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Abstract—Monotone span programs are a linear-algebraic
model of computation which were introduced by Karchmer
and Wigderson in 1993 [1]. They are known to be equivalent to
linear secret sharing schemes, and have various applications in
complexity theory and cryptography. Lower bounds for mono-
tone span programs have been difficult to obtain because they
use non-monotone operations to compute monotone functions;
in fact, the best known lower bounds are quasipolynomial
for a function in (nonmonotone) P [2]. A fundamental open
problem is to prove exponential lower bounds on monotone
span program size for any explicit function.

We resolve this open problem by giving exponential lower
bounds on monotone span program size for a function in
monotone P. This also implies the first exponential lower
bounds for linear secret sharing schemes. Our result is ob-
tained by proving exponential lower bounds using Razborov’s
rank method [3], a measure that is strong enough to prove
lower bounds for many monotone models. As corollaries we
obtain new proofs of exponential lower bounds for monotone
formula size, monotone switching network size, and the first
lower bounds for monotone comparator circuit size for a
function in monotone P. We also obtain new polynomial
degree lower bounds for Nullstellensatz refutations using an
interpolation theorem of Pudlak and Sgall [4]. Finally, we
obtain quasipolynomial lower bounds on the rank measure
for the st-connectivity function, implying tight bounds for st-
connectivity in all of the computational models mentioned
above.
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I. INTRODUCTION

Razborov [3] introduced a simple matrix-theoretic tech-
nique (which we will call the rank method) to study lower
bounds on formula size for boolean functions, and using this
method he was able to give a simple proof that any monotone
formula computing a certain monotone function in NP must
have size at least nΩ(log n). While not the strongest lower
bound known against monotone formula size — similar
bounds were already known for st-connectivity, and stronger
lower bounds are known for other functions — Razborov’s
method is exceptionally elegant, and applies to models
of computation that seem to be out of reach of standard
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techniques. Two examples of such models are monotone
span programs and monotone switching networks [1], [5]:
monotone span programs use non-monotone (algebraic) op-
erations to compute monotone functions, which makes them
remarkably powerful and technically difficult to lower bound
[1], [2], [5]–[9]; monotone switching networks are a classic
model which resisted strong lower bounds for directed st-
connectivity until Potechin [10] gave an ingenious Fourier-
analytic argument.

Despite its elegance and connections with other models,
very little is known about Razborov’s rank method. In
fact, Razborov’s original argument is the only known lower
bound for the rank measure, giving a quasipolynomial lower
bound for a function in NP. This suggests several natural
questions: First, is it possible to use Razborov’s rank method
to give nontrivial lower bounds for a function in P, or even
monotone P? Secondly, can the rank method be used to
prove exponential size lower bounds?

In this paper we resolve both of these problems. First,
we prove nΩ(log n) lower bounds for directed st-connectivity
using the rank method. Directed st-connectivity is one of the
most basic functions: it is the canonical NL-complete prob-
lem and can be computed by polynomial-size, O(log2 n)-
depth monotone circuits. Thus, our proof gives new (and
arguably simpler) proofs of some celebrated results: it im-
plies both Potechin’s lower bound for monotone switching
networks [10], as well as the classic Karchmer-Wigderson
lower bound for monotone formulas [11].

Second, we prove exponential size lower bounds using the
rank method against the GEN function, which is computable
in monotone P. As well as being the first exponential lower
bounds using the rank method, this implies both exponential
lower bounds on monotone span program size for a function
in monotone P (solving a well-known open problem), as
well as the first exponential lower bounds for linear secret
sharing schemes.

In addition, we show how to apply the rank method to
monotone comparator circuits, which allows us to prove the
first nontrivial lower bounds for any family of these circuits
computing a function in monotone P. Before this, no size
lower bounds were known for monotone comparator circuits
except those implied by the classic lower bounds for clique
and perfect matching [12].



A. Monotone Span Programs and Related Models
Let F be any field. A span program over F is a model of

computation which uses linear algebraic operations over F to
compute boolean functions. Span programs were introduced
by Karchmer and Wigderson [1], where they showed that
non-monotone span programs capture logspace counting
classes such as ⊕L and ModpL; monotone span programs
are also known to characterize a subclass of secret sharing
schemes known as linear secret sharing schemes [13], [14].

There is a fairly long history of lower bounds for mono-
tone span programs. The first lower bounds for monotone
span programs, due to Karchmer and Wigderson [1], showed
that all threshold functions over GF(2) require monotone
span programs of size Ω(n log n). The first superpolyno-
mial lower bounds, on the order of nΩ(log n/ log log n), were
obtained by Babai et al. [7] against a function in NP. These
bounds were simplified and improved by Gál to nΩ(log n),
who also observed the connection between monotone span
programs and the rank method [5]. Beimel and Weinreb [2]
later gave nΩ(

√
log n) lower bounds for a function in uniform

NC2 (therefore for a function in P), proving that monotone
span programs can be weaker than polynomial time.

An interesting feature of monotone span programs is that
they are not “really” monotone – monotone span programs
use non-monotone operations to compute monotone func-
tions. Babai et al. [7] exploited this to give a function
with linear size monotone span programs that requires
superpolynomial-size monotone circuits and exponential-
size monotone formulas. This immediately implies that the
size and depth lower bound methods for monotone circuits
cannot be used to prove lower bounds for monotone span
programs

Due to this fact there are several basic open problems
concerning monotone span programs. First, it is open to
prove exponential lower bounds on monotone span program
size for any explicit function. Second, it is open to show
whether there are functions in monotone P that require
monotone span programs of superpolynomial size. Third,
it is open to give an example of a function with small (non-
monotone) span programs but requiring large monotone span
programs.

Our main result for span programs is the following
theorem.

Theorem I.1. The st-connectivity function requires nΩ(log n)

size monotone span programs over R. The GEN function
requires exp(nΩ(1)) size monotone span programs over R.

This resolves all of the open problems mentioned above.
First, our lower bound for the GEN function is the first
lower bound on monotone span program size greater than
nΩ(log n) for any explicit function. Since GEN is in mono-
tone P, this implies an exponential separation between
monotone P and monotone span program size, resolving the
second open problem mentioned above. Furthermore, our

lower bound for st-connectivity implies a quasipolynomial
separation between mNC2 and monotone span programs,
since st-connectivity is well-known to be computable by
polynomial-size, O(log2 n) depth monotone circuits. Fi-
nally, Karchmer and Wigderson showed that non-uniform
polynomial-size span programs over GF(2) compute exactly
those functions in ⊕L/poly. Wigderson [15] showed that
NL/poly ⊆ ⊕L/poly, and since directed st-connectivity is in
NL it follows it is computable by (non-uniform) polynomial-
size span programs. Thus, we exhibit a function with small
non-monotone span programs but requiring large monotone
span program size.

Secret Sharing Schemes. A secret sharing scheme is a
cryptographic tool where a dealer shares a secret among a
set of participants such that only the “authorized” subsets
of participants are able to reconstruct the secret [13]. The
subsets correspond to a monotone boolean function f on
n bits, where n is the number of participants. Monotone
span program size measures the amount of information that
has to be given to the participants in so-called linear secret
sharing schemes [1], [16]. Our result for GEN gives the first
exponential lower bounds on the size of linear secret sharing
schemes. For s-t connectivity, our quasipolynomial lower
bound is especially striking due to the known polynomial
upper bounds for the access structure corresponding to
undirected s-t connectivity.

Switching Networks. Switching networks are a non-
uniform model of computation used to study space com-
plexity which are closely related to monotone circuits. It
was long conjectured that directed st-connectivity required
quasi-polynomial size monotone switching networks, which
was resolved affirmatively by Potechin [10]. Extending this,
Chan and Potechin [17] proved asymptotically tight nΩ(h)

lower bounds for the GEN function on pyramids of height
h. (Weaker size lower bounds were previously obtained by
Raz and McKenzie [18].)

It is known that if a function can be computed by a
switching network of size S, then it can also be computed
by a span program of size S over any field, and the same
holds for their monotone versions (see [1] for a proof). By
this simulation we get alternative proofs of the results of
Potechin and Chan-Potechin.

Nullstellensatz. Nullstellensatz (NS) refutations are a
natural algebraic proof system for proving unsolvability
of systems of polynomial equations based on Hilbert’s
Nullstellensatz [19]. Given a set of polynomial equations
p1 = 0, . . . , pm = 0, an NS refutation is given by a sequence
of polynomials q1, . . . , qm such that

∑
piqi = 1. The degree

of the refutation is d = maxi deg(qipi), and the size is the
total number of monomials in all of the polynomials.

Pudlak and Sgall [4] proved a strong connection between
Nullstellsatz refutations and span programs. In particular,
they proved that interpolants for degree-d refutations are
exactly characterized by size nO(d) span programs, and



the characterization also holds in the monotone setting. By
this characterization, our lower bounds for monotone span
programs imply strong (i.e. polynomial) lower bounds on
the degree of NS refutations.

B. Monotone Comparator Circuits

A sorting network is a model of a sorting algorithm which
is input-oblivious. The model is quite simple: the network re-
ceives as input n integers on n parallel wires travelling from
left to right, with a sequence of comparator gates connecting
pairs of wires that map (x, y) 7→ (min {x, y} ,max {x, y}).
The goal is to sort all n integer inputs using the fewest
number of gates (or, alternatively, with the smallest depth).
Shallow sorting networks have many applications in theoret-
ical computer science, and explicit constructions have been
extensively studied in the literature (see [20] for an extensive
survey).

When the inputs are restricted to be boolean a sorting net-
work is called a comparator circuit. The class of problems
computable by polynomial-size uniform comparator circuits
is called CC. There are many interesting complete problems
for CC such as the stable marriage problem [21], [22] and the
telephone connection problem [23]. The structure of CC was
initially studied by Subramanian [21], and further studied by
Cook, Filmus and Le [22].

Monotone comparator circuits are a natural restriction of
comparator circuits where the input bits are either constants
or positive literals; we let mCC denote the class of languages
computable by polynomial-size monotone comparator cir-
cuits. Essentially nothing is known on the complexity of
monotone comparator circuits computing arbitrary monotone
boolean functions. It is easy to see that monotone comparator
circuits can simulate monotone formulas, and in turn can
be simulated by (unrestricted) monotone circuits, but the
relationship with mP and mNC was open.

We are able to show that the rank method applies to
monotone comparator circuits, and so we obtain analogous
results for monotone comparator circuits — separating mCC
from mP, mNC2 and CC.

C. Overview of Proof

We will explain the main ideas in the context of the
st-connectivity function, although the argument easily gen-
eralizes to any GEN function. Consider the layered st-
connectivity function STCONN = STCONNh,w, for which
the input is a list of edges encoding a subgraph of the
layered, directed graph with w layers and h nodes per layer.
Let U ⊆ STCONN−1(1) and V ⊆ STCONN−1(0), and
let A be a |U | × |V | matrix over R with rows labelled by
u ∈ U and columns labelled by v ∈ V . For each underlying
input variable xe of STCONN, define the rectangle Re to
be the set of pairs (u, v) ∈ U × V such that ue = 1 and
ve = 0. Let RSTCONN(U, V ) denote the collection of all of
these rectangles.

The rank measure of A is defined to be the ratio of the
rank of A and the maximum rank of the submatrix of A
indexed by any of these rectangles

µA(STCONN) =
rankA

max
R∈RSTCONN(U,V )

rankA�R
.

This measure was originally introduced by Razborov [3],
and for any A the measure µA(STCONN) is a lower bound
on each of the monotone computation models we have
discussed above. Thus, our overall goal is to find a family
of matrices {An} for the STCONN function for which the
rank measure is nΩ(log n).

At a high-level our argument is a reduction from the rank
measure to reversible pebbling number which proceeds in
two steps. First, we prove a “lifting theorem” connecting
the rank measure to a new algebraic complexity measure on
boolean functions that we call the algebraic gap complexity,
which may be of independent interest. The second step is to
actually prove a lower bound on the gap complexity.

Step 1: The Pattern Matrix Lift. Sherstov [24] gave a
general method to construct a “pattern matrix” Ap from a
boolean function p : {0, 1}m → R such that the properties
of Ap are related to the Fourier spectrum of p.

The main idea is to use a pattern matrix Ap (for a suitably
chosen p) to certify a lower bound on the rank measure,
using a theorem of Sherstov [24] showing that the rank of
pattern matrices can be directly calculated from the Fourier
spectrum of the function p used to generate the matrix.
With this in mind, we show that the rows of the pattern
matrix Ap can be interpreted as rejecting instances of the
st-connectivity function (specifically a collection of s-t cuts)
and the columns of Ap can be interpreted as accepting
instances of the st-connectivity function (specifically a col-
lection of s-t paths with length m+1). Using Sherstov’s rank
theorem we then calculate the rank of Ap directly from p, as
well as the rank of each “rectangle submatrix” of Ap from
p�e, where p�e is a restriction of the function p obtained
naturally from the edge e underlying the rectangle Re. This
implies that the matrix Ap will certify a large rank measure
if the function p exhibits a large algebraic gap, in that the
Fourier degree of p is large, but the Fourier degree of each
of the restrictions p�e is small.

Step 2: Exhibiting Large Algebraic Gaps. The second
step of our argument is to actually construct a function p
exhibiting large algebraic gaps. We first show that for each
positive integer m, the problem of constructing a boolean
function p : {0, 1}m → R with gap k is equivalent to
the satisfiability of an (exponentially large) system of linear
equations E(k). For st-connectivity, we show that the system
E(k) is satisfiable if resolution cannot refute a corresponding
unsatisfiable CNF formula within depth k. Since resolution-
depth is equivalent to the decision tree-complexity of the
corresponding search problem, our lower bound follows



from the known Ω(logm) lower bound on the reversible
pebbling number of the m-node path graph. More generally,
we prove that if we start with the a GEN function with
accepting instances isomorphic to some template graph G,
then algebraic gaps for the associated search problem can
be obtained from lower bounds on the reversible pebbling
number of G.

D. Related Work

Razborov [3] introduced the rank measure and proved
nΩ(log n) lower bounds for a function in NP by using the
disjointness matrix; in a later work [25] he showed that the
rank measure cannot give superlinear lower bounds in non-
monotone models of computation. Razborov’s lower bound
on the rank measure was studied by Gál and Pudlak [6],
where it was shown to be related to the method of avoiding
families used in monotone span program lower bounds [5],
[7].

Karchmer and Wigderson [1] showed that monotone span
program size upper bounds the size of linear secret sharing
schemes; Beimel showed that they give an exact character-
ization [16]. See the comprehensive survey of Beimel for
more on secret sharing schemes [14]. Span programs have
also been connected to quantum algorithms [26].

The idea of “lifting” lower bounds on a simple complexity
measure from weak to strong computation models has ap-
peared in many forms, and has been enormously successful
for proving lower bounds for a variety of models. The basic
idea is to start with an “outer” function f for which we have
given a lower bound in a weak model of computation, and
“lift” f by composing f with an “inner” function g to get
a new function, f ◦ gn that is provably hard in a stronger
model of computation. This method has led to many lower
bounds in communication complexity, in classical, quantum,
and number-on-forehead models [24], [27]–[29]. In circuit
complexity similar approaches have led to strong lower
bounds on monotone circuit depth [18], [30], and similarly
for lower bounds in proof complexity [30], [31]. Other lifting
techniques have given strong lower bounds against extended
formulations of linear programs [32], [33].

II. DEFINITIONS

A real-valued boolean function is any function p :
{0, 1}n → R. If A is any set and x ∈ An we let xi denote the
ith component of x. If x, y ∈ {0, 1}n we let x⊕y ∈ {0, 1}n
denote the string obtained by taking the bitwise XOR of x
and y.

For any n, the collection of all n-ary real-valued boolean
functions {p : {0, 1}n → R} forms a vector space under
pointwise addition and scalar multiplication. For any C ⊆
[n], the Fourier character at C is the function χC :
{0, 1}n → {−1, 1} defined by χC(x) = (−1)

∑
i∈C xi .

The collection of characters {χC}C⊆[n] form an orthonor-
mal basis for the vector space of real-valued boolean

functions known as the Fourier basis, where the vec-
tor space is equipped with the inner product 〈p, q〉 =
1

2n

∑
x∈{0,1}n p(x)q(x). Since this basis is orthonormal,

given any function p : {0, 1}n → R, we can represent p
in the Fourier basis as p(x) =

∑
C⊆[n]〈p, χC〉χC(x). This

representation is called the Fourier transform of p.
We let p̂(C) = 〈p, χC〉 denote the coefficient of χC of

p in the Fourier basis — this is the Fourier coefficient of
p at C. The collection of non-zero Fourier coefficients of
p is called the Fourier spectrum of p. The Fourier degree
is the size of the largest non-zero Fourier coefficient of p:
deg p = maxS⊆[m] {|S| | p̂(S) 6= 0} , which, equivalently, is
the degree of the unique representation of p as a multilinear
polynomial over the real numbers.

If x, y ∈ {0, 1}n then we write x ≤ y if xi ≤ yi for all i.
A function f : {0, 1}n → {0, 1} is monotone if f(x) ≤ f(y)
whenever x ≤ y. If f(x) = 1 we call x an accepting instance
or a yes instance, while if f(x) = 0 then we call x a rejecting
instance or a no instance. If x is any yes instance of f and
y is any no instance of f then there exists an index i ∈ [n]
such that xi = 1, yi = 0.

Suppose that U, V ⊆ {0, 1}n are any sets satisfying
f(U) = 1, f(V ) = 0. A set R ⊆ U×V is called a rectangle
if there are sets U0 ⊆ U, V0 ⊆ V such that R = U0 × V0.
For each i ∈ [n] let

Xi = {x ∈ {0, 1}n | xi = 1} × {x ∈ {0, 1}n | xi = 0} ,

and let Ri = Xi ∩ (U × V ). Let Rf (U, V ) =
{Ri | i = 1, 2, . . . , n} . Since f is a monotone function there
is an index i such that ui = 1, vi = 0 for all u ∈ U, v ∈ V ,
and so every entry of U×V is covered by some rectangle in
Rf (U, V ). Let A be any |U |×|V | matrix with rows labelled
by entries of U and columns labelled by entries of V , and if
S ⊆ U×V is any subset of U×V let A�S be the submatrix
indexed by S.

Definition II.1. Let f : {0, 1}n → {0, 1} and let U ⊆
f−1(1), V ⊆ f−1(0). Let A be any |U | × |V | matrix over
R1. The rank measure of f with respect to A is

µA(f) :=
rank(A)

max
R∈Rf (U,V )

rank(A�R)
.

The rank measure was introduced by Razborov [3] to
give simple superpolynomial lower bounds on the size of
monotone boolean formulas. In this paper we give a similar
result for variants of the GEN problem.

Definition II.2. Let n be a positive integer, and let L ⊆ [n]3

be a collection of triples on [n]. For any subset S ⊆ [n], the
set of points generated from S by L is defined recursively
as follows: every point in S is generated from S, and if
i, j are generated from S and (i, j, k) ∈ L, then k is also

1This definition makes sense with respect to any field, but we will work
exclusively in the reals.



generated from S. The GEN problem is as follows: given
a collection of triples of vertices L and two distinguished
points s, t ∈ [n], decide if t generated from {s}.

Formally, an instance of GEN is given by two nodes s, t ∈
[n] and n3 boolean values coding the set L ⊆ [n]3. For
definiteness, in the remainder of the paper assume s, t are
arbitrary fixed points in [n], and we let GEN denote the
corresponding monotone function.

We can naturally some graphs with GEN instances.

Definition II.3. A DAG G = (V,E) is good if it is
connected, has maximum in-degree 2, and has a unique sink
node.

If G is a good DAG then we can form an instance of GEN
from G by (1) Adding triples connecting the source point s
to the sources of G (2) Adding a triple connecting the sink
node of G to the target t and (3) For each internal node z,
if z has in-degree 2 with distinct in-edges (x, z), (y, z), then
add a triple (x, y, z); Otherwise, if z has in-degree 1 with
an in-edge (x, z), then add the triple (x, x, z). We say input
triples obtained in this way are legal. The lower bounds in
this paper are proven for sub-problems of GEN obtained by
“lifting” good graphs G.

Definition II.4. Let G be a good DAG, let t be the sink
node of G, and let o be a positive integer. The o-lifted
graph G↑o is obtained by taking the tensor product of G
with the complete directed graph on o vertices, and then
adding a “super-source” node s and a “super-target” node t.
Explicitly, G↑o is obtained from G as follows: we replace
each node u ∈ G with o copies

{
u(1), u(2), . . . , u(o)

}
. For

each edge (u, v) add o2 edges (u(i), v(j)) for all i, j ∈ [o].
Finally, add a new source node s and a new target node t
and add edges connecting s to the lifted source nodes u(i),
as well as edges connecting the lifted sink nodes t(i) to the
target node t.

Given a node u(i) ∈ G↑o let π(u(i)) = u be the
underlying node in the graph G. The G↑o-GEN problem
is a subproblem of GEN obtained by restricting the allowed
input triples to those triples of vertices (u, v, w) ∈ G↑o such
that (π(u), π(v), π(w)) is a legal triple of the underlying
graph G.

The following proposition connects GEN and st-
connectivity.

Proposition II.5. Let m, o be positive integers. Let Pm be
the directed path graph with m nodes and let STCONNo,m

be the st-connectivity function on the graph P ↑om . Then
STCONNo,m = P ↑om -GEN. (See Figure 1.)

We also need a variant of the well-known black pebbling
game on DAGs [10], [17].

Definition II.6. Let G = (V,E) be a good DAG with
sources R and a unique sink t, and we define the reversible

Figure 1. A path P4 and the lifted graph P ↑44 (we have added a new source
node s and a new target node t connected to the lifted source and target
nodes). The function P ↑44 -GEN is exactly the layered s-t connectivity
problem STCONN4,4.

pebbling game as follows. A pebble configuration is a subset
S ⊆ V of “pebbled” vertices. For every x ∈ V such that
the in-neighbours of x are pebbled, a legal pebbling move
consists of either pebbling or unpebbling x (i.e. updating
S = S ∪ {x} or S = S \ {x}). Since the source nodes
s ∈ R do not have any in-neighbours they can always be
pebbled or unpebbled.

The goal of the reversible pebbling game is as follows:
starting with the empty configuration, place a pebble on t
using only legal pebbling moves such that the maximum
number of pebbles in any pebbling configuration is mini-
mized. Formally, we want to find a sequence of pebbling
configurations ∅ = S0, S1, . . . , Sn such that t ∈ Sn, and for
each i ∈ {0, . . . , n−1}, the configuration Si+1 is reachable
from configuration Si by a legal pebbling move. We call
such a sequence a pebbling sequence for G. The cost of
the sequence is maxi |Si|. The reversible pebbling number
of a DAG G, denoted rpeb(G), is the minimum cost of a
reversible pebbling sequence for G.

III. RANK MEASURE LOWER BOUNDS

The main result in this paper is a lower bound on the rank
measure of G↑o-GEN in terms of the reversible pebbling
number of the underlying graph G.

Theorem III.1. Let G be any good DAG with m vertices.
There is a real matrix A such that

µA(G↑2m
2

-GEN) ≥ Ω(mrpeb(G)).

This theorem implies a number of lower bounds in mono-
tone complexity theory, both old and new. In the remainder
of this section we use Theorem III.1 to give proofs of each
of these lower bounds. We begin by introducing the graphs
which are used to prove our exponential lower bounds.

Definition III.2. A pyramid graph with h levels is defined
as follows. Introduce h(h−1)/2 vertices V , partitioned into
h sets V1, V2, . . . , Vh where Vi has i vertices. Order Vi as
vi,1, vi,2, . . . , vi,i; then for each i = 2, 3, . . . , h, if vi,j and



vi,j+1 are adjacent vertices in Vi add two edges (vi,j , vi−1,j)
and (vi,j+1, vi−1,j).

Theorem III.3. Let h be a positive integer, let ∆h be the
pyramid graph with h levels, and let m =

(
h
2

)
be the number

of nodes in ∆h. Let N = O(m7) be the number of input
triples to ∆↑2m

2

h -GEN. Let ε = 1/14. Then there is a real
matrix A such that

µA(∆↑2m
2

h -GEN) ≥ 2Ω(Nε log N).

Proof: It follows from [34] that rpeb(∆h) ≥ h. Since
h = Ω(

√
m) and m = Ω(N1/7), setting ε = 1/14

and applying Theorem III.1 yields µA(∆↑2m
2

h -GEN) ≥
mΩ(h) ≥ NΩ(Nε) ≥ 2Ω(Nε log N).

We remark that Gilbert and Tarjan [35] constructed a
family of good DAGs with reversible pebbling number
Ω(n/ log n), which is known to be tight due to an upper
bound by Dymond and Tompa [36]. One could use these
graphs to obtain lower bounds, but essentially this would
just improve the value of ε in the previous theorem from
1/14 to 1/7.

We also use a lower bound by Potechin [10] on the
reversible pebbling number of path graphs to give a lower
bound for st-connectivity.

Theorem III.4. Let m be a positive integer, let Pm be the
directed path with m nodes, and consider the lifted path
graph P ↑2m

2

m . Let N = O(m5) be the number of input
triples to STCONN2m2,m. Then there is a real matrix A
such that

µA(STCONN2m2,m) ≥ NΩ(log N).

Proof: Proposition II.5 shows that P ↑2m
2

m -GEN is ex-
actly STCONN2m2,m. Potechin [10] proved rpeb(Pm) ≥
Ω(logm), so using the fact that m = Ω(N1/5) and applying
Theorem III.1 implies µA(STCONN2m2,m) ≥ mΩ(log m) ≥
NΩ(log N).

A. Span Program Lower Bounds and Corollaries

Let F be any field, and let ~1 be the all-1s vector. A
monotone span program over F is a matrix M with its
rows labelled by boolean variables x1, . . . , xn. On an input
x ∈ {0, 1}n, let Mx denote the submatrix of M containing
all rows labelled with variables set to 1 by x. The program
accepts the input if ~1 lies in the linear span of the rows
of Mx. Note that any monotone span program computes
a monotone function since the linear span of a set of
vectors is monotone nondecreasing. Let mSPF denote the
set of all monotone functions computable by polynomial-
size monotone span programs over F, and let mSPF(f)
denote the size of the smallest monotone span program over
F computing f .

Gál [5] showed that the rank measure is a lower bound
on monotone span program size.

Theorem III.5 (Lemma 3.2 and Theorem 3.4 in [5]). Let F
be any field, let f be any monotone boolean function. For
any matrix A we have

µA(f) ≤ mSPF(f).

Theorems III.3 and III.4 therefore give exponential and
superpolynomial lower bounds, respectively, on the size of
real monotone span programs computing ∆↑2m

2

h -GEN and
STCONN2m2,m, showing mP 6⊆ mSP and mNC2 6⊆ mSP.

Theorem III.6. Let h be a positive integer, let m be the
number of nodes in the height-h pyramid graph ∆h, and
let N be the number of input variables to the function
∆↑2m

2

h -GEN. Let ε = 1/14. Then mSPR(∆↑2m
2

h -GEN) ≥
2Ω(Nε log N). Similarly, for any positive integer m, if N
is the number of input variables to STCONN2m2,m then
mSPR(STCONN2m2,m) ≥ NΩ(log N).

It is known that polynomial-size, non-monotone span
programs can compute STCONN if the span programs
are allowed to be non-uniform [15], and so the previous
theorem also separates monotone span programs from non-
monotone span programs. Furthermore, since monotone
span programs can simulate monotone switching networks,
the above two theorems give alternative proofs of the re-
cent results by Potechin [10] and Chan-Potechin [17] that
STCONN requires superpolynomial-size monotone switch-
ing networks and ∆↑2m

2

h -GEN requires exponential-size
monotone switching networks.

Corollary III.7. Any monotone switching network com-
puting ∆↑2m

2

h -GEN requires 2Ω(Nε log N) states, where
ε = 1/14. Any monotone switching network computing
STCONN2m2,m requires NΩ(log N) states.

A secret sharing scheme is a basic cryptographic tool
roughly defined as follows (we follow the presentation
in [14]; we refer the interested reader there for formal
definitions and numerous applications). We have a dealer
who has a “secret” (say, an element of some field F), a
collection of n parties, and a collection A ⊆ 2[n] of subsets
of the n parties which we call an access structure. A secret
sharing scheme for A is a method of sharing information
with the n parties such that any set of parties in A can
reconstruct the dealer’s secret, while any subset of parties
not contained in A cannot reconstruct the dealer’s secret.

Beimel [16] showed that the size of the smallest monotone
span program tightly characterizes the amount of informa-
tion required to be shared in linear secret sharing schemes,
which are a particular subclass of sharing schemes often
studied in the literature. Before our results, the best known
lower bounds against any linear secret sharing scheme were
quasipolynomial.

Corollary III.8. There is an explicitly defined access struc-
ture A∆-GEN such that any linear secret sharing scheme for



A∆-GEN has information ratio 2Ω(Nε log N) for ε = 1/14.

We also obtain a quasipolynomial lower bound for linear
secret sharing schemes over the “st-connectivity access
structure”, and therefore bipartite matching by the known
projection reduction from st-connectivity to bipartite match-
ing2 [37].

Recall from the introduction that a Nullstellensatz refuta-
tion of a set of polynomial equations p1 = 0, . . . , pm =
0 is given by a system of polynomials q1, . . . , qm such
that

∑
piqi = 1. The degree of the refutation is d =

maxi deg(qipi), and the size is the total number of mono-
mials in all of the polynomials. Using a known connec-
tion between Nullstellensatz refutations and span programs
discovered by Pudlak and Sgall [4], we can use our rank
measure lower bounds to obtain Nullstellensatz degree lower
bounds. Due to space limitations, we refer the reader to the
full version of the paper for details.

Corollary III.9. There are unsatisfiable
systems of constant-degree polynomial equa-
tions (PSTCONN2m2,2m

, QSTCONN2m2,2m
) and

(P
∆↑2m2 -GEN

h

, Q
∆↑2m2 -GEN

h

) in N variables such that
the following holds. Every real Nullstellensatz refutation of
the system (PSTCONN2m2,2m

, QSTCONN2m2,2m
) has degree

Ω(logN). Every real Nullstellensatz refutation of the
system (P

∆↑2m2 -GEN
h

, Q
∆↑2m2 -GEN

h

) requires Nullstellensatz
refutations with degree Ω(Nε) for some ε > 0.

B. Comparator Circuit Lower Bounds

We recall the definition of comparator circuits. A com-
parator gate is the function mapping a pair of input bits
(x, y) 7→ (x∧y, x∨y); it is natural to think of a comparator
gate as “sorting” the input (x, y), since the smaller input
goes to the first coordinate and the larger input goes to the
second. A comparator circuit consists of m wires and a
sequence (i1, j1), (i2, j2), . . . , (is, js) of comparator gates,
each connecting a pair of wires (in this notation, the ∧ output
of the comparator gate is attached to the first wire, and the
∨ output of the comparator gate is attaced to the second
wire). Each of the m wires is labelled with either a constant
0, 1, some input variable x or its negation x (the circuit
is monotone if no wire is labelled with the negation of a
variable). We will be interested in comparator circuits which
compute boolean functions f : {0, 1}n → {0, 1}, where n
is possibly less than the number of wires. To do this we
designate one of the wires as the output wire and allow the
labelling of distinct wires with the same input variable.

If C is a comparator circuit then the size of C is the
number of wires3 in C. Let mCC denote the class of

2We thank Ilan Komargadski for pointing us to this result.
3It is not hard to show that the number of wires and the number of gates

in any comparator circuit without redundant gates are separated by at most
a quadratic factor.

languages computable by polynomial-size monotone com-
parator circuits, and if f is a monotone boolean function let
mCC(f) denote the minimum size of any comparator circuit
computing f .

Theorem III.10. For any matrix A and any monotone
boolean function f , µA(f) ≤ mCC(f).

Proof: Use the fact that µA(·) is a submodular com-
plexity measure [25]; details are deferred to the full version
of the paper.

By combining this theorem with Theorems III.3 and III.4
we get a number of new results on mCC. In particular, we
separate mCC from mNC2, mP, and exhibit a monotone
function in CC but not mCC.

Corollary III.11. Let h be a positive integer, let m
be the number of nodes in the height-h pyramid graph
∆h, and let N be the number of input variables
to the function ∆↑2m

2

h -GEN. Let ε = 1/14. Then
mCC(∆↑2m

2

h -GEN) ≥ 2Ω(Nε log N). Similarly, if m is a pos-
itive integer, and N be the number of input variables to the
function STCONN2m2,m, then mCC(STCONN2m2,m) ≥
NΩ(log N).

IV. FROM THE RANK MEASURE TO ALGEBRAIC GAPS

The rest of the paper is devoted to sketching the proof
of Theorem III.1. In this section we show how to reduce
the problem of constructing a matrix A witnessing Theorem
III.1 to the construction of a boolean function satisfying
certain Fourier-analytic properties. Our reduction is general,
and naturally phrased using the canonical search problem
associated with unsatisfiable CNFs.

Definition IV.1. Let k be a positive integer and let C =
C1 ∧ C2 ∧ · · · ∧ Cq be an unsatisfiable k-CNF on variables
z1, z2, . . . , zm. Associated with C is the following search
problem Search(C): given an assignment z ∈ {0, 1}m to the
variables of C, output a falsified clause Ci.

Each clause C has a unique falsifying assignment, and
given a boolean function p : {0, 1}m → R on the same
variables as C we let p�C denote the restriction of the
function p by this assignment.

The reduction roughly proceeds as follows. We start with
the search problem Search(C) and introduce a new algebraic
complexity measure on such search problems that we call
the algebraic gap complexity. We give a generic method
to convert the search problem Search(C) into a monotone
boolean function fC by a variant of the construction intro-
duced by Raz and Mckenzie [18]. The main theorem of this
section gives a method to lift lower bounds on the algebraic
gap complexity of Search(C) to lower bounds on the rank
measure of the function fC .

We now introduce our new algebraic complexity measure.
Recall that deg p is the size of the largest non-zero Fourier



coefficient of p.

Definition IV.2. Let C be an unsatisfiable CNF on m
variables. The algebraic gap complexity of Search(C) is
the largest integer k for which there is a boolean function
p : {0, 1}m → R such that deg p = m and deg p�C ≤ m−k
for all clauses C in C.

Next we review pattern matrices, which are a major
component of our reduction. Let o,m be positive integers,
let n = om, and let V (o,m) = [o]m × {0, 1}m . Given
x ∈ [o]m and y ∈ {0, 1}n construct a string y�x as follows:
first, partition [n] into m blocks of size o and write y = (yi,j)
for i ∈ [m], j ∈ [o]; then for each i ∈ [m] set the ith value
of y�x to yi,xi .

Definition IV.3. Let m, o be positive integers, let n = om,
and let p : {0, 1}m → R. The (m, o, p)-pattern matrix is the
real matrix A with rows indexed by y ∈ {0, 1}n, columns
indexed by (x,w) ∈ V (o,m) such that A[y, (x,w)] =
p(y�x ⊕ w).

Observe that pattern matrices convert real-valued boolean
functions p : {0, 1}m → R into matrices. The next lemma
follows immediately from Theorem 4.3 in [24].

Lemma IV.4. Let p : {0, 1}m → R be given and let A be
the (m, o, p)-pattern matrix. The rank of A is

rankA =
∑

S:p̂(S)6=0

o|S|.

The Pattern Matrix Lift. Let m, o be positive integers,
let n = om, and consider any unsatisfiable d-CNF C on
m variables z1, z2, . . . , zm. We show how to use a pattern
matrix to “lift” the search problem Search(C) to a monotone
boolean function fC such that algebraic gap lower bounds
for Search(C) translate to rank measure lower bounds for
fC . Our lifted function is a variant of the transformation first
given by Raz and Mckenzie [18] and then further explored
by Göös and Pitassi [30].

Definition IV.5. Let d,m, o be positive integers and let
n = om. Let C be an unsatisfiable d-CNF on m variables
z1, z2, . . . , zm. The (C, o)-lifted function fC is the {0, 1}-
valued monotone boolean function defined as follows. The
variables of fC are indexed by pairs (C, (a, b)), where C is
a clause in C and (a, b) ∈ [o]vars(C)×{0, 1}vars(C)

. Given a
{0, 1}-assignment to the variables of fC , the function outputs
1 if there is an (x,w) ∈ V (o,m) such that for each clause
C, the variable (C, (xvars(C), wvars(C))) is set to 1. Clearly
the function is monotone, and observe that fC has |C|(2o)d
input variables.

Define the following set of accepting instances Y and
rejecting instances N of fC . For any (x,w) ∈ V (o,m)
let Y (x,w) be the accepting instance obtained by setting
all variables of the form (C, (xvars(C), wvars(C))) to 1 for
each clause C in C; let Y be the set of all such instances.

For any y ∈ {0, 1}n let N(y) be the rejecting instance
obtained by setting the variable (C, (xvars(C), wvars(C))) to
1 iff the clause C is satisfied when evaluated on the string
y�xvars(C)

⊕wvars(C) (observe that this is a 0-input of fC since
the formula C is unsatisfiable); let N be the set of all such
instances.

We study the rank measure µA(fC) of fC with respect
to A. If we consider, for each input variable (C, (a, b)), the
corresponding rectangle R ⊆ Y ×N then in order to bound
the rank measure µA(fC) we must analyze the rank of the
submatrices A�R of A corresponding to each variable.

Lemma IV.6. Let o,m be positive integers and let n = om.
Let C be an unsatisfiable d-CNF defined on m variables
z1, z2, . . . , zm. Let p : {0, 1}m → R, and let A be
the (m, o, p)-pattern matrix. Let (C, (a, b)) be any input
variable of fC , and let R be the rectangle corresponding
to (C, (a, b)) in RfC (Y,N ). Then

rank(A�R) =
∑

S:p̂�C(S)6=0

o|S|.

Proof Sketch: Let d be the arity of the clause C. Let
A′ denote the (o,m− d, p�C)-pattern matrix. By examining
the restrictions of A obtained by restricting each variable
of fC , one can see that the matrix A�R is row equivalent
to the matrix consisting of a column of (some number of)
copies of A′. This implies rankA�R = rankA′. Since A′ is
the (o,m−d, p�C)-pattern matrix, Lemma IV.4 implies that
rankA�R = rankA′ =

∑
S:p̂�C(S) 6=0

o|S|, and the lemma
follows.

Now we have that the rank of the pattern matrix A is
related to the degree of p, while the rank of the submatrix
A�R is related to the degree of p�C , where (C, (a, b)) is
the input variable of fC corresponding to the rectangle R.
It follows that to maximize the rank measure we need a
function p which maximizes the difference between these
two degrees (thus explaining the definition of the algebraic
gap complexity). This is formalized in the next theorem,
which is the main result of this section.

Theorem IV.7. Let m, d be positive integers and let C be an
unsatisfiable d-CNF on m variables. Let k be the algebraic
gap complexity of Search(C), and let fC be the (C,m2)-lifted
function. There is a matrix A such that µA(fC) ≥ cmk for
some universal constant c.

Proof: Let o = m2, let p : {0, 1}m → R be the function
witnessing the algebraic gap complexity of Search(C), and
let A be the (m, o, p)-pattern matrix. We lower bound

µA(fC) =
rankA

max
R∈RfC (Y,N )

rankA�R
.



By Lemma IV.4 rankA =
∑

S:p̂(S)6=0 o
|S| ≥ m2m since

p̂([m]) 6= 0 and o = m2. Let R ∈ RfC (Y,N ) be
chosen arbitrarily, let (C, (a, b)) be the input variable of
fC corresponding to R. Note that we may assume that
p̂(S) = 0 for all S ⊆ [m] with |S| < m − k w.l.o.g. since
this does not affect the algebraic gap exhibited by p. Since
deg p�C ≤ m−k, it follows that all of the non-zero Fourier
coefficients p̂�C(S′) are obtained as a linear combination of
non-zero Fourier coefficients of p̂(S) where |S| ≤ |S′|+ d.
Applying Lemma IV.6 and using these two facts, an ele-
mentary calculation using properties of binomial coefficients
yields rankA�R ≤

∑d
i=0

(
m
k−i
)
m2(m−k−i) ≤ 6m2m−k.

Putting it all together we get

µA(fC) =
rankA

max
R∈RfC (Y,N )

rankA�R
≥ m2m

6m2m−k ≥ cm
k

where c = 1/6.

V. FROM ALGEBRAIC GAPS TO REVERSIBLE PEBBLING

Recall that a DAG G is good if it is connected, has
maximum in-degree 2, and has a unique sink node t. In this
section we complete the proof of Theorem III.1 by using
pebbling contradictions.

Definition V.1. Let G = (V,E) be any good DAG with
sources R and target t. Let PebG denote the following
unsatisfiable CNF formula. There is one variable zv for each
vertex v ∈ V , and we add the following clauses:

1) The target clause (¬zt).
2) For each source vertex u ∈ R add the source clause

(zu).
3) For each internal vertex w with in-neighbours W ⊆ V

add the edge clause
(
zw ∨

∨
v∈W ¬zv

)
.

By Theorem IV.7 proved at the end of the previous
section, proving lower bounds against the algebraic gap
complexity of Search(PebG) will imply rank measure lower
bounds for fPebG . The main theorem of this section is that
the algebraic gap complexity of Search(PebG) is at least the
reversible pebbling number of G.

Theorem V.2. For any good DAG G the algebraic gap
complexity of Search(PebG) is at least rpeb(G).

We defer the proof of Theorem V.2 to the full version of
the paper, and use it to prove Theorem III.1.

Proof of Theorem III.1: Let G be any good DAG with
m vertices. By Theorem V.2 we have that the algebraic gap
complexity of Search(PebG) is at least rpeb(G). Let fPebG
be the (PebG,m

2)-lifted function. Theorem IV.7 implies that
there is a matrix A such that

µA(fPebG) ≥ Ω(mrpeb(G)).

It is not hard to see that fPebG is a restriction of
G↑2m

2

-GEN, and so µA(G↑2m
2

-GEN) = µA(fPebG) ≥
Ω(mrpeb(G)).
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Aaron Potechin for helpful conversations, and Ilan Komar-
gadski for pointing out the reduction to bipartite matching.

REFERENCES

[1] M. Karchmer and A. Wigderson, “On span programs,” in
Proceedings of the Eigth Annual Structure in Complexity
Theory Conference, San Diego, CA, USA, May 18-
21, 1993, 1993, pp. 102–111. [Online]. Available: http:
//dx.doi.org/10.1109/SCT.1993.336536

[2] A. Beimel and E. Weinreb, “Separating the power of
monotone span programs over different fields,” SIAM J.
Comput., vol. 34, no. 5, pp. 1196–1215, 2005. [Online].
Available: http://dx.doi.org/10.1137/S0097539704444038

[3] A. A. Razborov, “Applications of matrix methods to the
theory of lower bounds in computational complexity,”
Combinatorica, vol. 10, no. 1, pp. 81–93, 1990. [Online].
Available: http://dx.doi.org/10.1007/BF02122698

[4] P. Pudlák and J. Sgall, “Algebraic models of computation
and interpolation for algebraic proof systems,” in Proof Com-
plexity and Feasible Arithmetics, Proceedings of a DIMACS
Workshop, New Brunswick, New Jersey, USA, April 21-24,
1996, 1996, pp. 279–296.

[5] A. Gál, “A characterization of span program size and
improved lower bounds for monotone span programs,”
Computational Complexity, vol. 10, no. 4, pp. 277–296, 2001.
[Online]. Available: http://dx.doi.org/10.1007/s000370100001

[6] A. Gál and P. Pudlák, “A note on monotone complexity
and the rank of matrices,” Inf. Process. Lett., vol. 87,
no. 6, pp. 321–326, 2003. [Online]. Available: http:
//dx.doi.org/10.1016/S0020-0190(03)00334-X

[7] L. Babai, A. Gál, and A. Wigderson, “Superpolynomial
lower bounds for monotone span programs,” Combinatorica,
vol. 19, no. 3, pp. 301–319, 1999. [Online]. Available:
http://dx.doi.org/10.1007/s004930050058

[8] L. Babai, A. Gál, J. Kollár, L. Rónyai, T. Szabó,
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