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Abstract

Recent work in AI safety has highlighted that in sequential decision making,
objectives are often underspecified or incomplete. This potentially allows the
AI agent to make undesirable changes to the world while achieving its given
objective. A number of recent papers have proposed avoiding such negative side
effects by giving an auxiliary reward to the agent for preserving its own ability
to complete tasks or gain reward. We argue that effects on others need to be
explicitly considered and provide a formulation that generalizes prior work. We
experimentally investigate our approach with RL agents in gridworlds.

1 Introduction

Recent work in AI safety has raised the concern that objective specifications are often underspecified
or incomplete. In the absence of some directive or signal, this gives discretion to a Reinforcement
Learning (RL) agent to act in whatever manner optimizes its return, neglecting consideration of
potential undesirable (negative) side effects that were not explicitly part of the specified objective or
avoided through some implicit incentive specific to the learning algorithm. As Amodei et al. [2016]
explain, “[F]or an agent operating in a large, multifaceted environment, an objective function that
focuses on only one aspect of the environment may implicitly express indifference over other aspects
of the environment.” Stuart Russell gave the example of tasking a robot to get coffee from a coffee
shop and the robot, in its singular commitment to achieving the stated objective, killing all those in
the coffee shop that stood between it and the purchase of coffee [Lebans, 2020]. A somewhat more
benign example is that of a robot breaking a vase that is on the optimal path between two points
[Amodei et al., 2016]. A range of recent works have presented computational techniques for avoiding
or learning to avoid negative side effects [e.g., Zhang et al., 2018, Krakovna et al., 2019, Turner et al.,
2020, Krakovna et al., 2020, Saisubramanian et al., 2020]. Awareness and avoidance of undesirable
side effects is central to safe and robust control of uncertain environments.

Our concern in this paper is with how an RL agent can learn to act safely in the face of a potentially
incomplete specification of the objective. Amodei et al. observe that “avoiding side effects can be
seen as a proxy for the things we really care about: avoiding negative externalities. If everyone likes
a side effect, there’s no need to avoid it." In this spirit, we contend that to act safely an agent should
contemplate the impact of its actions on the wellbeing and agency of others in the environment. We
consider negative side effects to be those that impede the future wellbeing or agency of other agents.

Here, we endow RL agents with the ability to consider in their learning the future welfare and
continued agency of others in the environment. We do so by augmenting the RL agent’s reward with
an auxilliary reward that reflects different functions of expected future return of other agents. We
contrast this with recent work on side effects that takes into account only how the agent’s actions
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will affect its own future abilities [Krakovna et al., 2019, Turner et al., 2020, Krakovna et al., 2020].
Considering other agents’ abilities when avoiding side effects was informally discussed by Turner
[2019], and investigated in the context of symbolic planning by Klassen and McIlraith [2021]. We
also show how controlling the degree to which impact on self versus others factors into the RL agent’s
learning results in behaviour that ranges from self-centred to self-less. Experiments in gridworld
environments illustrate qualitative and quantitative properties of the proposed approach.

2 Problem and approach

We wish to endow RL agents with the ability to consider the future wellbeing and agency of other
agents. For the purposes of this study, we consider an environment with a single acting agent that
learns how to act via RL. Other agents exist within the environment, operating via fixed policies, and
only acting after the acting agent has reached a terminating state. We assume that we can neither
incentivize nor control these other agents. An evocative example may be to consider university
students who share a kitchen environment, and we wish our RL agent – the acting agent, with some
conception of what others may typically do in the kitchen — to learn how to act in the kitchen in a
manner that is considerate of others who may use the kitchen after the acting agent is done.

We model the environment as a Markov Decision Process (MDP), ⟨S,A, T, r, γ⟩, where S is a finite
set of states, A is a finite set of actions, T (st+1|st, at) gives the probability of transitioning to state
st+1 when taking action at in state st, r : S × A × S → R is the reward function, and γ is the
discount factor [Sutton and Barto, 2018]. We distinguish s0 ∈ S as the initial state. A policy is a
(possibly stochastic) mapping from states to actions. Given a policy π, the value V π(s) of a state s is
the expected return of that state, that is, the expected sum of (discounted) rewards that the agent will
get by following the policy π starting in s. An optimal policy maximizes the value of every state. We
use RL to learn an optimal policy for our acting agent.

To incentivize the acting agent to consider the future wellbeing and agency of others, we augment our
acting agent’s reward with an auxiliary reward that reflects the impact of its choice of actions on the
future agency and wellbeing of others in the environment. To reflect the acting agent’s uncertainty
about what is good for others, we make use of a distribution over value functions. In particular,
suppose that we have a finite set V of possible value functions V : S → R, and a probability
distribution P(V ) over that set. Note that we don’t have to commit to how many agents there are (or
what exactly their actions are). It could be that each V ∈ V corresponds to a different agent, that the
set reflects all possible value functions of a unique agent, or anything in between. Also, each V ∈ V
could reflect some aggregation of the value functions of all or some of the agents.

We define the augmented reward function as

rvalue(s, a, s
′) =

{
α1 · r1(s, a, s′) if s′ is not terminal
α1 · r1(s, a, s′) + γ · α2 · F (V,P, s′) if s′ is terminal

(1)

where r1 is the acting agent’s individual reward function, and F is some function. The hyperparame-
ters α1 and α2, which we call “caring coefficents”, are real numbers that determine the degrees to
which the individual reward r1 and the auxiliary reward F (V,P, s′) contribute to the overall reward.

We consider the following possible different definitions of F (V,P, s′):∑
V ∈V P(V ) · V (s′) expected future return (2)

min
V ∈V:P(V )>0

V (s′) worst-case future return (3)∑
V ∈V P(V ) ·min(V (s′), V (s0)) penalize negative change (4)

In Eq. (2), F (V,P, s′) is the expected value of s′, given the distribution on value functions.2 When
the discount factor is 1, Eq. (1) with F (V,P, s′) defined using Eq. (2) is a generalization of the
auxiliary reward defined by Krakovna et al. [2020], who assumed that the future value functions were
ones of the acting agent, and so depended on the acting agent’s own abilities (they also assumed
the future value functions corresponded to reward functions that gave non-zero reward only for

2Note that future activity does not have to start in exactly the same state at which the acting agent ended. V
can be defined so that V (s′) gives the expected return of future activity considered over a known distribution of
starting states, given that the acting agent ended in s′.
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completing a task). See Section 4 for more details on Krakovna et al.’s approach and the relation of
our work to it. Meanwhile, Eq. (3) considers the value of s′ if the “worst-case” value function from
V (that still has positive probability) is used.

Note that those two reward augmentations may incentivize the acting agent to not only avoid negative
side effects, but also to cause “positive side effects” – to help other agents (assuming α2 > 0). To
focus on avoiding negative side effects, Krakovna et al. [2020] proposed comparing the state the
agent ends up in against a reference state (see Section 4.1 for more details), and that is applicable
to our approach as well. In Eq. (4), we use one of the simplest possible reference states, the initial
state: the auxiliary reward is the lower of V (s′) and V (s0), where s0 is the initial state. The idea is
to decrease the acting agent’s reward when it decreases the expected future return, but to not increase
the acting agent’s reward for increasing that same expected return.

We have also explored associating different caring coefficients with different agents, and trying to
preserve agents’ ability to execute options [Sutton et al., 1999]. See Appendix A and Appendix B,
respectively.

A complication with our approach is that for some possible reward functions for the acting agent and
future value functions, the acting agent may have an incentive to avoid terminating states, to avoid or
delay the penalty for negative future return. This incentive would typically be undesirable. However,
it can be shown that under some circumstances, the acting agent’s optimal policy will be terminating.
The proposition below and its proof are similar to [Illanes et al., 2020, Theorem 1].

Proposition 1. Let M = ⟨S,A, T, r1, γ⟩ be an MDP where γ = 1, the reward function r1 is negative
everywhere, and there exists a terminating policy. Suppose rvalue is the reward function constructed
from r1 according to Equation 2, using some distribution P(V ). Then any optimal policy for the
MDP M ′ = ⟨S,A, T, rvalue, γ⟩ with the modified reward will terminate with probability 1.

Proof. Suppose for contradiction that there is an optimal policy π∗ for M ′ that is non-terminating.
Then there is some state s ∈ S so that the probability of reaching a terminal state from s by following
π∗ is some value c < 1. Since rewards are negative everywhere, that means that V π∗

(s) = −∞. On
the other hand, any terminating policy gives a finite value to each state. Since there is a terminating
policy for M there is one for M ′, and so π∗ cannot be an optimal policy.

3 Experiments

In this section, we first compare our approach (using Eq. (2)) with two baselines. We illustrate
that by considering others, the acting agent avoids causing negative side effects for them, and in
some scenarios, yields positive side effects. Second, we provide a qualitative illustration of optimal
behaviours using the different definitions of F (V,P, s′). Finally, we illustrate the effect of the caring
coefficient on the agent’s behaviour.

In all the experiments, policies are learned using Q-learning [Watkins and Dayan, 1992]. To aid
exposition, we consider very simple distributions over future value functions, in which the acting
agent is certain of what the future value function is (or, in Section 3.2, only considers a small number
of possibilities).

3.1 The impact of considering others

We compare our method, which is defined in Eq. (2) (with α1 = α2 = 1), with two reward
augmentation baselines: not augmenting the reward, and a method based on Krakovna et al.’s [2020]
approach. The Krakovna-style baseline uses the same Eq. (2) to augment the rewards, except that the
future value functions considered are always possible future value functions of the acting agent itself
(as if it were trying to accomplish the tasks of other agents). So if other agents have differing abilities,
that is ignored. (Note that this method does not incorporate Krakovna et al.’s [2020] notion of a
“reference state” and may incentivize positive side effects in some cases, as our own method does.)

We use a kitchen environment where agents aim to collect different ingredients from the fridge or
shelves, and prepare a meal. The agents get -1 reward in each step, until the task is complete. We
designed four different scenarios to illustrate properties of our approach. The results are in Table 1.
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Salad Peanut Salt Cookies
Method acting, next acting, next acting, next acting, next

Non-augmented reward 0, ∞ 0, ∞ 0, ∞ 0, 0
Based on Krakovna et al. 1, 0 1, ∞ 1, 1 1, -2

Our approach [Eq. 2] 1, 0 2, 0 1, 0 1, -2

Table 1: Comparison of reward augmentation methods for acting and subsequent agents. Each row
reflects a different method. Each column depicts results for a different experimental scenario. Each
entry pair depicts a "step difference" required by the acting agent and the subsequent acting agent
(next). The "step difference" is the difference between the number of steps the agent required to
execute their policy as compared to what they would have required if they had tried to complete their
task from the initial state without considering other agents. ∞ indicates the task was unachievable.

The first experiment (Salad) shows a scenario where the acting agent and next agent have the same
abilities, and as such our approach and the Krakovna-style baseline both avoid negative side effects.
The next experiments (Peanut and Salt) show that our approach, taking into account differing agent
abilities, is sometimes more effective at avoiding negative side effects than either baseline. The last
experiment (Cookies) shows how our approach (and the Krakovna-style baseline) can cause positive
side effects for the next agent. Each of the experiments is described in more detail below.

In Salad, the acting agent needs to collect the ingredients from the fridge. If it doesn’t consider side
effects, it doesn’t close the fridge and ruins all the remaining ingredients, preventing the next agent
from completing its task. By considering future tasks (whether another agent’s or its own), the acting
agent learns to take an extra step to close the fridge. In Peanut, preparing food contaminates the
environment, and for the next agent to cook requires that the environment first be cleaned (taking
one step), or disinfected (taking two steps) if the next agent has allergies. Only our approach takes
the two extra steps to disinfect the kitchen because it considers that the other agent (unlike itself)
has allergies. In Salt, if the acting agent does not put the salt shaker back on the shelves, the next
agent can’t complete its task. By considering future agents (in the Krakovna-style baseline and our
approach) this side effect is avoided. However, the acting agent is tall and may put the salt on the top
shelf (making it take longer for the next, shorter, agent to get it) if it considers that the next agent
will be itself. Finally, in Cookies, the next agent’s task is to bake cookies in the oven. Two steps are
required to preheat the oven (turning on the oven and waiting). By considering the future task of the
next agent, the acting agent (who was not using the oven) can turn on the oven to start preheating it,
and save the next agent two steps.

3.2 Illustration of optimal behaviours under different reward augmentations
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4
5

6

1

Eq.	2

Eq.	3

Eq.	4

Krakovna et	al	

Figure 1: Example behaviour that
illustrates different augmentations
of the reward function according
to Equations (2), (3), (4), and the
Krakovna-style baseline.

Figure 1 illustrates the difference between Equations (2), (3),
(4), and the Krakovna-style baseline described in Section 3.1.
The goal of the agents is to play with the doll and leave it
somewhere in the environment for the next agent, and then exit
the environment from their entry point; the agents get -1 reward
in each step. There are six agents (circles 1-6 in Figure 1)
in the environment with the same goal. They are shown at
their individual entry points. Agents enter the environment
separately; the acting agent is agent 1. In this scenario, α1 = 1
and α2 = 5. If we augment the acting agent’s reward according
to Eq. (2) (where the distribution of value functions is a uniform
distribution over the optimal value function for each agent w.r.t.
the goal of playing with the doll), the optimal policy is to place
the doll as close as possible to the majority of the agents. This
behaviour is shown by the red line in Figure 1. If we use Eq. (3)
the optimal policy is to place the doll so as to minimize the
distance to the furthest agent, shown by the blue line. If we use
Eq. (4) the optimal policy is to leave the doll where it is (shown
by the green line), because moving it causes negative side effects
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for agent 6. However if we use the approach based on Krakovna et al., the optimal policy is to leave
the doll at agent 1’s exit/entry point, so that the doll would be conveniently located for agent 1 if
it were to re-enter (shown by the purple line). Finally, if we use non-augmented reward the agent
does not have an incentive to place the doll in the environment and leaves with the doll (not shown in
figure).

3.3 Varying the caring coefficient

In this experiment, we investigate the effect of choosing different caring coefficients (α1 and α2)
in Eq. (2) by monitoring the average reward collected by each of the agents in the Craft-World
Environment.

K

K
Door

Key	Storage
Factory
Toolshed
Materials	
shop
Key

Symbol Meaning

K

Figure 2: Craft-World Environment.

Craft-World Environment We consider a MinecraftTM in-
spired gridworld environment depicted in Figure 2. Agents
in this environment use tools and materials to construct
artifacts such as boxes. Tools are stored in a toolshed in
the upper right corner of the grid environment. Agents
enter and exit the environment through doors in the upper
left and lower right. They must collect materials and bring
them to the factory for assembly. The factory requires a
key for entry, and there is only one key, which can only
be stored in one of two locations (denoted by K). When
considering other agents, the acting agent may elect to
place the key in a position that is convenient for others,
or may help other agents by anticipating their need for tools or resources and collect them on their
behalf.

Caring	Coefficient	

Av
er
ag
e	
Re

w
ar
d

First	Agent
Second	Agent
Average

Figure 3: Effect of caring coefficients in the
Craft-World environment. Increasing α2 above
0, at first the agent changes its behaviour with no
cost or little cost and this is significantly benefi-
cial for the next agent. However, by increasing
α2 further, the first agent incurs high cost to yield
only a small benefit to the second agent.

In the experiment we ran, agents enter at the top
left door, tasked with making a box. The first
(caring) agent learns a policy following Eq. (2).
The second, subsequent acting agent, follows a
fixed policy designed to optimize its own reward.
Figure 3 shows the reward that each agent gets
(after training) as we vary the caring coefficient
α2. It also shows their average. When α2 = 0, the
first agent is oblivious to others and exits the envi-
ronment without returning the key, precluding the
second agent from making a box. When α2 > 0,
the agent becomes more considerate and returns
the key on its way to the exit. As we increase
the value of α2, the first agent is incentivized to
help the second agent, eventually (to its detriment)
carrying extra materials to the factory for the sec-
ond agent, garnering negative reward for this hard
work and also, interestingly, lowering the average
reward of the two agents. Too much caring does
not yield maximal reward for the collective!

4 Relation to the future task approach [Krakovna et al., 2020]

In this section we consider in more detail the relation of some of our formulations to the “future task”
approach to avoiding side effects from Krakovna et al. [2020].

Krakovna et al. proposed modifying the agent’s reward function to add an auxiliary reward based on
its own ability to complete possible future tasks. A “task” corresponds to a reward function which
gives reward of 1 for reaching a certain goal state, and 0 otherwise. In their simplest definition (not
incorporating a reference state), the modified reward function was

rK(s, a, s′) =

{
r1(s, a, s

′) + β(1− γ)
∑

i F (i)V ∗
i (s

′) if s′ is not terminal
r1(s, a, s

′) + β
∑

i F (i)V ∗
i (s

′) if s′ is terminal
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where r1 is the original reward function, F is a distribution over tasks, V ∗
i is the optimal value

function for task i (when completed by the single agent itself), and β is a hyperparameter which
determines the how much weight is given to future tasks. They interpret 1−γ (where γ is the discount
factor) as the probability that agent will terminate its current task and switch to working on the future
task, which leads to the (1− γ) factor in the case where s is not a terminal state.

In the case where γ (the discount factor) is 1, that simplifies to

rK(s, a, s′) =

{
r1(s, a, s

′) if s′ is not terminal
r1(s, a, s

′) + β
∑

i F (i)V ∗
i (s

′) if s′ is terminal

Meanwhile, our Eq. (2) (substituted into Eq. (1)), in the case where γ = 1, can be rewritten as

rvalue(s, a, s
′) =

{
α1 · r1(s, a, s′) if s′ is not terminal
α1 · r1(s, a, s′) + α2

∑
V ∈V P(V ) · V (s′) if s′ is terminal

Observe that if γ = 1, α1 = 1, α2 = β, and P(V ) =
∑

{F (i) | V ∗
i = V } then rK = rvalue. So in

the undiscounted setting, Krakovna et al.’s augmented reward function rK is a special case of rvalue,
which in general allows considering a wider range of future value functions.

4.1 Relationship to use of reference states

In Krakovna et al.’s [2020] more complicated version of the augmented reward function, the auxiliary
reward depends on a reference state s′t (sometimes also called a “baseline state”):

raux(s
′, s′t) =

{
β(1− γ)

∑
i F (i)V ∗

i (s
′, s′t) if s′ is not terminal

β
∑

i F (i)V ∗
i (s

′, s′t) if s′ is terminal

Their definition of V ∗
i (s

′, s′t) is somewhat complicated, but (as they note) when the environment is
deterministic it is equal to min(V ∗

i (s
′), V ∗

i (s
′
t)).

Recall that our Eq. (4) (substituted into Eq. (1)) is

rvalue(s, a, s
′) =

α1 · r1(s, a, s′) if s′ is not terminal
α1 · r1(s, a, s′) + γ · α2 ·

∑
V ∈V

P(V ) ·min(V (s′), V (s0)) if s′ is terminal

So, if γ = 1, α1 = 1, α2 = β, P(V ) =
∑

{F (i) | V ∗
i = V }, and the environment is deterministic,

that’s equal to Krakovna et al.’s modified reward function with the initial state as a reference state.

Krakovna et al. [2020] actually used a more complicated reference state. Krakovna et al. [2019]
considered several different reference states including the initial state, but they defined augmented
rewards somewhat differently. We leave it to future work to incorporate other reference states into
our approach.

5 Conclusion

We have argued that avoiding negative side effects from underspecified objectives should involve
considering impact on others in the environment. To implement this, we augmented the agent’s
terminal reward based on a distribution over future value functions – of other agents, not just its own
possible future value functions, unlike Krakovna et al.’s [2020] similar approach. Our experiments
illustrated how our approach can avoid more negative side effects. Note that we have not attempted
to address the issue of how to acquire, represent, or perform computations with a realistic distribution
over other agents’ value functions. If an inappropriate distribution is used, then the acting agent may
fail to avoid negative side effects (and might even cause more negative side effects in a misguided
effort to help others). Further study of side effects on others and how to avoid them is needed.

Finally, like so many AI advances, there are potential malicious or unintended uses of the ideas
presented here. In particular, in the same way that the caring coefficient can be set to attend to and to
help others, it could be set to attempt to effect change that purposefully diminishes others’ wellbeing
and/or agency. If we individualize the caring coefficient, as described in Appendix A, it raises the
possibility for differential treatment of agents, which presents opportunities to systematize notions of
fair (and unfair) decision making. Again, the same techniques that have the potential to systematize
fair decision making can equally be used to systematize unfair decision making.
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Appendix

In Appendix A we consider a variation of the approach from Section 2, in which we associate
different caring coefficients with different (explicitly distinguished) agents. In Appendix B we present
another variant, which makes use of a distribution over options [Sutton et al., 1999], rather than value
functions, to characterize what might be executed by future agents. Finally, further general details on
the experiments we ran are provided in Appendix C.

A Treating agents differently

To this point, we’ve utilized a distribution over value functions to capture the expected return on
future behaviour within the environment. The distribution has made no commitments to the existence
of individual agents. However, we can assume that we additionally have indices, i = 1, . . . , n,
corresponding to different agents (we will assume the acting agent is agent 1). Furthermore, for
each agent i, suppose we have a finite set of possible value functions {V (i)

1 , V
(i)
2 , . . . }, and P(Vij)

is the probability that V (i)
j is the real value function for agent i. We could then have a separate

caring coefficient αi for each agent i, and define the following reward function for the acting agent:

r′value(s, a, s
′) =


α1 · r1(s, a, s′) if s′ is not terminal
α1 · r1(s, a, s′) + γ

∑
i

αi

∑
j

P(Vij) · V (i)
j (s′) if s′ is terminal (5)

Considering individual agents raises the possibility of giving the acting agent reward based not on
the expected sum of returns of the other agents (as in Eq. (5)), but by incorporating some notion of
“fairness”. For example, we could consider the expected return of the agent who would be worst-off.
This is inspired by the maximin (or “Rawlsian”) social welfare function, which measures social
welfare in terms of the utility of the worst-off agent [see, e.g., Sen, 1974].

A.1 Experiments

(a) (b)

Figure 4: Different caring coefficients
lead to different paths (and the con-
struction of a fence in (b)).

Figures 4a and 4b illustrate the difference of treating agents
differently through the choice of caring coefficients when
using the modified reward in Eq. (5). There are 3 agents
that want to get to the exit from the starting point, they get
−1 reward in each time step. Agent 2 has a garden on the
shortest path and gets very upset (−20 reward) if someone
passes through the garden. The acting agent (agent 1) cares
about agent 3 and itself in an equal amount (α1 = α3 = 1).
In the first case we consider, agent 1 is oblivious to agent 2
(α2 = 0) and follows the shortest path to the exit, passing
through the garden (the red path in the figure). In the second
case, agent 1 cares about agent 2 a little (α2 = 1) and took
the longer (blue) path to avoid passing through the garden.
These two policies are shown in Figure 4a. In the third case, agent 1 cares about agent 2 a lot
(α2 = 10) and even though there is a cost of −50, agent 1 builds a fence to protect agent 2’s garden,
and makes agent 3 takes the longer path with an extra cost (Figure 4b).

A.2 Relation to the future task approach [Krakovna et al., 2020]

Eq. (5) introduced r′value, an augmented reward function which considered the possible value functions
of different agents. This formulation can be compared to the reward rK from Krakovna et al. [2020]
in a different way from what we did in Section 4. In the case where γ = 1, α1 = 1, and αi = 0 for
i > 1 (so only agent 1’s future reward is considered – all other agents are ignored), we can simplify
Eq. (5) to

r′value(s, a, s
′) =

{
r1(s, a, s

′) if s′ is not terminal
r1(s, a, s

′) +
∑

j P(V1j) · V (1)
j (s′) if s′ is terminal
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Observe that this is equal to rK(s, a, s′) (which was defined in Section 4) where β = 1 (and γ = 1

again) with an appropriate choice of the distributions F and P (e.g., one where V
(1)
i = V ∗

i and
F (i) = P(V1i) for each i).

B Using information about options

In the main body of the paper, we used a distribution over value functions to provide some sense of
what agents might do in the future and the expected return achievable from different states. Here we
consider those agents to instead be endowed with a set of options [Sutton et al., 1999] that could
reflect particular skills or tasks they are capable of realizing, and we use a distribution over such
options to characterize what might be executed by future agents. This could give the acting agent the
ability to contemplate preservation of skills or tasks, if desirable.

An option is a tuple ⟨I, π, β⟩ where I ⊆ S is the initiation set, π is a policy, and β is a termination
conditions (formally, a function associating each state with a termination probability) [Sutton et al.,
1999]. The idea is that an agent can follow an option by starting from a state in its initiation set I and
following the policy π until it terminates. Options provide a form of macro action that can be used
as a temporally abstracted building block in the construction of policies. Options are often used in
Hierarchical RL: an agent can learn a policy to choose options to execute instead of actions. Here we
will use options to represent skills or tasks that other agents in the environment may wish to perform.

B.1 Formulation

Suppose we have a set O of initiation sets of options, and a probability function P(I) giving the
probability that I is the initiation set of the option whose execution will be attempted after the acting
agent reaches a terminating state. To try to make the acting agent act so as to allow the execution of
that option, we can modify the acting agent’s reward function r1, yielding the new reward function
roption below:

roption(s, a, s
′) =

α1 · r1(s, a, s′) if s′ is not terminal
α1 · r1(s, a, s′) + γ · α2

∑
I∈O

P(I) · II(s′) if s′ is terminal (6)

where II : S → {0, 1} is the indicator function for I as a subset of S, i.e., II(s) =
{
1 if s ∈ I
0 otherwise

.

Note that if O is finite and P is a uniform distribution, then the auxiliary reward given by roption will
be proportional to how many options in O can be started in the terminal state. Also note that if O
represents a set of options that could have been initiated in the start state of the acting agent, we can
interpret roption as encouraging preservation of the capabilities of other agents, which is more related
to the idea of side effects.

The hyperparameters α1 and α2 determine how much weight is given to the original reward function
and to the ability to initiate the option. Given a fixed value of α1 (and ignoring the discount factor),
the parameter α2 could be understood as a “budget”, indicating how much negative reward the acting
agent is willing to endure in order to let the option get executed.

We could consider variants of this approach that further distinguish options with respect to the agent(s)
that can realize them, or by specific properties of the options, such as what skill they realize, and we
couuld use such properties to determine how each α is weighted. For example, perhaps the acting
agent could negatively weight options which terminate in states that the acting agent doesn’t like.
To illustrate, imagine that the option’s execution involves a deer eating the plants in the vegetable
garden. The acting agent might want to prevent that option from being executed by building a fence.

Finally, if we had a distribution over pairs ⟨I, V ⟩ – consisting of an option’s initiation set and a value
function associated with that option – then yet another possible reward function is

r′option(s, a, s
′) =


α1 · r1(s, a, s′) if s′ is not terminal
α1 · r1(s, a, s′) + α2

∑
⟨I,V ⟩∈O

P(⟨I, V ⟩) · II(s′) · V (s′) if s′ is terminal

This is much like roption but has an extra factor of V (s′) in the sum in the second case.
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B.2 Experiments

We give a qualitative illustration of the reward function in Eq. (6) and investigate the behaviour of the
acting agent by fixing α1 and changing α2. Figure 5 depicts a grid-world environment composed of a
small mail room in the lower right corner (depicted by the pile of packages), two designated rooms
(Room 1 and Room 2), and a Common Area. The mail room requires a key to open it. The key has to
be stored at a ‘K’ location. In addition to the acting agent, there are 5 other agents (A, B, C, D, E)
that may use the environment in the future. The acting agent has access to all areas of the grid, but
the other agents’ access is restricted. Room 1 is only accessible to agents C and D, while Room 2 is
accessible to agents A, B, C, and D, but not E. All agents can access the Common Area. Agents A, B,
C, D, and E all have options that enable them to collect a package from the mail room, but because
the key can only be stored in one of the three designated ‘K’ locations, the initiation sets for agents’
options differ, based on their personal room access.

K

K

Room 1

Room 2Common Area

A B

C
D

E

K

Figure 5: Example behaviour that
illustrates the effect of α2 in Eq. (6)

The acting agent (not depicted) aims to pick up the key, collect
a package, and place the key at one of the ‘K’ locations. It
realizes a reward of −1 at each time step. Since agents A,
B, C, D, and E all need the key to execute their option, but
are restricted in their access to certain rooms where the key
could be stored, the acting agent will differ in its behaviour
depending on how much it is willing to inconvenience itself
(incur −1 for each step) to leave the key in a location that is
accessible to others.

The coloured lines in Figure 5 denote the different policies
learned by the acting agent under different settings of α2 with
fixed α1 = 1. The distribution over initiation sets of options,
P(I), is set to a uniform distribution (the acting agent is uncer-
tain which of agents A, B, C, D, and E will attempt to execute
its option). By setting α1 = α2 = 1 the acting agent puts the
key in Room 1 as this is the closest place to leave the key (grey
+ red policy). Recall that Room 1 is only accessible to agents
C and D (40% of the agents). When α2 is changed such that
α2 = 5, the acting agent cares more about the other agents and puts the key at the ‘K’ location in
Room 2 where 80% of the possible future agents can execute their option (grey + blue policy), and by
setting α2 = 25 the acting agent incurs some personal hardship and puts the key at the far-away ‘K’
location in the Common Area, so that all the agent can execute their options (grey + green policy).

C Experimental details

In this section, we describe the technical details of our experiments. All environments are determinis-
tic, and models are trained using Q-Learning and the ϵ-greedy algorithm is used to balance between
exploration and exploitation. Experiments are all done on an AMD Ryzen Threadripper 2990WX
with 128 GB of RAM, and the training time is measured on the same machine. Each experiment is
repeated 10 times. In all the experiments α1 = 1, γ = 1 and the learning rate is 1.

Experiment ϵ Training Steps Training Time (secs)

Table 1 0.2 8× 2× 105 (acting agent), 8× 105 (others) 37.64± 0.06
Figure 1 0.2 4× 2× 105 (acting agents), 10× 105 (others) 29.72± 0.08
Figure 3 0.5 700× 7× 105 (acting agent), 4× 105 (others) 9332.86± 22.65

Figure 4a & 4b 0.2 3× 2× 105 (acting agent), 3× 105 (others) 14.02± 0.12
Figure 5 0.2 3× 2× 105 (acting agent) 9.30± 0.12

Table 2: Training steps, running time and hyperparameters of the experiments

Table 2 provides details of our set up. The top three entries pertain to the experiments in the main
body of the paper. The fourth entry refers to the experiment illustrating different considerations
for different agents as shown in Appendix A. The fifth entry refers to the options formulation in
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Appendix B. Our set up for all of our experiments assumes that agents, other than the acting agent,
are executing fixed policies (resp. options). In the options case, the actual option policies did not need
to be defined and we simply encoded the initiation sets for each of those options. In all other cases,
the fixed policies of the “other agents” were learned (for the Krakovna-style baseline, the “other
agents” are just agent 1 in the future). As such in Table 2, where relevant, the column describing
Training Steps distinguishes between the training steps for “acting agent” and “others”. The training
steps for “others” (the other agents) is done in advance of training the acting agent and serves to
establish the fixed policies of those agents and to populate our distribution of value functions. For the
Table 1 experiment, the steps for “others” also includes the steps used in training the baseline with
the non-augmented rewards. The training steps for the acting agent reflects the training steps for our
approach (and the Krakovna-style baseline). For the Figure 3 experiment, the model is trained 700
times by changing α2 from 0 to 7.0 with steps of 0.01. Similarly, in the experiments in the appendix,
corresponding to Figures 4 and 5, the models are trained by setting α2 to three different values.
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