general definitions of the
classes of negative side effects that correspond to our claim,
along with a number of definitions of types of plans that in
some sense minimize negative side effects.

Definition 10 (Multiagent planning environment). A mul-
tiagent planning environment is a planning problem P =
〈Σ, s0, SG〉 where Σ = 〈S,A, δ〉, as in Definition 2, but
where the set of actions is partitioned asA =

⋃n
i=1Ai, where

the subsets correspond to the actions available to each of the
n distinct agents i. We designate agent 1 as the acting agent.

Despite the multiagent setting, our focus is solely on the
plan of the acting agent, and how it can act to avoid causing
negative side effects for agents who act subsequently. Func-
tionally, this amounts to considering a simplified setting in
which there are two phases: first, the acting agent executes a
plan to accomplish its goal, and then afterwards some agent
(possibly the same agent again) has the opportunity to exe-
cute an additional action sequence. By way of example, con-
sider a set of roommates who share a kitchen. Each prepares
their dinner alone, but with the understanding that any one of
the roommates will subsequently use the kitchen to prepare a
meal, and that the acting agent should minimize their negative
impact on whoever uses the kitchen next.

Since the agents are operating in a shared state space, the
actions of the first agent could affect others in a positive or
negative way. A positive side effect might advance or sim-
plify the future goals of other agents, while a negative side
effect would impede other agents’ goal or plan realization.
The notion of constructing plans that have positive side ef-
fects could be an important aspiration, and is related to no-
tions like helpfulness [Freedman et al., 2020]. A treatment

of positive side effects could be realized through a mirroring
of many of the ideas put forward here; we will not elaborate
further at this time.

The following definition will be useful.
Definition 11 (Achievable/Unachievable). Given a multi-
agent planning environment P , a goal S′G ⊆ S is achievable
by agent i in state s ∈ S, written achievable(S′G, i, s), if there
exists a plan π′ ∈ A∗i (i.e., using agent i’s actions) such that
δ(s, π′) ∈ S′G. If no such plan exists, then we say the goal is
unachievable by agent i in s: unachievable(S′G, i, s).

We can now define (a class of) negative side effects.
Definition 12 (Negative side effects (w.r.t. a goal)). Suppose
P = 〈Σ, s0, SG〉 is a multi-agent planning environment. Sup-
pose S′G ⊆ S is another goal and achievable(S′G, i, s0). Then
a plan π ∈ A∗1 for P has negative side effects on agent i w.r.t.
goal S′G if unachievable(S′G, i, δ(s0, π)).

Definition 12 captures the case where the acting agent’s
plan precludes the subsequent achievement of another agent’s
goal. There are many possible variants to this definition. If
we were to add a quality measure (for example action costs
or reward) then a negative side effect of a plan could be one
that compromises the quality of another agent’s subsequent
achievement of their goal.

While it may be reasonable for the acting agent to be aware
of the possible goals that other agents may wish to pursue in
the future, it it is less reasonable to know which agent will act
next or which of its goals it will pursue. As such, in the fol-
lowing, we provide the acting agent with goals corresponding
to different agents, and task the acting agent with constructing
a goal-set preserving plan – one that ensures that, following
execution, as many of those goals as possible will be achiev-
able by the associated agent.
Definition 13 (Goal-set preserving plan). Given a multia-
gent planning environment P (with n agents) together with a
set H of goal-agent pairs, 〈S′G, i〉, where S′G ⊆ S and i ∈
{1, . . . , n} and achievable(S′G, i, s0), a goal-set-preserving
plan for P with respect to H is a plan π ∈ A∗1 which, among
all such plans in A∗1, maximizes the cardinality of the set

{〈S′G, i〉 | 〈S′G, i〉 ∈ H and achievable(S′G, i, δ(s0, π))}.
A goal-set preserving plan minimizes the number of goals

(from the given set H) with respect to which it has negative



side effects. To illustrate, consider the multiagent planning
environment shown in Figure 1, and suppose the set H con-
tains three possibilities: the beaver wants to go the tree, the
beaver wants to go to the wood, and the raccoon wants to go
to the fountain. Various possible plans for the robot truck are
shown in Figure 2. The plans in Figures 2a and 2b allow for
two of the possible goals in H to be achieved after the robot
acts, and so are goal-set preserving if the robot cannot clean
more than three cells (to allow all three goals to be achieved
after it acts, the robot would have to clean four cells).

Now, suppose that the acting agent alternatively has infor-
mation about what plans other agents might follow in pursuit
of goals. We can define a variant of Definition 12 where a
plan has negative side effects on agent i if i is not able to
achieve its goal by the same plan that would have worked in
s0 (prior to the execution of the acting agent’s plan):
Definition 14 (Negative side effects (w.r.t. a plan)). Suppose
P = 〈Σ, s0, SG〉 is a multi-agent planning environment. Fur-
ther suppose S′G ⊆ S is another goal and π′ ∈ A∗i is a plan
s.t. δ(s0, π

′) ∈ S′G. Then a plan π ∈ A∗1 for P has neg-
ative side effects on agent i w.r.t. goal S′G and plan π′ if
δ(δ(s0, π), π′) /∈ S′G.

This commitment to a particular plan could be important
to save agent i the effort of replanning, or if agent i is un-
aware of the acting agent’s execution of their plan and that it
has rendered i’s original plan unachievable. A more sophis-
ticated treatment of the latter point might involve some form
of epistemic planning [Baral et al., 2017].

We can now define a plan-set preserving plan in the spirit
of Definition 13, given a set H of goal-plan pairs 〈S′G, π′〉
where S′G is a possible future goal and π′ is a plan by which
some agent might achieve that goal.
Definition 15 (Plan-set preserving plan). Given a multiagent
planning environment P together with a finite set H of goal-
plan pairs 〈S′G, π′〉, where S′G ⊆ S, π′ ∈ A∗i for some i, and
achievable(S′G, i, s0), a plan-set-preserving plan for P with
respect to H is a plan π ∈ A∗1 which, among all such plans in
A∗1, maximizes the cardinality of the set

{〈S′G, π′〉 | 〈S′G, π′〉 ∈ H and δ(δ(s0, π), π′) ∈ S′G}.

Note that in this definition, unlike Definition 13, it matters
whether agents can still use the same plans to achieve goals
that would have worked in s0. A plan-set preserving plan
minimizes the number of plans (from the given set H) with
respect to which it has negative side effects (Definition 14).

To illustrate, consider again the example from Figure 1.
Suppose that we have a setH of goal-plan pairs with the three
possibilities illustrated by Figure 3. Then the robot truck’s
plan in Figure 2a is plan-set preserving if it cannot clean more
than three cells. However, neither of the other plans shown
in Figure 2 is plan-set preserving. While in Figure 2b the
raccoon has a path to the fountain, that is not the path that
would be traversed by the raccoon’s plan in H .

Instead of just having a set of possible future goal-agent or
goal-plan pairs, as in Definitions 13 and 15, we could make
use of a probability distribution over what agent is next going
to try to achieve what goal, or what agent is next going to try
to follow what plan. This could be reasonably acquired from

experience in many cases, since many goals commonly recur
(e.g., library visitors are likely to want to check out a book).
Definition 16 (Goal-preserving plan). Suppose P =
〈Σ, s0, SG〉 is a multiagent planning environment with n
agents and PG is a probability function assigning probabili-
ties to subsets of the sample space of goal-agent pairs,

H = {〈S′G, i〉 | S′G ⊆ S and i ∈ {i, . . . , n} and

achievable(S′G, i, s0)}.

Then a goal-preserving plan forP with respect to PG is a plan
π ∈ A∗1 which, among all such plans in A∗1, maximizes the
probability

PG({〈S′G, i〉 ∈ H | achievable(S′G, i, δ(s0, π))}),

i.e., the sum ∑
〈S′G,i〉∈H:achievable(S′G,i,δ(s0,π))

PG(〈S′G, i〉).

That is, a goal-preserving plan maximizes the probability
that whichever agent acts after the first agent can still achieve
its goal (in other words, it minimizes the probability of hav-
ing negative side effects on the agent that acts next w.r.t. its
goal). Recall that environments are deterministic, so the only
uncertainty is about who will act and what their goal is.

Observe that if PG assigns all the probability mass uni-
formly over some subset H of the sample space H, then a
goal-preserving plan is equivalent to a goal-set preserving
plan. So goal-preserving plans can be seen as a generaliza-
tion of goal-set preserving plans.

We can also have a probabilistic version of Definition 15:
Definition 17 (Plan-preserving plan). Suppose P =
〈Σ, s0, SG〉 is a multiagent planning environment and PP is a
probability function assigning probabilities to subsets of the
sample space of goal-plan pairs,

H = {〈S′G, π′〉 | S′g ⊆ S and π′ ∈ A∗i for some i and

δ(s0, π
′) ∈ S′G}.

Then, given PP, a plan-preserving plan for P is a plan π ∈
A∗1 for P which, among all such plans in A∗1, maximizes the
probability

PP({〈S′G, π′〉 ∈ H | δ(δ(s0, π), π′) ∈ S′G)}).

Plan-preserving plans can also be seen as a generalization
of plan-set preserving plans.
Summary. Table 1 summarizes the different objectives re-
lating to avoiding side effects that we have considered. Note
that all the later definitions – other than Definition 6 – could
be thought of as instantiations of Definition 5 with appropri-
ate distance functions. For example, for Definition 13, the
distance function would just have to be such that d(s, s0) =
|{〈S′G, i〉 ∈ H | unachievable(S′G, i, s)}|.

5 Computing Side-Effect Minimizing Plans
In this section we address the problem of how to compute the
types of side-effect minimizing plans previously character-
ized. For the purposes of this paper, we assume the planning



Def. Additional information used Objective

5 State distance function Minimize distance of final state from initial state
6 State distance function Minimize sum of distances of traversed states from initial state
9 None (other than a STRIPS representation) Minimize number of fluents changed

13 Set of possible future goal-agent pairs Maximize number of future goals achievable by corresponding agent
15 Set of possible future goal-plan pairs Maximize number of future goals achievable by corresponding plan
16 Distribution over possible future goal-agent pairs Maximize probability future goal can be achieved by corresponding agent
17 Distribution over possible future goal-plan pairs Maximize probability future goal can be achieved with corresponding plan

Table 1: Summary of different side-effect-minimizing objectives

problems are represented as STRIPS problems, so we will be
using G instead of SG to refer to the goal, and G′ instead
of S′G to refer to a possible future goal. So for example, if
we’re trying to find a plan-preserving plan for a STRIPS prob-
lem 〈F, I,A,G〉, we will have a distribution PP over pairs
〈G′, π′〉 where G′ ⊆ F .

We show how to find plans that are side-effect minimiz-
ing (Definition 9), plan-preserving (Definition 17), or goal-
preserving (Definition 16) by compiling the STRIPS problem
into a STRIPS problem with action costs and soft goals. As
previously noted, plan-set-preserving plans (Definition 15)
can be viewed as a special case of plan-preserving plans, and
goal-set-preserving plans (Definition 13) as a special case of
goal-preserving plans. Therefore, our approaches will also
handle those plan concepts. We leave minimizing within-plan
side effects (Definition 6) to future work.

5.1 Background
In this subsection we provide technical definitions and nota-
tion necessary to the approach that follows.

Regression. Regression can be thought of as a form of pre-
image computation. It is a rewriting operation, first intro-
duced by Waldinger [1975], that given an action a and a state,
s′, resulting from performing a, returns a formula that char-
acterizes the conditions that must have been true in the pre-
vious state to result in s′. (In this regard, the formula parsi-
moniously characterizes a family of states.) Following Muise
[2014, Definition 2], we have the following definition:

Definition 18 (Regression in STRIPS). Given a STRIPS
problem 〈F, I,A,G〉, if ϕ ⊆ F and a ∈ A, then the regres-
sion of ϕ through a, writtenR(ϕ, a), is defined as follows:

R(ϕ, a)
def
=

{
(ϕ \ Add(a)) ∪ Pre(a) if Del(a) ∩ ϕ = ∅
undefined otherwise

Note that the result of regression is not interpreted as a state
but as representing a set of states (the set of states that make
it true). We use R∗(ϕ, π) to denote the iterated regression
through all the actions in π in order.

The significance of regression for us comes from the fol-
lowing result, which is a specialization of Reiter’s regression
theorem [Reiter, 2001].

Theorem 1 (Regression Theorem for STRIPS [Muise, 2014,
Theorem 2]). An action sequence ~a is a plan for a STRIPS
planning problem 〈F, I,A,G〉 if and only if I |= R∗(G,~a).

We find it useful to rephrase that in a more general way:

Corollary 1. Given a STRIPS planning problem 〈F, I,A,G〉,
a state s ∈ 2F , an action sequence ~a, and a set of atoms
ϕ ⊆ F , δ(s,~a) |= ϕ if and only if s |= R∗(ϕ,~a).

Proof. Apply Theorem 1 to 〈F, s,A, ϕ〉.

Planning with soft goals and action costs. As noted
above our strategy to compute different classes of side-effect-
minimizing plans is to compile them into a planning problem
with soft goals and action costs. The following definition is
based on Keyder and Geffner’s [2009, Definition 2], but in-
corporates a more general utility function, assigning utilities
to formulas instead of fluents, as Keyder and Geffner [2009,
section 4] later suggest.

Definition 19 (STRIPS problem with action costs and soft
goals). A STRIPS problem with action costs and soft goals
is a tuple 〈F, I,A,G, c, u〉 where 〈F, I,A,G〉 is a STRIPS
problem, c : A → [0,∞) is the action cost function, and
u : L(F )→ [0,∞) is the utility function.

Given a STRIPS problem with action costs and soft goals
P = 〈F, I,A,G, c, u〉, we call G the hard goal of P , and
any formula ϕ for which u(ϕ) > 0 a soft goal. For such a
problem P , the utility of a plan π = a1, . . . , ak is given by

u(π) =

 ∑
ϕ∈L(F ):δ(I,π)|=ϕ

u(ϕ)

− k∑
i=1

c(ai)

That is, the utility is the sum of the utilities of the soft goals
satisfied in the state resulting from executing the plan, mi-
nus the sum of the action costs. An optimal plan will max-
imize utility (while achieving the hard goal). One way to
solve STRIPS problems with action costs and soft goals is to
compile the soft goals away, as shown by Keyder and Geffner
[2009], and to use an off-the-shelf cost-optimal planner.

Definition 20 (Con(·)). Given a set of fluents F ′ ⊆ F , we
will use Con(F ′) to denote the conjunction of the fluents in
F ′, in some canonical order.

Later, it will be important that Con(F ′) is equal to a unique
formula, which is why we’re not just using the notation

∧
F ′.

5.2 Computing Side-Effect Minimizing Plans
Suppose we want to compute a side-effect minimizing plan
(Definition 9) for a STRIPS problem P = 〈F, I,A,G〉. We
can do so by compiling P into a STRIPS problem with action
costs and soft goals P̃ as described below.



Definition 21 (Side-effect-minimizing compilation). Given
a STRIPS problem P = 〈F, I,A,G〉, the side-effect-
minimizing compilation of P is a STRIPS problem with ac-
tion costs and soft goals P̃ = 〈F, I,A,G, c, u〉 where

• c(a) = 0 for all a ∈ A

• u(ϕ) =

{
1 if ϕ ∈ I ∪ {¬f | f /∈ (I ∪G)}
0 otherwise

Proposition 1 (Correctness of side-effect-minimizing com-
pilation). Given a STRIPS problem P = 〈F, I,A,G〉 and its
side-effect-minimizing compilation P̃ = 〈F, I,A,G, c, u〉, an
action sequence ~a ∈ A∗ is a side-effects minimizing plan for
P if and only if ~a is an optimal plan for P̃ .

Proof. See Appendix A.2 in the supplementary material.

5.3 Computing Plan-Preserving Plans
How to compute plan-preserving plans? We consider the case
where the given probability function over future goal-plan
pairs PP has finite support, i.e., it only assigns non-zero prob-
abilities to finitely many pairs. Our approach is to compile
the problem into a STRIPS problem with action costs and soft
goals. To construct this, we take every goal-plan pair 〈G′, π′〉
that has non-zero probability, and make the regression of G′
through π′ a soft goal. This is described in full detail below.

Definition 22 (Plan-preserving-plan compilation). Suppose
that we have a STRIPS problem P = 〈F, I,A,G〉, where
A = A1 ∪ · · · ∪An, and a probability function PP over pairs
〈G′, π′〉 with finite support. We write the pairs that have
non-zero probability under PP as 〈G1, π1〉, . . . , 〈Gm, πm〉.
We say that the plan-preserving-plan compilation of P is
the STRIPS problem with action costs and soft goals P̃ =
〈F, I, Ã, G, c, u〉 where

• Ã = A1

• c(a) = 0 for all a ∈ Ã

• u(ϕ) =
∑

j∈{1,...,m}:ϕ=Con(R∗(Gj ,πj))

PP(〈Gj , πj〉),

where the regression operator is defined with respect to
the original problem P

Note that the definition of the utility function u in Defini-
tion 22 sums over goal-plan pairs, since there may be distinct
pairs 〈Gk, πk〉 and 〈G`, π`〉 for which Con(R∗(Gk, πk)) =
Con(R∗(G`, π`)), which increases the value of making that
formula true. Note also that it’s important that Con(·) writes
the conjuncts in a specific order (so that, e.g., we don’t count
the formulas (p ∧ q) and (q ∧ p) as different soft goals).

Proposition 2 (Correctness of plan-preserving-plan compi-
lation). Given a STRIPS problem P = 〈F, I,A,G〉 where
A = A1 ∪ · · · ∪An, and a probability function PP over pairs
〈G′, π′〉 (such that π′ can achieve G′ from I) with finite sup-
port, a sequence of actions ~a ∈ A∗1 is a plan-preserving plan
forP just in case it is an optimal plan for the plan-preserving-
plan compilation P̃ .

Proof. See Appendix A.3 in the supplementary material.

The assumption that PP has finite support is not very con-
straining, since for it to not hold would require that non-zero
probability be assigned to plans that were arbitrarily longer
than they needed to be (PP could have infinite support only
by assigning non-zero probability to infinitely many plans for
some particular goal). Furthermore, approximations of plan-
preserving plans could be found by considering in the compi-
lation only some number of the most probable pairs 〈G′, π′〉.

5.4 Computing Goal-Preserving Plans
Suppose that you have a STRIPS problem P = 〈F, I,A,G〉
(where A = A1 ∪ · · · ∪ An) and a probability function PG

over pairs 〈G′, i〉 with achievable goals, and you want to find
a goal-preserving plan. Since the sets of possible goals and
agents are finite, there are only finitely many pairs that have
non-zero probability under PG, and we can write them as
〈G1, i1〉, . . . , 〈Gm, im〉.

The intuition is that we want to convert P and PG into a
STRIPS problem with action costs and soft goals P̃ in which
every one of theGj’s is a soft goal. P̃ will be set up so that an
optimal plan will have a prefix of actions by the first agent,
that will correspond to a goal-preserving plan for P . Since
for a goal-preserving plan for P we want Gj’s to be possi-
ble to complete from the state resulting from the first agent’s
actions, in P̃ we will have m additional copies of the state
space. The first agent’s actions to achieve G will modify ev-
ery copy of the state in parallel. Then the soft goals Gj can
(potentially) be achieved in sequence, each in a different copy
of the state so that they don’t interfere with each other. We’ll
introduce extra bookkeeping fluents q0, q1, . . . , qm to keep
track of which hard or soft goal is currently being worked
on, and extra actions switch1, . . . , switchm that advance to
the next goal. The full details are in the definition below.
Definition 23 (Goal-preserving-plan compilation). Suppose
we have a STRIPS problem P = 〈F, I,A,G〉, where A =
A1∪· · ·∪An, and a probability function PG over pairs 〈G′, i〉.
We write the pairs that have non-zero probability under PG

as 〈G1, i1〉, . . . , 〈Gm, im〉. We say that the goal-preserving-
plan compilation of P is the STRIPS problem with action
costs and soft goals P̃ = 〈F̃ , Ĩ, Ã, G̃, c, u〉 where

• F̃ = {fj | f ∈ F and 0 ≤ j ≤ m} ∪ {q0, . . . , qm},
where the qj are new symbols not appearing in F

• Ĩ = {fj | f ∈ I and 0 ≤ j ≤ m} ∪ {q0}
• Ã = Ãplan ∪ Ãfuture ∪ Ãadvance, where the components

are as described below. For each action a ∈ A1, Ãplan

includes a corresponding action ã where
Pre(ã) = {f0 | f ∈ Pre(a)} ∪ {q0}

Add(ã) = {fj | f ∈ Add(a) and 0 ≤ j ≤ m}
Del(ã) = {fj | f ∈ Del(a) and 0 ≤ j ≤ m}

For j ∈ {1, . . . ,m}, for each action a ∈ Aij , Ãfuture

includes an action ãj where

Pre(ãj) = {fj | f ∈ Pre(a)} ∪ {qj}
Add(ãj) = {fj | f ∈ Add(a)}
Del(ãj) = {fj | f ∈ Del(a)}



For j ∈ {1, . . . ,m}, Ãadvance includes an action switchj
where Pre(switchj) = {qj−1}, Add(switchj) = {qj},
and Del(switchj) = {qj−1}.

• G̃ = {f0 | f ∈ G}
• c(a) = 0 for all a ∈ Ã

• u(ϕ) =
∑

j ∈ {1, . . . ,m} :
ϕ = Con({fj | f ∈ Gj})

PG(〈Gj , ij〉)

So the soft goals of the goal-preserving-plan compilation
are of the form Con({fj | f ∈ Gj}) – which we can read
informally as Gj within the jth copy of the state space – for
each j. (Note that except possibly if ϕ is True, the sum in the
definition of u(ϕ) will only have at most one summand.)

Observe how the use of the qj fluents ensures that any plan
for P̃ will start with (0 or more) actions from Ãplan, possibly
followed by the action switch1 and then (0 or more) actions
of the form ã1 ∈ Ãfuture, possibly followed by switch2 and
then (0 or more) actions of the form ã2 ∈ Ãfuture, and so on.

Proposition 3 (Correctness of goal-preserving-plan compi-
lation). Given a STRIPS problem P = 〈F, I,A,G〉 where
A = A1 ∪ · · · ∪An, and a probability function PG over pairs
〈G′, i〉 (such that agent i can achieve G′ from I), a sequence
of actions a1, . . . , ak ∈ A∗1 is a goal-preserving plan for P
just in case there is an optimal plan for the goal-preserving-
plan compilation P̃ that has as a prefix the corresponding
sequence of actions ã1, . . . , ãk ∈ Ã∗plan, and any actions fol-
lowing those are not in Ã∗plan.

Proof. See Appendix A.4 in the supplementary material.

6 Discussion and Related Work
There are a number of approaches to handling side effects in
MDPs. Some involve interacting with a human to get further
information about what side effects are negative [Zhang et
al., 2018; Saisubramanian et al., 2020a]. More related to the
present work are those not making use of human feedback.

In particular, our work was inspired by approaches in
which an auxiliary reward is introduced into an MDP to en-
courage the agent to preserve its own ability to reach states
[Krakovna et al., 2019], gain reward from other reward func-
tions [Turner et al., 2020], or complete tasks from a given
distribution [Krakovna et al., 2020]. A key difference of our
approaches is that we allow for considering more than one
agent’s abilities. Krakovna et al. [2020] wrote that “Our
main insight is that side effects matter because we may want
the agent to perform other tasks after the current task in the
same environment.” Our work can be viewed as generaliz-
ing that insight to also consider that other agents (who may
have different actions available to them) may want to perform
other tasks after the first agent in the same environment. Note
that Turner [2019] did informally discuss considering other
agents’ attainable utilities.

Within the field of planning, one of the more related pa-
pers is by Freedman and Zilberstein [2017]. Their defini-
tion of independent interaction (their Definition 3) includes

that agent “Ring has a personal goal G′ to accomplish, but
should avoid preventing [agent] Red from accomplishing her
own task at the same time.” That sounds much like some of
the things we’ve been discussing in this paper; however, their
formalization is rather different. They formalize independent
interaction as a planning problem in which the agents act in
parallel to collectively achieve both Ring ’s goal G′ and also
all properties that might be desired by Red (with probability
higher than a threshold).

In the context of active goal recognition, in which an ob-
serving agent performs actions to try to determine the goal G
of another agent from a set G of hypothesized possible goals,
Shvo and McIlraith [2020] deem an observer’s plan τ to be
non-intervening “if for every hypothesis G ∈ G the set of
plans π, whose execution achieves G are preserved under the
execution of τ .” This could be thought of as the observer not
having side effects on the observed agent.

Limitations. For the most part, in this paper, we considered
side effects to be properties of the terminating state of the act-
ing agent’s plan (the exceptions are Definition 6, and Defini-
tion 25 in Appendix A.1). As a consequence, we favoured
plans whose side effects minimized the impact on whatever
goal (or plan) was going to be pursued immediately follow-
ing the execution of the acting agent’s plan. This presents two
issues: first, this treatment of side effects is somewhat myopic
in that it doesn’t look further into the future; second, it does
not allow for considering side effects in a true multiagent en-
vironment where other agents are operating simultaneously
alongside the acting agent [Alizadeh Alamdari et al., 2021].

Another issue in dealing with side effects that the methods
proposed in this paper are not designed to address is having
a limited vocabulary. Saisubramanian et al. [2020b] noted
that a limited state representation “potentially affects the pro-
cess of learning to avoid negative side effects.” We’re not do-
ing learning, but our side-effect minimizing definitions rely
on being able to make relevant state distinctions. Unfortu-
nately, if (for example) the goal doesn’t mention that the vase
shouldn’t be broken, then it may be that the language was
designed so it’s not possible to represent whether it’s broken.

7 Conclusion
In this paper, we have considered the problem of avoiding
negative side effects in classical planning. We have pre-
sented several versions of side-effect-minimizing objectives,
and showed how, in the case of STRIPS planning problems,
to compute them through compilations into STRIPS problems
with soft goals.

There are many avenues for future work. Different side-
effect-minimizing objectives could be defined, taking into ac-
count other aspects like action costs (e.g., how does the act-
ing agent’s plan change the cost of other agents achieving
their goals?). Algorithmically, the compilations we have pre-
sented are quite straight-forward and alternative techniques
for computing side-effect-minimizing plans could be investi-
gated. Finally, the idea in this paper of considering the effect
of actions on other agents’ abilities is one that might be use-
ful to bring from planning to reinforcement learning (we have
made an attempt to do so [Alizadeh Alamdari et al., 2021]).
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A Supplementary Material
This supplementary material is structured as follows. First,
Appendix A.1 elaborates on the discussion of necessary side
effects from subsection 3.1. Then, Appendices A.2, A.3, and
A.4 provide proofs of the propositions from section 5 about
the correctness of the various plan compilations. Specifically,
Appendix A.2 is about side-effect minimizing plans (prov-
ing Proposition 1), Appendix A.3 is about plan-preserving
plans (proving Proposition 2), and Appendix A.4 is about
goal-preserving plans (proving Proposition 3).

A.1 Necessary Side Effects and Landmarks
In subsection 3.1 we distinguished between necessary and
discretionary side effects, noting that there was a relation-
ship to landmarks, a property of planning problems that has
proven useful in the construction of heuristics for automated
plan generation. We begin by reviewing the definition of a
landmark (following, e.g., Hoffmann et al. [2004]).

Definition 24 (Landmark). Given a STRIPS planning prob-
lem 〈F, I,A,G〉, a formula ϕ ∈ L(F ) is a landmark if ϕ
holds in some state s on the solution path of every plan for
〈F, I,A,G〉.

According to this definition, the goal formula and more
specifically the individual fluents that comprise the goal are
all landmarks, as are intermediate subgoals that exist in every
plan to achieve the goal.

In this paper, in the context of STRIPS, we generally
deemed side effects to be those properties that hold in the
terminating state of the acting agent’s plan that are not part
of the goal and that did not hold in the initial state (see Def-
inition 7). The exception to this was our brief discussion of
within-plan side effects associated with Definition 6 (within-
plan side effect minimization). In particular, we discussed the
importance of considering side effects that are realized during
the execution of the plan and that may or may not persist until
the end of the plan. We argued that minimizing the duration
of time a side effect holds can be important when considering
such within-plan side effects.

In the context of our discussion of necessary side effects
and landmarks, it’s interesting to further distinguish the no-
tion of a STRIPS within-plan side effect, as follows:

Definition 25 (STRIPS within-plan side effect). Let
〈F, I,A,G〉 be a STRIPS planning problem, and π a plan
that solves it. Then ` ∈ lits(F ) is a within-plan side effect of
π if I 6|= ` and ` /∈ G but there exists a state s on the plan
path from I to δ(I, π) such that s |= `.

With this additional notion of side effect defined, we define
the notion of a necessary within-plan side effect for a STRIPS
planning problem.

Definition 26 (Necessary within-plan side effect (STRIPS)).
A necessary within-plan side effect for a STRIPS planning
problem P = 〈F, I,A,G〉 is a literal ` ∈ lits(F ) that is a
within-plan side effect of π for every plan π that solves P .

The following propositions follow straightforwardly from
the definitions above.

Proposition 4. If a literal ` ∈ lits(F ) is a necessary
within-plan side effect of a STRIPS planning problem P =
〈F, I,A,G〉, then ` is a landmark of P .
Proposition 5. Given a STRIPS planning problem P =
〈F, I,A,G〉, if a literal ` is a landmark of P such that I 6|= `
and ` /∈ G then ` is a necessary within-plan side effect of P .

The relationship between landmarks and necessary within-
plan side effects is interesting because the computation of
landmarks is well understood and routinely used for heuris-
tics in planning. As such it could be used as a means of gen-
erating necessary within-plan side effects. Importantly, in the
context of the work presented in this paper, recognition of
an undesirable or unsafe necessary within-plan side effect –
an undesirable landmark – might suggest that the plan not be
pursued at all. This presents a way to potentially verify vio-
lation of a safety constraint.

A.2 Proof of Proposition 1
First, we will find it useful to define the set of “potential side
effects” of a problem,

PSE(P) = {f ∈ F | f /∈ I ∪G} ∪ {¬f | f ∈ I}.
Note that PSE(P) includes every literal that could be in
SideEffect(P, π) for any π, and that the set SideEffect(P, π)
could be written as

{ϕ ∈ PSE(P) | δ(I, π) |= ϕ}.

Now, the utility of a plan π for P̃ is

u(π) =

 ∑
ϕ∈L(F ):δ(I,π)|=ϕ

u(ϕ)

−∑
a∈π

c(a)

=

 ∑
ϕ∈I∪{¬f |f /∈(I∪G)}:δ(I,π)|=ϕ

1

− 0

= |{ϕ ∈ I ∪ {¬f | f /∈ (I ∪G)} | δ(I, π) |= ϕ}|
= |{ϕ | ϕ ∈ PSE(P) \ SideEffect(P, π)}|
= |PSE(P) \ SideEffect(P, π)|

Selecting π to maximize the cardinality of
PSE(P) \ SideEffect(P, π) minimizes the cardinality
of SideEffect(P, π), and vice versa, which gives us the
desired result.

A.3 Proof of Proposition 2
As in Definition 22, let us say that the pairs that have non-zero
probability under PP are 〈G1, π1〉, . . . , 〈Gm, πm〉.

For ~a to be a plan-preserving plan for P means that it is a
plan (so it makes G true) that maximizes the probability

PP({〈G′, π′〉 | δ(δ(I,~a), π′) |= G′}).
By Corollary 1 that is equivalent to maximizing

PP({〈G′, π′〉 | δ(I,~a) |= R∗(G′, π′)}).
Since only 〈G1, π1〉, . . . , 〈Gm, πm〉 have non-zero probabil-
ity under PP, that is equivalent to maximizing∑

j∈{1,...,m}:δ(I,~a)|=R∗(Gj ,πj)

PP(〈Gj , πj〉).



On the other hand, for ~a ∈ A∗1 to be an optimal plan for the
plan-preserving compilation P̃ means that it makes G true
while maximizing the utility

u(~a) =

 ∑
ϕ∈L(F ):δ(I,~a)|=ϕ

u(ϕ)

− k∑
i=1

c(ai)

=

 ∑
ϕ∈L(F ):
δ(I,~a)|=ϕ

 ∑
j∈{1,...,m}:

ϕ=Con(R∗(Gj ,πj))

PP(〈Gj , πj〉)


− 0

=
∑

j∈{1,...,m}:δ(I,~a)|=R∗(Gj ,πj)

PP(〈Gj , πj〉)

So, what’s being maximized by the plan-preserving plan for
P and the optimal plan for P̃ are the same.

A.4 Proof of Proposition 3
We’ll write the pairs that have non-zero probability under PG

as 〈G1, i1〉, . . . , 〈Gm, im〉.
Suppose that ~a ∈ A∗1 is any (not necessarily goal-

preserving) plan for P . Let us say that the goal-preservation
score of ~a is the probability

PG({〈G′, i〉 | ∃π̂ ∈ A∗i s.t. δ(δ(I,~a), π̂) |= G′}).
(That value is what a goal-preserving plan would maximize.)
Because only 〈G1, i1〉, . . . , 〈Gm, im〉 have non-zero proba-
bility, we can equivalently write the goal-preservation score
as ∑

j ∈ {1, . . . ,m} :
∃πj ∈ A∗

ij s.t. δ(δ(I,~a), πj) |= Gj

PG(〈Gj , ij〉)

Note also that the utility of a (not necessarily optimal) plan
~b ∈ Ã∗ for the goal-preserving compilation P̃ can be shown
to be

u(~a) =
∑

j ∈ {1, . . . ,m} :

δ(Ĩ ,~b) |= {fj | f ∈ Gj}

PG(〈Gj , ij〉)

The structure of the rest of this proof is as follows. We will
show that any plan ~a = a1, . . . , ak ∈ A∗1 for P can be trans-
formed into a plan for P̃ that starts with the corresponding
actions ã1, . . . , ãk (and has no further actions from Ãplan),
and whose utility is equal to the goal-preservation score of
~a. Furthermore, any plan for P̃ is of the form ~̃a,~b, where
~̃a ∈ Ã∗plan and can be written as ã1, . . . , ãk (for some k), and
where ~b ∈ (Ãfuture ∪ Ãadvance)

∗. From ~̃a can be extracted
corresponding actions a1, . . . , ak ∈ A∗1, which we will show
form a plan for P whose goal-preservation score is at least as
great as the utility of ~̃a,~b w.r.t. P̃ . From those things it will
follow that the maximum possible goal-preservation score of
a plan for P (i.e., that achieved by a goal-preserving plan) is
equal to the maximum possible utility of a plan for P̃ (i.e.,
that achieved by an optimal plan), and so we will get the re-
sult claimed in the proposition.

So, suppose that ~a = a1, . . . , ak ∈ A∗1 is a plan for P with
a goal-preservation score of x. That means there exists a set
M ⊆ {1, . . . ,m} such that

x =
∑
j∈M

PG(〈Gj , ij〉),

and for each j ∈ M (and no j ∈ ({1, . . . ,m} \M)) there
exists πj ∈ A∗ij such that δ(δ(I,~a), πj) |= Gj .

Now consider executing the following actions in Ã∗, start-
ing from Ĩ:

• first, execute actions ã1, . . . , ãk ∈ Ã∗plan (i.e., the corre-
sponding actions to a1, . . . , ak)

• for each j ∈M (in increasing order):
– execute each action of the form switch` (for any `)

that is executable, until switchj is executed
– for each action a ∈ πj in order, execute the corre-

sponding action ãj ∈ Ãfuture (recall that πj is the
plan that achieved Gj from δ(I,~a))

It’s straightforward to verify that each of these actions will be
executable, and the resulting state will satisfy the hard goal
G̃ = {f0 | f ∈ G} (that will be achieved by the actions from
Ã∗plan, and then not changed), as well as {fj | f ∈ Gj} for
each j ∈ M (and no j ∈ ({1, . . . ,m} \M)). Therefore, the
utility of the overall plan can be seen to be x.

To go in the other direction, consider any plan ~b for the
goal-preserving compilation that has utility x. That means
there exists a set M ⊆ {1, . . . ,m} such that

x =
∑
j∈M

PG(〈Gj , ij〉),

and for each j ∈ M (and no j ∈ ({1, . . . ,m} \ M)) we
have δ(Ĩ ,~b) |= {fj | f ∈ Gj}. Because of the preconditions
of actions in Ã, it can be seen that ~b must be describable as
follows:

• ~b starts with some actions ã1, . . . , ãk ∈ Ã∗plan (for some
k, possibly 0)

• then for each j ∈M (in increasing order)

– there may be some actions from Ãadvance

– there is a (possibly empty) sequence of actions
π̃j ∈ Ã∗future, each action in π̃j being of the form
ãj (corresponding to some action a ∈ Aij )

• there are possibly some further actions in Ãadvance

(though these could be omitted without reducing utility)
It can be shown that the action sequence a1, . . . , ak ∈ A∗

(corresponding to ã1, . . . , ãk ∈ Ã∗plan) will achieve G in the
problemP , and furthermore, from the resulting state, eachGj
for j ∈ M can be achieved by the plan πj ∈ Aij consisting
of the corresponding actions to those in π̃j . Therefore, the
goal-preservation score of a1, . . . , ak will be at least x.
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