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1. INTRODUCTION

Proof complexity was introduced by [Cook and Reckhow 1979] as a framework within
which to study the NP vs. coNP problem. Cook and Reckhow defined propositional
proof systems in a very general way by insisting only that proofs be verifiable in poly-
nomial time, and showed that the existence of a propositional proof system in which
all tautologies have polynomial-size proofs is equivalent to NP = coNP. They suggested
a program to separate NP and coNP (and thereby P and NP) by showing superpoly-
nomial proof size lower bounds for explicit tautologies in progressively stronger proof
systems. The hope was that techniques from logic and proof theory could be effec-
tive where techniques inspired by recursion theory or combinatorics are not. The fact
that the very definition of the P vs. NP question involves the notion of “proof” in a
fundamental way makes this hope somewhat plausible. Indeed, over the past couple
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of decades, lower bounds have been shown for various natural proof systems [Haken
1985; Beame et al. 1992]. However, lower bounds for natural systems such as Frege
and Extended Frege still seem out of reach.

In this paper, we draw a connection between two fundamental questions in proof
complexity. The first question is to prove strong lower bounds for bounded-depth Frege.
Superpolynomial lower bounds are known for this proof system, but there aren’t any
lower bounds known that are purely exponential, i.e., 22("") where the constant ¢
doesn’t depend on the depth of lines in the proof (the best known lower bound is

s—d
Q2™ ) for depth d Frege [Beame et al. 1992; Pitassi et al. 1993; Krajicek et al. 1995;
Fu and Urquhart 1996]). The second question, which is perhaps the major open ques-
tion in proof complexity, is to obtain superpolynomial lower bounds for Frege. This
question is believed to be very hard — it is non-trivial even to think of plausible can-
didate tautologies for which superpolynomial lower bounds are believed to hold [Bonet
et al. 1995; Krajicek 2011]. We show that progress on the first question would lead to
progress on the second, by giving a general simulation of polynomial-size Frege proofs
by subexponential-size bounded-depth Frege proofs. More precisely, we show that even

a on proof size lower bound for proving CNF tautologies in depth d Frege would
translate to a superpolynomial proof size lower bound for Frege.

The proof of this connection is inspired by a result in circuit complexity, further
strengthening the “mapping” between proof complexity and circuit complexity. The
circuit complexity result we draw inspiration from is that NC! can be simulated by
bounded-depth circuits with subexponential size [Allender et al. 2008]. The standard
proof of this goes via a divide-and-conquer technique. We use a similar technique in our
context, however our task is made harder in a sense by the fact that we need to reason
within bounded-depth Frege about equivalence of various alternative representations
of a function. The technical heart of our proof involves such reasoning.

Our result is also relevant to algorithmic analysis, which is another major motiva-
tion for studying proof complexity. A propositional proof system can be thought of as a
non-deterministic algorithm for deciding if a formula is a tautology or not. Proof sys-
tems such as bounded-depth Frege and Frege provide particularly simple and natural
examples of such algorithms. Indeed, many of the algorithms and heuristics used in
practice for solving SAT, such as DPLL and Clause Learning, arise from determinizing
the non-deterministic algorithm corresponding to some natural proof system [Pipatsri-
sawat and Darwiche 2011]. Thus lower bounds for proof systems give us information
on the performance of algorithms used in practice.

Algorithmic analysis would appear to be a simpler question than proving complexity
lower bounds, since a complexity lower bound is a statement about any possible algo-
rithm for a problem, while algorithmic analysis deals with specific algorithms. There
are somewhat artificial algorithms such as Levin’s optimal algorithm for SAT [Levin
1973] whose analysis is just as difficult as proving complexity lower bounds. However,
one might hope that for more natural algorithms, such as those corresponding to nat-
ural propositional proof systems, this is not the case. Our current lack of progress in
proving proof complexity lower bounds indicates that there might be barriers even in
algorithmic analysis of natural algorithms. Our main result here can be interpreted
as saying that the algorithmic analysis question for the algorithm corresponding to
bounded-depth Frege is as hard as the question for the algorithm corresponding to
Frege (which in some sense is a more sophisticated algorithm). In general, it would be
useful to have a theory of algorithmic analysis which gives us information about the
relative difficulty of analyzing various natural algorithms. We make a small step in
this direction in the setting of non-deterministic algorithms recognizing TAUT, the set
of all tautologies.

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.



Exponential lower bounds for AC°-Frege imply superpolynomial Frege lower bounds A3

There are a couple of interesting byproducts of our main result. First, we are able
to prove tight bounds for proving certain explicit tautologies in bounded-depth Frege.
Lower bounds for the tautologies we consider were already shown in [Krajicek 1994].
We give corresponding upper bounds as a corollary of our simulation of Frege by
bounded-depth Frege.

Second, we address the question of automatizability for bounded-depth Frege sys-
tems. A proof system P is automatizable if there is an algorithm that given a tautology
f outputs a P-proof of f in time polynomial of the smallest P-proof of f. Despite con-
siderable effort, the question of whether low-depth proof systems are automatizable
is unresolved. Bonet, Domingo, Gavalda, Maciel and Pitassi [2004] show that depth &
Frege systems are not automatizable under a cryptographic assumption, but their re-
sult breaks down for small & (less than 6). We use our main result to re-derive their
main theorem. Our proof is cleaner and simpler than theirs, and we show that it could
potentially resolve the automatizability question for lower depth Frege systems than
what is currently known.

Subsequent to our work, two alternative proofs of our main theorem have appeared.
Miiller’s proof [Miiller 2013] uses model-theoretic methods, and Cook and Ghasemloo’s
proof [Ghasemloo and Cook 2013] uses bounded arithmetic. In both proofs, the role
of the circuit complexity result is played by Nepomnjas¢ij’s theorem [Nepomnjascij
19701, which states that NTimeSpace(n®®), n°()) C AltTime(O(1), O(n¢)) for every ¢ >
0. Cook and Ghasemloo’s proof also applies for the uniform case: it shows that uniform
polynomial-size Frege proofs translate to uniform subexponential-size bounded-depth

Frege proofs.

Paper organization. After describing some necessary background in Section 2, we
formally state our main theorem in Section 3. Section 3.1 shows that our simulation
is tight, and in Section 3.2 we prove that Frege systems do not have feasible inter-
polation and are not automatizable unless the Diffie—-Hellman problem is computable
by polynomial-size circuits, thus reproving the main result of [Bonet et al. 2000]. The
proof of our main theorem constitutes Section 4.

2. PROOF SYSTEMS

We will work with the propositional sequent calculus, PK. In the fundamental work of
Cook and Reckhow [1979], many reasonable formulations of Frege systems (including
all PK-like systems) were studied and shown to be polynomially equivalent; we work
with PK for convenience, but any other Frege system would do.

Each line in a PK proof'is a sequent of the form A,,..., A, — By,...,B,,, where —
is a new symbol and A;, B; are formulas. The intended meaning is that the conjunction
of the A;’s implies the disjunction of the B;’s.

A PK proof of — f is a sequence of sequents, such that each sequent is either
an instance of the axiom A — A, or follows from previous sequents from one of the
inference rules, and such that the final sequent is — f.

The rules of PK are of three types: (i) the structural rules, (ii) the logical rules, and
(iii) the cut rule.

The structural rules are weakening (formulas can always be added to the left or to
the right), contraction (two copies of the same formula can be replaced by one), and
permutation (formulas in a sequent can be reordered).

The cut rule allows deriving I' — A from A,T' — A and I' — A, A. The formula
A is called the cut formula.

The logical rules, shown below, allow us to introduce each connective on both the left
side and the right side.
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(Negation Left, L) From I' — A, A, derive =A,T' — A.

(Negation Right, -R) From A,I' — A, derive ' — —A, A.

(And Left, AL) From A, B,T' — A, derive AA B,I' — A.

(And Right, AR) FromI' — A, A and ' — B, A, derive ' — A A B, A.
(Or Left, VL) From A, — A and B,T' — A, derive AV B, ' — A.
(Or Right, VR) From I' — A, B, A derive I' — AV B, A.

When presenting proofs in PK, we will only mention the logical rules and the cut rule,
but not the structural rules.

The size of a formula is the total number of symbols occuring in it, and the size of a
PK proof is the sum of the sizes of all formulas occurring in the proof.

The following two definitions are taken from [Krajicek 1995, Definition 4.3.1].

We can view every formula ¢ over the de Morgan basis {A,V,—} as an improper
binary tree, in which nodes corresponding to subformulas of the form —¢ have only
one child . The logical depth of a formula ¢, denoted by ldp(y¢), is the depth of the
formula when considered as an improper binary tree. For example, (A A B) A C has
logical depth 2, and —A has logical depth 1. A formula whose logical depth is D has
size at most 2P — 1, and can depend on at most 2° variables.

Given a formula ¢ and a leaf f in the improper binary tree corresponding to ¢,
consider the root-to-leaf path leading to f, and write out all the connectives showing
up on the path in order, making up the connective sequence of f. We can write this
sequence as a sequence of “runs” of identical connectives. The connective depth of f is
the number of runs in its connective sequence. The depth of a formula is the maximal
connective depth of a leaf. For example, consider the formula (AA (BV (CV (=—D)))AE
and the leaf D. The connective sequence of D is A A V V ——, which consists of three
runs, and so the connective depth of D (and the depth of the entire formula) is 3.

We have given definitions of two different notions of depth. We will use logical
depth to reason about formulas in Frege proofs, and depth to reason about formulas in
bounded depth proofs.

A cut-depth k proof, also called an AC)-Frege proof, is a PK proof in which every cut
formula in the proof has depth at most k (other formulas are allowed to have arbitrary
depth). Note that in the literature, an AC)-Frege proof is often defined to be a PK proof
where all formulas have depth at most k. This definition is equivalent to ours if the
proven formula has depth at most k.

SOk W

For technical reasons, we will need all the formulas in our proofs to be balanced
(have depth logarithmic in their size). By the following result of Reckhow, this can be
assumed without loss of generality for polynomial-size proofs.

THEOREM 2.1 ([RECKHOW 19761, [KRAJICEK 1995, LEMMA 4.4.14]). If a for-
mula of logical depth D has a PK proof of size s, then it has a PK proof of size s
in which all formulas have logical depth D + O(log s).

The proof of Reckhow’s theorem is based on Spira—Brent-style balancing [Spira 1971;
Brent 1974].

We briefly define feasible interpolation and automatizability for proof systems. We
comment that while the definition of feasible interpolation first appears explicitly
in [Bonet et al. 2000], the concept had been introduced to proof complexity by Jan
Krajicek [1997].

Definition 2.2 (Bonet, Pitassi and Raz [2000]). A proof system S has feasible inter-
polation if for every sequence of tautologies of the form F,, = A, (%, ) V B, (Z, Z) which
have proofs in S of size poly(n), where i and 7 are disjoint sets of variables, there is
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a sequence of polynomial-size circuits C,, such that for any truth assignment « to 7,
Cy(a) = 0 implies that B, («a, 2) is a tautology, and C,,(«) = 1 implies that A, («, ) is a
tautology.

Definition 2.3 (Bonet, Pitassi and Raz [2000]). A proof system S is automatizable
if there exists an algorithm A such that for all tautologies f, A(f) returns an S-proof
of f, and the runtime of A on f is polynomial in the size of the smallest S-proof of f.

Alekhnovich and Razborov [2001] showed that Resolution is not automatizable un-
der a parameterized complexity assumption. Bonet, Pitassi and Raz [2000] showed
that automatizability implies feasible interpolation, and also proved that TC°-Frege
(and hence Frege) does not have feasible interpolation under the assumption that the
Diffie-Hellman function does not have polynomial-size circuits. Bonet et al. [2004]
built on this result to show that bounded-depth Frege does not have feasible interpo-
lation if the Diffie—-Hellman function does not have subexponential-size circuits. We
reprove this result in Section 3.2.

3. MAIN THEOREM AND APPLICATIONS
Our main result is the following theorem.

THEOREM 3.1. Let ¢ be a formula provable in Frege in size s, satisfying 1ldp(y) <
Clog s. For every k > 1 there is an AC}, ,-Frege proof of ¢ of size 90(ks (/1))

COROLLARY 3.2. Let ¢ be a formula of size s and logical depth at most C'log s, and
let ¢ be an integer. If ¢ has a Frege proof of size O(s’) then for every k > 1 there is an

ACY,, 4-Frege proof of ¢ of size 90 (ks Pe (/M)

The proof of the theorem occupies Section 4. We comment that sometimes depth is
defined without counting negations, and in that case the proofs constructed in Theo-
rem 3.1 have depth &k + 3 rather than & + 4. It might be possible that 4 can be replaced
by a slightly smaller integer.

3.1. Tightness of our simulation

The result analogous to Corollary 3.2 for circuit complexity shows that any function
computable by a polynomial-size formula can be computed by depth d circuits of size
exp(n®/4)), This result is tight, since Hastad’s theorem [Héstad 1987] proves that the
parity function on n Boolean variables requires ACY circuits of size exp(n'/?).

Similarly we can show that our result is also tight. The following theorem states
that there are formulas that have polynomial-size Frege proofs, but that require ACY
proofs of size exponential in n'/.

THEOREM 3.3. For every d there is a sequence of balanced formulas ¢, of depth
d + 3 provable in Frege by a proof of size s, such that every ACY_, proof of ¢, requires

size 250"

PROOF. The formula ¢,, is PHP,,, the pigeonhole principle with n + 1 pigeons and
n holes, with each variable replaced by a Sipser function [Sipser 1983] of depth d.
Buss [1987] showed how to prove PHP,, using a Frege proof of size n°1). Substituting
the Sipser functions, we obtain a Frege proof of size n?t0(1),

Conversely, Krajicek [1994, §4] gives a lower bound of exp(n'/®) for proving ¢, in
tree-like ACY (a tree-like proofis one in which each sequent is used at most once). Since
an arbitrary ACY_, proof can be simulated in tree-like ACY with at most a quadratic
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blow-up [Krajicek 1994, Proposition 1.1], this gives a lower bound of exp(n'/?) for prov-
ing ¢, in ACY_,. O

Since the formulas ¢,, are balanced, Theorem 3.1 applies, and with k£ = d — 5, gives
proofs essentially matching the lower bound.

The above result proves tightness for formulas of high depth. We conjecture that
our simulation is also tight with respect to CNF formulas. The obvious formula for
witnessing the lower bound is the pigeonhole principle itself. However, as an artifact
of the switching lemma technique used to obtain depth d Frege lower bounds for the
pigeonhole principle, the current best lower bound is exponential in n<" for suitable
€ > 0 [Beame et al. 1992; Fu and Urquhart 1996]. It is a well-known open problem to
improve the lower bound to exp(n'/?) for the pigeonhole principle, or for any other CNF
formula. Such a result would show that our simulation is tight even for CNF formulas.

3.2. Automatizability

Using our theorem, we are able to show that bounded-depth Frege is not automa-
tizable, under an assumption about the hardness of factoring. While this result has
already been known [Bonet et al. 2004], we show how to prove it as a simple corollary
of our main theorem.

The starting point is a similar result for Frege.

THEOREM 3.4 ([BONET ET AL. 2000]). Frege systems do not have feasible interpo-
lation and are not automatizable unless the Diffie—Hellman problem is computable by
polynomial-size circuits.

The Diffie-Hellman problem is based on a prime number p, |p| = n. The input to
the problem is a number g less than p, and numbers g¢ (mod p), g (mod p), for some
numbers a,b < p. The output should be g?* (mod p). The main lemma from [Bonet
et al. 2000] shows that a particular tautology, DH,, stating that the Diffie—Hellman
function is well-defined, has Frege proofs of size O(|p|®), where ¢ < 4. Our normal form

theorem shows that DH,, has ACY-Frege proofs of size 20(kn°"'Y) Hence it follows that
if AC)-Frege is automatizable (or has feasible interpolation) then the Diffie—Hellman
problem can be solved in time 2°%7°"’*) for all k. This implies the following theorem.

THEOREM 3.5 ([BONET ET AL. 2004]). Bounded-depth Frege systems do not have
feasible interpolation and are not automatizable unless for all o, the Diffie—Hellman

problem is computable by circuits of size o’

Unfortunately, the quality of this negative result degrades for small k. Indeed, de-
spite considerable effort, it is unknown whether or not very low depth Frege systems
(when £k is less than 5) are automatizable (the recent paper [Atserias and Maneva
2011] reveals a connection between automatizability of AC5-Frege with bottom fan-in
2 and feasibility of mean-payoff games). The main reason for this is that the Diffie—
Hellman function is not hard enough! Algorithms exist for computing discrete log over
all finite fields, and hence for Diffie—Hellman, that run in time exp(y/n). Moreover, the
number field sieve is conjectured to solve discrete log (and thus Diffie—-Hellman) in
time exp(</n). Other algorithms for discrete log over small characteristic are conjec-
tured to run even faster: Joux’s algorithm [Joux 2013] in time exp(+{/n), and the BGJT
algorithm [Barbulescu et al. 2013] in quasipolynomial time.

On the other hand, it seems entirely possible to come up with a different interpolant
statement for another function that is much harder — truly exponential in n, and that
still has efficient Frege proofs. Using our main theorem (which scales down any Frege
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proof), this would imply new negative results for automatizability and feasible inter-
polation for lower depth Frege systems than what is currently known.

4. PROOF OF MAIN THEOREM
4.1. Proof overview

Suppose that P is a Frege proof of some formula f. We want to simulate P by a
subexponential-size depth d Frege proof of f. The high-level idea behind the simulation
is to replace every formula in the proof by its equivalent depth d (subexponential-size)
flattened formula, and then to show that if C' was derived by a rule from A and B, then
the flattened version of C can be efficiently derived from the flattened versions of A
and B.

We can assume without loss of generality that all formulas f in the proof are bal-
anced (Reckhow’s theorem). We first review the translation of a balanced formula f to
its flattened form. Suppose that we want to replace f, of size n and logical depth logn,
by a depth 4 formula. The idea is to view [ as consisting of two layers: the top layer is a
formula, fi, of height (logn)/2, and the bottom layer consists of 2(1°7)/2 — | /n subfor-
mulas, g1, .. .,9,/, each of height (logn)/2. Since f; has height (logn)/2, it has at most
v/n inputs, and thus can be written as either a CNF or a DNF formula (of its inputs)
of size \/n2V"™. Similarly, each formula in the bottom layer can be written as either a

CNF or a DNF formula of size \/n2vV". Writing f; as a CNF formula, and writing all
formulas g; in the bottom layer as DNF formulas, we obtain a new formula for f of
depth 4 and total size O(n22v"). (The depth is 4 because we can merge the middle two
AND layers to obtain the following layer structure: OR, AND, OR, NOT.) In a similar
manner, we can replace any formula f, of size n and logical depth logn, by a depth
d + 2 formula: Now we break f up into d equally-spaced layers, each of size (logn)/d.
Again, we write the formula at the top layer as a CNF formula, the formulas at the
next layer as DNF formulas, and so on. This gives a formula of depth 2d + 1 and total
size O(n2d"1/d), but since we alternated CNF/DNF's, we can collapse every other layer
to obtain a new flattened formula of depth 2d — (d — 1) + 1 =d + 2.

Now that we have flattened translations of each formula in P, it remains to fill in the
proof, to show that the flattened versions can be derived from one another. In order to
carry this out, we define a more general procedure for flattening a formula as follows.
Let d be any depth vector —i.e., a sequence of increasing numbers, where each number
in the sequence is between 1 and logn. Then from a balanced formula f of size n and
logical depth logn, d defines a new flattened formula of depth |d_] + 3: we break f up
into |J] + 1 many layers, where now instead of the layers being equally spaced, the
breakpoints are specified by d. For example, if d= (4,12) and f has depth 20, then the
d-flattened version of f will have 3 layers, the top layer containing levels 1 through 3,
the second level 4 through 11, and the third level 12 through 20. Our main lemma shows
that for any balanced formula f and any two depth vectors d1, do, there are efficient
low-depth Frege proofs showing that the d;-flattened version of f is equivalent to the
dy-flattened version of f. This main lemma will then allow us to prove that for any
rule of our proof system, the flattened versions of the antecedent formulas derive the
flattened version of the consequent formula.

4.2. Reducing formula depth

As described in the overview, we reduce the depth of a formula using a divide-and-
conquer technique. The idea is to decompose the formula into relatively small sub-
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trees, and replace each sub-tree by a CNF or DNF which is equivalent to the formula
computed by the sub-tree.

Definition 4.1. Let ¢ be an arbitrary formula depending on n variables. Denote by
CNF(¢) (DNF(p)) some canonically chosen CNF (DNF) representing ¢ of size O(n2").
We require that CNF(p A ¢) = DNF(p A ¢) = p A ¢, and similarly for p vV ¢ and —p, when
p and ¢ are variables.

We think of formulas as trees in which internal nodes are either binary (if the cor-
responding connective is A or V) or unary (when the connective is —), and leaves are
labelled by variables. Each formula has an equivalent formula of the same size where
negations only appear immediately above leaves, just by applying de Morgan’s laws
repeatedly to “move” negations down. We will say that such formulas are in negation
normal form, and will work with such formulas throughout our simulation.

Definition 4.2. A formula is in negation normal form if negations only appear next
to variables, and there are no double negations. Let ¢ be a formula in negation normal
form. Its dual form M(p) is obtained from ¢ by switching A and V and negating all
literals, that is for each variable = switching x and —x.

Note that M(y) is logically equivalent to - by de Morgan’s laws.
We define two canonical flattened forms in parallel. We stress that these forms apply
to arbitrary formulas, which need not be in negation normal form.

Definition 4.3. Let d = dy,...,d; be a vector of increasing positive integers. The

— -

conjunctive flattened form C(y;d) and disjunctive flattened form D(y;d) of a formula ¢
are defined recursively as follows. If £ = 0 (i.e., d is the empty vector) or d; > ldp(y)

— —

then C(y; d) = CNF(y) and D(y; d) = DNF(p). Otherwise, let ¢) be the formula obtained
from ¢ by trimming the tree at logical depth d;. The formula ) depends on the vari-
ables of ¢ as well as on variables corresponding to subformulas of ¢ at logical depth d;;
we call these true variables and subformula variables, respectively. Let v, denote the
subformula variable corresponding to the subformula .

We explain how to calculate the conjunctive flattened form; the disjunctive flattened
form is analogous. Start with CNF(¢). Let & = dy — d4,...,dr — di. Replace each posi-
tive occurrence of a subformula variable v, in CNF(¢) with D(x; €), and each negative
occurrence with M(C(x; €)). The result is C(yp).

The flattened forms are both shallow and not too large.

Definition 4.4. Let ¢ be a formula and d = di,...,ds be a vector of increasing
positive integers, such that d; < ldp(¢). Let dy = 0 and di+1 = ldp(p). The extent of ¢
with respect to d is

=

ex(p;d) = max{d;y1 —d; : 0 < i < k}.
LEMMA 4.5. Let ¢ be a formula and d a vector of length k and extent x = ex(yp; cf)
Then C(yp;d) and D(y; d) are formulas of depth at most k + 3 and size 2°*") equivalent
to .

PROOF. Itis easy to see, using de Morgan’s laws, that the flattened forms are equiv-
alent to the original formula. The recursive definition of the flattened forms ensures
that all negations are pushed to the leaves, and that CNFs and DNFs alternate. There-
fore their depth is k + 3 (the depth of a CNF/DNF is 3).

In order to estimate the size, denote by M (k,z) the maximum size of a flattened
form of a formula with respect to a vector of length k& and extent x. By Definition 4.1,
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M(0,z) = O(2%2%") = 29(") since a formula of logical depth = depends on at most 2°
variables. Since M (0, z) also bounds the number of literals in a CNF/DNF, M (k+1,z) <
M(0,) + M(0,2)M(k, z). Therefore M (k,z) < S5, M(0,z)!+! = 20:2")

4.3. Brute force proof techniques

We state some simple lemmas which will enable us to reason about flattened forms.
We start with a general proof technique for arbitrary sequents.

Definition 4.6. A truth assignment for variables zi,...,z, is a function
f:dz1,...,zn} — {L, T} assigning to each variable a truth value (L is False, T is
True).

LEMMA 4.7. Let ¢ be a formula of size m depending upon the set of variables X of
size n, and consider a truth assignment f for X. If ¢ is satisfied by f then the sequent

{reX: flz)=T} —{zeX: f(z)=1}¢

has a cut-free proof of size O(nm(n + m)). If ¢ is falsified by f, then the same is true for
the sequent

{reX: flz)=The—{zeX: f(z)=1}

Furthermore, if ¢ is in negation normal form then negation rules are only applied to
axioms ¥ — x.

PROOF. The proof is by structural induction. Denote by S(¢) the sequent alluded to
in the statement of the lemma. We first describe the proof, and then analyze its size.

If ¢ = z is a variable then S(y) follows from the axiom # — x using weakening.
If ¢ = —) then S(y) follows from S(v) by using the appropriate — introduction rule.
When ¢ is in negation normal form, this case can happen only when ¢ is a variable z,
and so we can obtain S(¢) from x — = by using the appropriate — introduction rule
followed by weakening.

If o = ¢ Ax and ¢ is satisfied by f, then S(¢) follows from the sequents S(¢)) and S(x)
by using the right A introduction rule. If it is falsified by f, then either ¢ is falsified or
x is falsified. Suppose, without loss of generality, that ¢ is falsified. Then S(y) follows
from S(¢) by using the left A introduction rule. The proofs are similar if the main
connective is V instead of A.

In total, we have eliminated each connective by using one logical rule, and each
variable using n weakening rules. The total number of sequents needed is therefore
O(nm), each of size at most n +m. O

LEMMA 4.8. Let I' — A be a sequent of size m depending on the set of variables
X of size n. Suppose that the sequent is valid under some truth assignment f. Then the
sequent

F{zeX:flx)=L} —A{zeX: flx)=T}

has a cut-free proof of size O(nm(n +m)).
Furthermore, if all formulas in T', A are in negation normal form then negation rules
are only applied to axioms x — x.

PROOF. Since the sequent is valid under f, either one of the formulas in T is false,
or one of the formulas in A is true. Use Lemma 4.7 to prove the corresponding sequent,
and conclude the sequent in the statement by using at most m weakening rules, for an
extra size of O(m(n +m)). O

LEMMA 4.9. Let ' — A be a valid sequent of size m, in which n variables appear.
The sequent is provable using a proof of size O(m?*n2") which cuts only on variables.
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Furthermore, if all formulas in T', A are in negation normal form then negation rules
are only applied to axioms v — .

PROOF. Let X be the set of variables appearing in ' — A; note that n = | X| < m.
Apply Lemma 4.8 for each of the 2" truth assignments. Divide all truth assignments
into pairs where only the value of the leftmost variable in x € X differs. Apply the
cut rule to all pairs, eliminating the variable z. Continue this way, eliminating all
variables in order, to obtain a proof of I' — A. In total, the proof uses 2" — 1 cuts. O

Our next lemma states that we can substitute formulas for variables to get a valid
proof.

LEMMA 4.10. Let 7 be a proof of ' — A of size s, let x1,...,x, be variables ap-
pearing in I' — A, and let p1,..., ¢, be formulas of size at most m. If we substitute
everywhere @; for x; then we get a valid proof of size at most sm.

PROOF. All the rules of PK are closed under substitution. O

The preceding lemma shows that we can lift a proof of a sequent by attaching stuff
‘below’. The next lemma shows that we can also lift a proof by attaching stuff ‘above’;
this corresponds to deep inference.

Definition 4.11. The double sequent P «— @ is the pair of sequents P — @ and
Q — P.

LEMMA 4.12. Let P — Q be a sequent of size m, and ¢(z) be a formula of size n in
which the variable x appears only once (other variables may also appear). The double
sequent ¢(x|P) <— ¢(z|Q) has a cut-free proof from the double sequent P «+— Q) of size
O(n(m+n)).

PROOF. The proof'is by structural induction. If ¢ = x then there is nothing to prove.
If ¢ = ), then ¢(P) +— ¢(Q) follows from ¢ (P) «+— 1(Q) by four applications of the
- introduction rules.

If ¢ = ¢ A x, then assume, without loss of generality, that x appears in y. We use the
following proof twice:

Y —p L xX(P) — x(Q)
YAX(P) — Y AX(P) — x(Q)
Y AX(P) — ¥ Ax(Q)

Each instance of the proof uses a different assumption. A similar proof works if the
main connective is V instead of A. In total, there are O(n) sequents of size O(m+n). O

AL
AR

When the variable = appears several times in ¢, we can prove a similar statement
using the cut rule.

LEMMA 4.13. Let P — @ be a sequent of size m, p be a formula of size n, and x
be a variable. The sequent ¢(z|P) — ¢(z|Q) has a proof of size O(mn(m + n)) from
the sequent P — @ cutting on formulas of depth d, where d is the maximal depth of a
formula obtained from ¢ by replacing some of the occurrences of x by P, and others by

Q.

PROOF. Suppose that = occurs ¢ < m times in ¢. Define hybrid formulas ¢y =
o(x|P), ..., 00 = p(z|Q) as follows: in the formula ¢, the first ¢ occurrences of x are
replaced by @, and the rest by P. For each 0 <t < ¢, Lemma 4.12 shows how to prove
ot — @ir1 from P — @ in size O(n(m + n)). In total, these proofs take up size
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O(n(m+mn)) = O(mn(m+n)). We can deduce ¢y — ¢, (i.e., (x| P) — ¢(x|Q)) using
¢ < m applications of the cut rule. O

We next state two easy lemmas on dualization.

LEMMA 4.14. Let ¢ be a formula of size n in negation normal form. The double
sequents M(yp), p +— and M(yp) <— —p have a cut-free proof of size O(n?).

PROOF. We construct inductively proofs of the double sequent M(y), ¢y +—. From
this, we conclude the double sequent M(y) «— —¢ using two applications of the —
introduction rules.

If ¢ = 2 or ¢ = -2 then required double sequent is proved as follows:

r—rx r—> T
-L =R,
T, x —> —
If ¢ = 4 A x then the proof is
M
(W), — L M(x), x — L

M(¢), % Ax — M(X),waHvL
M(¥) v M(x), ¥ A x —

— M(¥), 4 y — M(x), x

— M(¢) V M(x), ¢ — M(¥) vV M(x), x R

— M(¥) V M(x), ¥ A x
If ¢ = ¢ V x then the proof is similar. In all, we have O(n) sequents of size O(n). O
The second lemma allows us to lift an equivalence to its dualized version.

LEMMA 4.15. Let v, be formulas in negation normal form. Suppose that the dou-
ble sequent ¢ +— 1 has a proof of size s cutting on formulas of depth at most D. Then
the double sequent M(yp) +— M(v) has a proof of size O(s) cutting on formulas of depth
at most D + 1.

PROOF. For a formula A, denote by A the formula obtained from A by replacing
each occurrence of a negative literal —z by x, and each occurrence of a positive literal
2 (not occurring in the context —z) by —x. The depth of A is at most one more than the
depth of A. ~

Given a proof II, if we replace every formula A with A, then most of the derivation
steps remain valid. Indeed, the structural rules and the cut rules always remain valid,
as are the logical rules other than the negation rules. The negation rules are valid
unless —A # —A. This, in turn, only happens when A = x, where the invalid derivation
in question is

I' — -z, A
z, I — A

or its counterpart from the right. This derivation can be implemented as follows:

' — -z, A
— L — Ax,-L,-R
-z, ' — A r— 0x
Cut
z,I'— A

If we take the corresponding proof of  — 1), switch A with Vv, and switch the
side of each formula in the proof, then we get a valid proof of M(¢)) — M(y): it is
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straightforward to check that all the rules remain valid under this transformation.
Similarly we can obtain a proof of the other sequent. O

4.4. Moving down the depth vector

In this section we show how to prove the equivalence of two flattened forms of the
same formula which correspond to two different depth vectors. As a preliminary step,

— —

we show how to prove that the two flattened forms C(y;d) and D(p;d) are equivalent
using a recursive construction.

LEMMA 4.16. Let ¢ be a formula, and d=di,... ,dy, be a vector of increasing posi-
tive integers. The double sequent C(p;d) «<— D(y;d) has a proof of size 2°*2") cutting

—

on formulas of depth at most k + 4, where x = ex(y; d).

PROOF. The proof is by induction on k. When k£ = 0, we prove that the CNF and
DNF forms are equivalent using Lemma 4.9.
If k > 0, let ¢ be the part of ¢ up to level di, and define €= ds — dy,...,dr — dy1. Ac-

-

cording to Definition 4.3, C(y;d) is obtained from CNF(v) by replacing each positively
occuring subformula literal v, by D(x; €), and each negatively occuring subformula lit-

-

eral —v, by M(C(x;€)). Analogously, D(y;d) is obtained from DNF(¢)) by replacing v,

—

by C(x;€) and —v, by M(D(x;€)). We also define a hybrid form H(y; d) obtained from
CNF(¢) by replacing v, by C(x; €) and —wv, by M(D(x; €)).

For each subformula Y, the induction hypothesis gives us a proof of the double se-
quent C(x; €) +— D(x; &) of size 20((*~1)2") cutting on formulas of depth at most & + 3,
and Lemma 4.15 gives us a proof of M(C(x;€)) +— M(D(x;€)) of similar size cut-
ting on formulas of depth at most k + 4. Since there are 2°(*) subformulas, in total
these proofs have size 20(*2"), Several applications of Lemma 4.13 give us a proof of

C(p; d) +— H(p;d) of size 2°(+2°) cutting on formulas of depth at most & + 4.
Lemma 4.9 gives us a proof of CNF(1)) +— DNF(1) of size 2°(*) which cuts only on

— —

variables. Lemma 4.10 lifts this to a proof of the double sequent H(p; d) «+— D(y;d) of
size 2°0(%2") cutting on formulas of depth at most k + 2. Cutting over H(y; d) (a formula

— -

of depth & + 4), we obtain the desired proof of C(y;d) <— D(y;d). O

The following lemmas show how to “split” a layer in a flattened form. We start with
the special case in which it is the first layer which is split.

LEMMA 4.17. Let ¢ be a formula, d=di,...,dy avector of increasing positive in-

— —

tegers, and 6 < d; be a positive integer. The double sequents C(p;d) <— C(p;0,d) and
D(p;d) «— D(y;6,d) have proofs of size 2°2") cutting on formulas of depth at most
k+ 4, where x = ex(p; d).

PROOF. We show how to prove the first double sequent; the other one is proven in
the same way.
Let ¢ be the part of ¢ up to level dy, and define € = dy — dy, ..., d; — di. According to

—

Definition 4.3, C(p;d) is obtained from CNF(¢) by replacing each positively occuring
subformula literal v, by D(x;é), and each negatively occuring subformula literal —w,

—

by M(C(x;€)). Similarly, C(¢;4,d) is obtained from C(%;¢) by replacing v, by C(x;é€)
and —w, by M(D(x; €)). We also define a hybrid form H(¢y; d) obtained from CNF(¢) by
replacing v, by C(x; ) and —v, by M(D(x;é€)).

For each subformula y, Lemma 4.16 gives us a proof of C(x;é) <— D(x;é) of size

20((k=1)2%) cutting on formulas of depth at most k+ 3, and Lemma 4.15 gives us a proof
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of M(C(x;¢€)) «— M(D(x;€)) of similar size cutting on formulas of depth at most & +
4. Since there are 2°(*) subformulas, in total these proofs have size 20(*2"). Several
applications of Lemma 4.13 give us a proof of C(y; a7) +— H(p; d) of size 20:2°) cutting
on formulas of depth at most k + 4.

Lemma 4.9 gives us a proof of CNF(z)) «— C(1;6) of size 2°(®) which cuts only on

- -

variables. Lemma 4.10 lifts this to a proof of the double sequent H(y; d) <+— C(¢; d, d) of
size 20(%2") cutting on formulas of depth at most k + 2. Cutting over H(y;d) (a formula

= =

of depth & + 4), we obtain the desired proof of C(y;d) «— C(p;d,d). O

The general case is given by the following lemma.

LEMMA 4.18. Let ¢ be a formula, d=d,...,ds avector of increasing positive inte-
gers, and d; < § < d;y1, where 1 < i < k. Define €=dy,...,d;,0,d;+1,...,dr. The double
sequents C(p;d) «— C(p; &) and D(y;d) «— D(p; @) have proofs of size 2°4+2°) cutting
on formulas of depth at most k + 4, where x = ex(yp; cZ}

PRrOOF. We show how to prove the first double sequent; the other one is proven in
the same way.
Assume for simplicity that 7 is even; the proof when 7 is odd is very similar. Let 1) be

the portion of ¢ up to level d;, and define f: di,...,d;and § = d;j11 — d;, ..., dx — d;.

According to Definition 4.3, C(¢p; d) is obtained from C(v; f) by replacing each positively
occuring subformula literal v, by C(x;g), and each negatively occuring subformula

— —

literal —wv,, by M(D(x; §)). Similarly, C(y;d,d) is obtained from C(v; f) by replacing v,

For each subformula x, Lemma 4.17 gives us proofs of C(x; g) «+— C(x;d — d;, §) and
D(x; §) +— D(x; 8 —d;, §) of size 2°(+2") cutting on formulas of depth at most & + 3, and
Lemma 4.15 gives us a proof of M(D(x; §)) +— M(D(x;0 —d;, §)) of similar size cutting
on formulas of depth at most k& + 4. Several applications of Lemma 4.13 give us the
desired proof of C(¢;d) +— C(¢p; &); these proofs have size 2°(*2") and cut on formulas
of depth at most &k +4. O

In order to be able to “shift” the depth vector down, we need the individual depths
to be not only increasing, but in fact increasing by at least 2.

Definition 4.19. A vector d = dy,...,dy is strongly increasing if d; > 1 and d;; 1 >
d; +2foreach1 <i<k.

We are ready to prove the fundamental lemma allowing us to shift the depth vector.

LEMMA 4.20. Let ¢ be a formula, and d=d,...,ds be a vector of strongly increas-
ing positive integers. Define € = 1,dy + 1,...,dy + 1. The double sequents C(p;d) <—
C(p;€) and D(y; cf) < D(p; &) have proofs of size 2°+2") cutting on formulas of depth

=

at most k + 4, where x = max(ex(p; d), ex(p; €)).

PROOF. We show how to prove the first double sequent; the other one is proven in
the same way.

Lemma 4.17 and Lemma 4.18 show how to prove the equivalence of two flattened
forms, where the second one has one extra layer beyond the first one. In order to ‘move’
dy to di + 1, we prove the following double sequents:

C(@;d1,d27...,dk) — C(Soadladl + 17d27"'7dk)7
C(w;d17d1 + 17d27"‘7dk) — C(QD,dl + 17d27"'adk)'
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Continuing in the same way, we can ‘migrate’ d to ¢, adding the extra e; = 1 at the
end using Lemma 4.17. Each flattened form in the interim has depth at most & + 4. By
cutting all the intermediate flattened forms, we obtain the desired double sequent. O

4.5. Putting it together

In this section we show how to transform a Frege proof to an AC’-Frege proof. We
begin by showing that the C and D operators respect the logical connectives.

LEMMA 4.21. Let ¢, be formulas, and d be a vector of strongly increasing positive
integers of length k. The double sequents

Clp At d) «— C(p;d) A C(t;d), Cp V13 d) «— Cp;d) V C(y; d),

— — — - —

D(p A9;d) <— D(p;d) AD(¢;d), D(¢ V¢;d) <— D(p;d) vV D(¢; d),

have proofs of size 2°%2") with cuts on formulas of depth at most k + 4, where © =

ex(ip A 1) d).

PRrROOF. We show how to prove the first double sequent; the rest are proven in the
same way.

Leté=1,dy +1,...,d; + 1 be the vector defined in Lemma 4.20. We calculate D(p A
1; €). Using the recipe of Definition 4.3, we first calculate DNF (v, A vy) = vy A vy

- -

Into this DNF we substitute v, = C(p;d) and v, = C(¢;d). Therefore D(p A 9;€) =

— —

C(p;d) A C(¢;d). The proof now becomes obvious, along the following lines.

— -

Using Lemma 4.16, we prove C(¢ A ¢¥;d) <— D(p A 9;d). Using Lemma 4.20, we

— - —

prove D(p A ¢;d) «— C(y;d) A C(1;d). The proof is completed by an application of the
cut rule. O

LEMMA 4.22. Let ¢ be a formula, and d be a vector of strongly increasing posi-
tive integers of length k. The double sequents C(—¢;d) <— —C(p;d) and D(—¢;d) +—
-~ D(g; d) have proofs of size 2°*2") with cuts on formulas of depth at most k + 4, where
x = ex(—p;d).

PROOF. We show how to prove the first double sequent; the other one is proven in
the same way.

Lete=1,d1+1,...,dr+1be the vector defined in Lemma 4.20. We calculate C(—y; é).
Using the recipe of Definition 4.3, we first calculate CNF(-wv,,) = —w,,. Into this CNF we
substitute —v, = M(C(y; d)). Therefore C(—; &) = M(C(y; d)). The proof now becomes
obvious, along the following lines.

Lemma 4.20 shows how to prove C(—;d) «+— M(C(y;d)). Lemma 4.14 shows how

-

to prove M(C(y; d)) «— —~C(¢p; d). The proof is completed by applying the cut rule. O

The preceding lemmas allow us to unroll flattened forms.

LEMMA 4.23. Let ¢ be a formula, and d be a vector of strongly increasing positive
integers of length k. The double sequents ¢ <— C(y;d) and v «— D(y;d) have proofs
of size 2°F2") with cuts on formulas of depth at most k + 4, where x = ex(¢;d).

PROOF. We show how to prove the first double sequent; the other one is proven in
the same way.
The proof'is by structural induction. If ¢ is a literal then there is nothing to prove. If

- =

» = 1), then use Lemma 4.22 to prove C(p;d) «— — C(¢); d). The induction hypothesis

-

gives us a proof of ¢y +— C(¢;d); move both ¢ and its flattened form to the other
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side using four — introduction rules, and apply cut twice to prove the required double
sequent.

If o = ¢ Ax then start with proofs of the following sequents, obtained by Lemma 4.21
and the induction hypothesis:

C(p;d) +— C(;d) A C(x; d), Y < C(¢;d), X +— C(x; d).

—

Now prove C(¢); cf) A C(x;d) «— 1 A x as follows:

C(y;d) — L Clx;d) — x AL
C(y;d) AC(x;d) — 1 C(w;cf)AC(x;cf)HXAR

C(;d) NC(x;d) — Y A x

The other sequent is proved similarly. Complete the proof using the cut rule. The case
=1V yissimilar. O

The proof of the main theorem is now simple.

LEMMA 4.24. Let ¢ be a formula provable in Frege in size s using a proof with max-
k2D/k)

imum logical depth D. For every k there is an AC L4-Frege proof of ¢ of size 520( .
PROOF. Let d = 2[D/(2k)],4[D/(2k)],...,2(k — 1)[D/(2k)], and note that d is
strongly increasing. The extent of each formula with respect to d is at most z =

—

2[D/(2k)]. Take the original proof and replace each formula ¢ by C(¢;d). Each appli-
cation of a rule is still valid, but the proof as a whole isn’t valid since not all formulas
are in flattened form. We address this issue by tampering with the introduction rules,
as in the following example, corresponding to the right A introduction rule:

- —

I — A Cy;d) T'— A,C(x;d)

= - AR - - — Lem. 4.21
I' — A, C(¢;d) ANC(x; d) C(y;d) ANC(x;d) — C(yp A x;d) c
= ut

['— A, C(¥Ax;d)

Applying the same transformation for all introduction rules, we are left with a valid
proof of — C(p;d), where each sequent is now replaced by sequents of total size
20(k2%). the total size so far is s2°(%2"), Lemma 4.23 proves C(¢;d) — ¢, and the

—

proof is complete by cutting on C(y;d).
The lemmas we used employ cuts of depth at most k+4. All cuts in the original proof
now cut flattened formulas, which are of depth at most k +3. O

PrROOF OF THEOREM 3.1. Reckhow’s Theorem (Theorem 2.1) supplies us with an
AC%(log s) proof of ¢ of size s91), The theorem now follows by substituting D = C'log(s)

in Lemma 4.24. O
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