
Strongly Exponential Lower Bounds for Monotone Computation
Toniann Pitassi

∗

Department of Computer Science

University of Toronto

Toronto, Ontario, Canada

toni@cs.toronto.edu

Robert Robere
∗

Department of Computer Science

University of Toronto

Toronto, Ontario, Canada

robere@cs.toronto.edu

ABSTRACT
For a universal constant α > 0, we prove size lower bounds of 2

αN

for computing an explicit monotone function inNP in the following

models of computation: monotone formulas, monotone switching

networks, monotone span programs, and monotone comparator

circuits, where N is the number of variables of the underlying

function. Our lower bounds improve on the best previous bounds

in each of these models, and are the best possible for any function

up to the constant factor α . Moreover, we give one unified proof

that is short and fairly elementary.

CCS CONCEPTS
• Theory of computation→ Circuit complexity;

KEYWORDS
circuit complexity, monotone complexity, span programs, rank

method, switching networks, comparator circuits, formulas

ACM Reference format:
Toniann Pitassi and Robert Robere[1]. 2017. Strongly Exponential Lower

Bounds for Monotone Computation. In Proceedings of 49th Annual ACM
SIGACT Symposium on the Theory of Computing, Montreal, Canada, June
2017 (STOC’17), 10 pages.
https://doi.org/10.1145/3055399.3055478

1 INTRODUCTION
Circuit complexity, one of the central areas of study in modern

complexity theory, seeks to prove unconditional bounds on the

complexity of boolean functions in various models of computational

circuits. Despite decades of exciting progress, most of the major

problems in circuit complexity remain wide open: classic counting

arguments by Shannon [31] show that all but a negligible fraction

of boolean functions on n variables require circuits of size 2
n/n

in all reasonable models, and yet we are not able to exhibit any

explicit function that requires boolean circuits of size ω (n). The
situation is only slightly better for restricted models — for instance,

we are unable to prove ω (n3) lower bounds on the size of boolean

∗
Supported by NSERC.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC’17, June 2017, Montreal, Canada
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4528-6/17/06. . . $15.00

https://doi.org/10.1145/3055399.3055478

formulas, and similarly cannot prove ω (n2) lower bounds on the

size of branching programs.

Meanwhile, theorists have had outstanding success in mono-
tone circuit complexity. (Recall that a circuit model is monotone
if it is not allowed to use negations.) Classic results in this area

include Razborov’s superpolynomial lower bound for monotone

circuits computing the clique function [27], Karchmer and Wigder-

son’s nΩ(logn)
lower bounds for monotone formulas computing

s-t connectivity [17], and Raz and McKenzie’s separation of depth

O (logi n) monotone circuits from depth O (logi+1 n) monotone cir-

cuits for each i [25]. More recently, some exciting progress was

made by Rossman [30] — he gives the first superpolynomial lower

bounds on the monotone formula size for well-approximating a

certain monotone boolean function on the uniform distribution.
This can be viewed as a “distributional” version of slice function
lower bounds, and it has long been known that strong enough lower

bounds on the monotone circuit complexity of the slice functions

actually yield lower bounds for non-monotone circuits.

While primarily considered a test-bed for circuit lower bound

techniques, monotone circuit complexity also has connections with

other areas of theoretical computer science. For example, in proof

complexity, monotone circuit and monotone formula lower bounds

are used to obtain lower bounds on the size of refutations in the

cutting planes proof system [3, 8, 24]. And in cryptography, mono-

tone span program lower bounds are known to yield lower bounds

on the size of linear secret sharing schemes [18].
Given the clear applicability of these results, it is natural to won-

der what are the strongest lower bounds that we can prove for a

monotone circuit model computing an explicit monotone boolean

function. A simple modification of Shannon’s counting argument

shows that almost all monotone boolean functions require mono-

tone boolean circuits of size at least Ω̃(2n/n), but the best known
lower bound on an explicit function — due to Harnik and Raz [14]

— is 2
Ω(n1/3)

for a function computable in NP. Even if we restrict

ourselves to monotone formulas, the best known lower bounds

are of the form 2
Ω(n/ logn)

for a function computable in NP [12],

which is still not asymptotically optimal. Thus, even though all but

a negligible fraction of monotone boolean functions have monotone

circuit complexity 2
Ω(n)

, we are still unable to find a single explicit

example.

The main result in this work resolves this problem for a large

number of monotone circuit models.

Theorem 1. There is a universal constant α > 0 and an explicit
monotone function computable in NP on N variables that requires
size 2αN in the following models of computation: monotone formulas,
monotone switching networks, real monotone span programs, and
monotone comparator circuits.

1246

https://doi.org/10.1145/3055399.3055478
https://doi.org/10.1145/3055399.3055478

STOC’17, June 2017, Montreal, Canada Toniann Pitassi and Robert Robere1

This is the first example of a strongly exponential lower bound
for an explicit monotone function in any monotone circuit model.

Furthermore, since any monotone boolean function on N inputs

can be computed by a monotone DNF of size N 2
N
, it follows that

our results are asymptotically the best possible for any monotone

function up to constants in the exponent.

Lower Bound Techniques for Monotone Circuit Models.
Historically, the main techniques used for proving lower bounds

against the models in Theorem 1 have used ideas from commu-
nication complexity. We begin by discussing monotone formulas.

The first superpolynomial lower bounds for monotone formulas

are found in the celebrated work of Karchmer and Wigderson [17]

showing that the circuit depth (and thus formula size) required for

computing any boolean function is exactly captured by the com-

munication complexity of a certain search problem (now called the

Karchmer-Wigderson game) related to the function. Using this con-

nection, Karchmer andWigderson provednΩ(logn)
lower bounds on

the monotone formula size (equivalently, Ω(log2 n) lower bounds
on the monotone circuit depth) of the s-t connectivity function.

Later, Raz and Wigderson [26] used the same technique to give a

2
Ω(
√
n)

lower bound on the monotone formula size of the matching
problem.

Generalizing this approach, Raz and Mckenzie [25] proved the

first lifting theorem for communication complexity. Inmodern terms,

the main idea of their proof is to show that for certain “structured”

boolean functions, the communication complexity of the Karchmer-

Wigderson game is tightly related to the decision tree complexity of

a certain search problem related to the Karchmer-Wigderson game.

Since decision tree complexity is typically much easier to lower

bound than communication complexity, they were able to employ

this lifting theorem to separate the monotone NC hierarchy, show-
ing thatO (logi n)-depth monotone circuits are strictly weaker than

O (logi+1 n)-depth monotone circuits. This work has been hugely in-

fluential in communication complexity: lifting theorems have now

been proved which connect a wide variety of communication mod-

els to simpler query models, and have led to strong lower bounds

in classical, quantum, and number-on-forehead communication

complexity models [6, 11, 20, 33]. In fact, a lifting theorem recently

proved by Göös and Pitassi [12] was used to give 2
Ω(n/ logn)

lower

bounds on the size of monotone formulas computing a monotone

boolean function in NP, which was the strongest lower bound

known until our result.

For monotone switching networks, the strongest lower bounds

follow from the monotone formula lower bounds. In particular, it

is known that if a monotone boolean function f has a monotone

switching network of size s , then it has a monotone formula of size

2
O (log2 s)

[4]. Applying the 2
Ω(n/ logn)

lower bounds on formula

size proven by Göös and Pitassi [12] yields monotone switching net-

work lower bounds of 2
Ω(
√
n/ logn)

, which were the strongest previ-

ously known. In a parallel, but impressive, pair of works, Potechin

[23] and Chan-Potechin [5] gave an ingenious Fourier-analytic

technique proving nΩ(n1/10)
lower bounds on monotone switching

networks computing a certain function in mP.
Monotone span programs have a long history of lower bounds

[1, 2, 7, 9, 10, 18, 29]. We give an abridged version. The first lower

bounds were on the order of Ω(n logn) for monotone span pro-

grams computing threshold functions [18]. The first superpolyno-

mial lower bounds of nΩ(logn/ log logn)
were proven by Babai et al

[1], which was strengthened to nΩ(logn)
by Gál [9], who also con-

nected span program size to the rank measure [28]. Finally, Robere
et al [29] used this connection to prove the first exponential lower

bounds on the order of 2
Ω(nε)

against monotone span programs.

Let us discuss the rank measure further. Soon after the original

paper of Karchmer and Wigderson [17], Razborov [28] introduced

a simple matrix-theoretic complexity measure called the rank mea-
sure, and showed that lower bounds on the rank measure imply

formula size lower bounds. The rank measure is both elegant and

powerful: it immediately gives lower bounds for monotone formu-

las, monotone switching networks, monotone span programs and

even monotone comparator circuits [9, 29]. Despite its strength, the

strongest known lower bounds on the rank measure of an explicit

boolean function was on the order of nΩ(logn)
[9] until Robere et

al [29] proved the first exponential lower bounds on the order of

2
Ω(nε)

on the size of the rank measure for a function in mP. This
implied the first exponential lower bounds on both monotone span

programs, and the first superpolynomial lower bounds on mono-

tone comparator circuits. The proof from [29] proceeds by proving a

lifting theorem for the rank measure — connecting it to an algebraic

complexity measure called the algebraic gap complexity.

Our Technique. In this work we use a refined version of the

lifting theorem of Robere et al to obtain a 2
Ω(n)

lower bound on

the rank measure for a function in NP [29]. Now, lifting theorems

for monotone formula size were obtained by both Raz-Mckenzie

[25] and Göös-Pitassi [12], which suggests a natural question: what

prevented any of these other lifting theorems from obtaining the

strong lower bounds we obtain in Theorem 1?

To answer this question, it will help to dive a little deeper into

how the lifting theorems work. The central idea is this. We start

with an unsatisfiable CNF C on input variables z1, z2, . . . , zm , and

consider the following search problem Search(C): given an assign-

ment z to the variables of C, output a clause C ∈ C that is falsified

by z. We then transform the search problem into a two-party com-

munication problem as follows:

Gadget. Choose a two-player gadget д : X ×Y → {0, 1}.

Compose. Replace each variable zi in the CNFCwithд(xi ,yi),
where xi ,yi are new variables.

The new communication problem, denoted Search(C) ◦ дm , is de-

fined as follows: Alice receives x ∈ Xm , Bob receives y ∈ Ym
, and

their goal is to evaluate the gadget д on each pair of inputs (xi ,yi)
and solve the search problem on the string

z = д(x1,y1)д(x2,y2) · · ·д(xm ,ym).

Using the Karchmer-Wigderson connection [17], lower bounds on

the communication complexity Search(C) ◦дm yield lower bounds

on the size of a related monotone boolean function [12, 25]. A

lifting theorem then shows that the communication complexity of

Search(C) ◦ дm is related to a simpler complexity measure (such

as decision tree complexity) on Search(C).

1247

Strongly Exponential Lower Bounds for Monotone Computation STOC’17, June 2017, Montreal, Canada

Now, in any lifting theorem there is an inherent tradeoff be-

tween the size of the gadget д (measured by |X|, |Y |), the result-

ing communication lower bound against Search(C) ◦ дm , and the

strength of the complexity measure on Search(C). For instance,
the Raz-Mckenzie lifting theorem transforms decision tree lower
bounds on Search(C) into communication lower bounds against

Search(C) ◦ дm [13, 25]. Of course, we have very strong lower

bounds for decision trees, but in order to translate lower bounds

for such a weak measure into communication lower bounds we

(apparently) need a large gadget, causing a significant loss in the

final lower bound. On the other hand, the Göös-Pitassi lifting theo-

rem transforms critical block sensitivity lower bounds on Search(C)
into communication lower bounds [12]. In this lifting theorem we

can use a constant-size gadget — yielding an optimal translation of

lower bounds — but we do not know how to prove strong enough

lower bounds on critical block sensitivity!

Our refined lifting theorem using the rank measure avoids both

of these problems. The lifting theorem of Robere et al [29] connects

lower bounds on the algebraic gap complexity of Search(C) with
lower bounds on the rank measure of a related monotone boolean

function, the definition of which we recall next.

Definition. Let C be an unsatisfiable CNF on m variables. The

algebraic gap complexity of Search(C) is the largest integer k for

which there is a boolean function p : {0, 1}m → R such that

degp =m and degp↾C ≤ m − k

for all clauses C in C.

In the present work, we show that if one can obtain linear lower
bounds on the algebraic gap complexity of Search(C), then we can

use a constant-size gadget in the lifting theorem and so obtain

2
Ω(n)

lower bounds for the resulting monotone boolean function.

In the previous work [29] the best algebraic gaps were sublinear

(specifically, on the order of Θ(n/ logn)) which prevented the use

of a constant-size gadget in the lifting theorem. We are then able

to obtain linear lower bounds on the algebraic gap complexity of

Search(TseitinG), where TseitinG is the CNF encoding the well

known Tseitin contradictions on a highly expanding graph G.

Proof Outline. We now give a technical outline of our proof,

which generally follows the same outline as in [29]. Let f : {0, 1}n →

{0, 1} be a monotone function. LetU ⊆ f −1 (1) be a subset of the
1-inputs of f , and letV ⊆ f −1 (0) be a subset of the 0-inputs of f .
LetA be a |U |× |V| matrix overRwith rows labelled byu ∈ U and

columns labelled by v ∈ V . For each underlying input variable xi
of f , define the subrectangle Ri to be the set of pairs (u,v) ∈ U×V
such that ui = 1 and vi = 0. Let Rf (U ,V) denote the collection
of all of these rectangles.

The rank measure of A is defined to be the ratio of the rank of

A to the maximum rank of the submatrix of A indexed by any of

these rectangles

µA (f) =
rankA

max

R∈Rf (U,V)
rankA↾R

.

This measure was originally introduced by Razborov [28], and for

anyA the measure µA (f) is a lower bound on each of the monotone

computation models we have discussed above. Thus, our overall

goal is to find a family of matrices {An } for an explicit monotone

function f for which the rank measure is 2
Ω(n)

.

At a high level our lower bound argument proceeds in two steps.

First, we use the lifting theorem from [29] connecting the rank

measure to an algebraic measure on polynomials called the algebraic
gap complexity. The lifting theorem uses the seminal Pattern Matrix
Method due to Sherstov [33], which was followed by many other

query-to-communication complexity lifts in the literature [6, 12, 15,

19, 20, 25, 32]. The second and main step is to prove linear lower

bounds on the algebraic gap complexity for some explicitly defined

search problem.

Let us proceed in more detail. Let C be an unsatisfiable d-CNF on
m variables z1, z2, . . . , zm and clausesC1,C2, . . . ,Cs — for instance,

take a Tseitin formula — and let

H = ({z1, . . . , zm } ∪ {C1, . . . ,Cs } ,E)

be a bipartite graph encoding the topology of C (so, there are edges

connecting each variable zi with the constraints Cj containing it).

Given H and any alphabet Σ, one can consider the following mono-
tone variant of the constraint satisfaction problem SATΣ,H which is

defined as follows. The input is a binary string x of length s · |Σ|d en-

coding truth tables for each of the constraints C1,C2, . . . ,Cs (thus,
we have “forgotten” that these are clauses in C, and now treat them

as arbitrary constraints over the alphabet Σ). Given such a string

x , SATΣ,H (x) = 1 if and only if the CSP encoded by x is satisfiable.

Our lifting theorem transforms algebraic gaps (an algebraic query

complexity measure) on a search problem associated with C into

lower bounds on the rank measure of SATΣ,H for some domain Σ.
Step 1: The Pattern Matrix Lift. Sherstov [33] gave a general

method to construct a “pattern matrix” Ap from a boolean function

p : {0, 1}m → R such that the analytic properties of Ap are related

to the Fourier analytic properties of the function p. The matrix is

constructed as follows: the columns of Ap are indexed by strings

y ∈ {0, 1}n for some n > m, the rows of Ap are indexed by pairs

(x ,w) where x ∈ [n/m]
m
is a string of “pointers” to indices iny,w ∈

{0, 1}m , and then for each pair ((x ,w),y) the value Ap [(x ,w),y] is
p (y↾x ⊕w).

We beginwith the Tseitin formulas TseitinG on a highly-expanding,

constant-degree graph G. The main idea is to use a pattern matrix

Ap for some intelligently chosen p to certify a lower bound on the

rank measure for SATΣ,H where H encodes the topology of the

Tseitin formula and Σ = ([n/m] × {0, 1})m is the domain of (x ,w).
To do this, we show that each row (x ,w) of the pattern matrix Ap
can be interpreted as a satisfiable CSP instance of SATΣ,H , while

each column y of Ap can be interpreted as an unsatisfiable CSP.

Under this interpretation, each rectangle R in RSATΣ,H corresponds

in a very natural way to a clause C of the underlying Tseitin for-

mula TseitinG . A theorem of Sherstov [33] allows us to connect the

rank of the matrix A to the Fourier spectrum of p, and similarly the

rank of each “rectangle submatrix” A↾R to the Fourier spectrum of

p↾C , where p↾C is a restriction of the function p obtained naturally

from the clauseC underlying the rectangle R. The end result is that
the matrix Ap will certify a large rank measure if the function p
exhibits a large algebraic gap, in that the Fourier degree of p is large,

but the Fourier degree of each of the restrictions p↾C is small.

1248

STOC’17, June 2017, Montreal, Canada Toniann Pitassi and Robert Robere1

Step 2: Exhibiting Large Algebraic Gaps. The second step

of our argument is to actually construct a function p exhibiting

linear-size algebraic gaps for TseitinG . First, we show that for each

positive integerm the problem of constructing a boolean function

p : {0, 1}m → R with large algebraic gap is equivalent to the

satisfiability of a system of linear equations. To show this system is

satisfiable, we introduce a new proof system that is similar to width-

restricted Gaussian refutations. Our main technical argument is a

completeness theorem, showing that this system of linear equations

is satisfiable if the (width-restricted) proof system cannot refute the

unsatisfiable Tseitin formulas. Finally, we employ the known lower

bounds on Gaussian width by the expansion of the underlying

graph of the Tseitin formula to get linear algebraic gaps.

2 DEFINITIONS
A real-valued boolean function is any function p : {0, 1}n → R. If
A is any set and x ∈ An we let xi denote the ith component of x . If
x ,y ∈ {0, 1}n we let x ⊕ y ∈ {0, 1}n denote the string obtained by

taking the bitwise XOR of x and y.
For any n, the collection of all n-ary real-valued boolean func-

tions

{
p : {0, 1}n → R

}
forms a vector space under pointwise addi-

tion and scalar multiplication. For anyC ⊆ [n], the Fourier character
at C is the function χC : {0, 1}n → {−1, 1} defined by

χC (x) = (−1)
∑
i∈C xi .

The collection of characters

{
χC

}
C⊆[n] form an orthonormal basis

for the vector space of real-valued boolean functions known as the

Fourier basis, where the vector space is equipped with the inner

product

⟨p,q⟩ =
1

2
n

∑
x ∈{0,1}n

p (x)q(x).

Since this basis is orthonormal, given any function p : {0, 1}n → R,
we can represent p in the Fourier basis as

p (x) =
∑

C⊆[n]

⟨p, χC ⟩χC (x).

This representation is called the Fourier transform of p.
We let p̂ (C) = ⟨p, χC ⟩ denote the coefficient of χC of p in the

Fourier basis — this is the Fourier coefficient of p atC . The collection
of non-zero Fourier coefficients of p is called the Fourier spectrum
of p. The Fourier degree is the size of the largest non-zero Fourier

coefficient of p:

degp = max

S ⊆[m]

{
|S | | p̂ (S) , 0

}
,

which, equivalently, is the degree of the unique representation of p
as a multilinear polynomial over the real numbers. See [22] for a

comprehensive survey of boolean function analysis.

If x ,y ∈ {0, 1}n then we write x ≤ y if xi ≤ yi for all i . A function

f : {0, 1}n → {0, 1} is monotone if f (x) ≤ f (y) whenever x ≤ y.
If f is monotone then an input x ∈ {0, 1}n is a maxterm of f if

f (x) = 0 but f (x ′) = 1 for any x ′ obtained from x by flipping

a single bit from 0 to 1; dually, x is a minterm if f (x) = 1 but

f (x ′) = 0 for any x ′ obtained by flipping a single bit of x from 1 to

0. More generally, if f (x) = 1 we call x an accepting instance or a
yes instance, while if f (x) = 0 then we call x a rejecting instance or
a no instance. If x is any yes instance of f and y is any no instance

of f then there exists an index i ∈ [n] such that xi = 1,yi = 0, as

otherwise we would have x ≤ y, contradicting the fact that f is

monotone.

Suppose that U ,V ⊆ {0, 1}n are any sets satisfying f (U) =
1, f (V) = 0. A set R ⊆ U ×V is called a rectangle if there are sets
U0 ⊆ U ,V0 ⊆ V such that R = U0 ×V0. For each i ∈ [n] let

Xi =
{
x ∈ {0, 1}n | xi = 1

}
×

{
x ∈ {0, 1}n | xi = 0

}
,

and let Ri = Xi ∩ (U ×V). Denote by Rf (U ,V) the collection of

rectangles

Rf (U ,V) = {Ri | i = 1, 2, . . . ,n} .

Since f is a monotone function there is an index i such that ui =
1,vi = 0 for all u ∈ U ,v ∈ V , and so every entry of U × V is

covered by some rectangle in Rf (U ,V). Let A be any |U | × |V|

matrix with rows labelled by entries ofU and columns labelled by

entries ofV , and if S ⊆ U ×V is any subset ofU ×V let A↾S be

the submatrix indexed by S .

Definition 2. Let f : {0, 1}n → {0, 1} and let U ⊆ f −1 (1),V ⊆
f −1 (0). Let A be any |U | × |V| matrix over R1. The rank measure
of f with respect to A is

µA (f) :=
rank(A)

max

R∈Rf (U,V)
rank(A↾R)

.

2.1 Unsatisfiable Formulas and Search
Problems

Let C be an unsatisfiable d-CNF formula over variables z1, . . . , zm .

The search problem associated with C, Search(C), takes as input
an assignment α ∈ {0, 1}m to z1, . . . , zm and the goal is to output a

clauseCi such thatCi (α) = 0. Each clauseCi has a unique falsifying
assignment, and given a boolean function p on the same variables

as C, we let p↾C denote the restriction of the function p by this

assignment.

The communication version of the search problem Search(C)
is obtained by composing (or lifting) Search(C) with a two-party

gadget д : X×Y → {0, 1} to obtain a new problem Search(C) ◦дm

in the natural way: Alice gets x ∈ Xm as input, Bob gets y ∈ Ym

as input, and their goal is to find a clause Ci ∈ C that is violated

for the input

z = дm (x ,y) = (д(x1,y1), . . . ,д(xm ,ym)).

Tseitin Formulas.Wewill be interested in the unsatisfiable Tseitin
formulas and their associated search problems. Let G = (V ,E) be
a connected d-regular graph with a node labelling ℓ : V → {0, 1}
which has odd weight, i.e.

∑
u ∈V ℓ(v) = 1 (mod 2). If z : E → {0, 1}

is an edge-labelling and v ∈ V is a vertex, we write

z (v) :=
∑
e ∋v

z (e) mod 2

to be the sum of the labels of the edges adjacent to v modulo 2.

Typically we chooseG to be a highly expanding d-regular graph on

an odd number of vertices andm = d |V |/2 edges, and each vertex

will be labelled ℓ(v) = 1.

Given such a graph G, the Tseitin formula TseitinG is a d-CNF
onm = d |V |/2 variables with one variable xe for each edge e in G.

1
This definition makes sense with respect to any field, but we will work exclusively in

the reals.

1249

Strongly Exponential Lower Bounds for Monotone Computation STOC’17, June 2017, Montreal, Canada

For each vertexv ∈ V , TseitinG contains 2
d−1

clauses encoding the

equation z (v) = ℓ(v). The formula is clearly unsatisfiable:

∑
v z (v)

is even because every edge is counted twice, but on the other hand

the sum

∑
v l (v) = |V | is odd by assumption. The search problem

Search(TseitinG) therefore has a natural semantics: given an edge-

labelling z : E → {0, 1}, find a node v ∈ V which has a parity
violation z (v) , l (v).

The communication version of the Tseitin problem is obtained by

composing Search(TseitinG) with a two-party gadget д : X ×Y →

{0, 1}. We define our gadget д later, but what is important is that

it is constant-size in the sense that |X| and |Y | are fixed constants

independent of m. In the lifted communication search problem

Search(TseitinG)◦дm , Alice getsx ∈ Xm as input, Bob getsy ∈ Ym

as input, and their goal is to find a node v ∈ V that with a parity

violation under the edge-labelling

z = дm (x ,y) = (д(x1,y1), . . . ,д(xm ,ym)).

2.2 From Search Problems to Monotone CSPs
We now define the monotone variant of the constraint satisfaction

problem (CSP) for which we obtain strongly exponential rank lower

bounds. The function is defined relative to some finite alphabet Σ
and a bipartite graphH = (L∪R,E) encoding the topology of a CSP
H . In H , the left vertices L correspond to a collection of Σ-valued
variables, and the right vertices R correspond to the constraints

of H . Given a constraint C ∈ R, let vars(C) denote the variables
involved in C (or, equivalently, the neighborhood of C in the graph

H). We assume that each constraint C satisfies |vars(C) | = d .

Definition 3. Let H = (L ∪ R,E) be a bipartite graph, let Σ be

a finite alphabet, and let N = |R | · |Σ|d . The monotone func-

tion SATΣ,H : {0, 1}N → {0, 1} is defined as follows. An input

x ∈ {0, 1}N defines a CSP instanceH (x) with topology H by spec-

ifying for each constraint C in H a truth table Σvars(C) → {0, 1}
of satisfying assignments to that constraint. Given an input x ,
SATΣ,H (x) = 1 if and only if the CSPH (x) is satisfiable.

For any Σ,H observe that SATΣ,H is monotone since replacing

a 0 with a 1 in the truth table of any constraint preserves the

constraint’s satisfying assignments. Note that if H represents the

topology of a linear sized-CSP thenN = Θ(m) ifd, |Σ| are constants.
In particular, if H encodes the topology of the Tseitin formula on

a constant-degree graph with m edges, then N = Θ(m) if |Σ| is
constant.

Suppose thatC is an unsatisfiabled-CNF on variables z1, z2, . . . , zm ,

and let H = (L ∪ R,E) be the constraint graph representing the

topology of C. If д : X × Y → {0, 1} is a two-party gadget, then

there is a natural way to convert inputs x ∈ Xm and y ∈ Ym
in the

lifted search problem Search(C) ◦дm into minterms and maxterms

of SATX,H :

Accepting InputsU . Alice maps her x ∈ Xm into the ac-

cepting inputY (x) of SATX,H for which the unique satisfy-

ing assignment to the CSP encoded by Y (x) is x . Formally,

for each constraintC ∈ R, the truth tableXvars(C) → {0, 1}

is entirely 0 except for a single 1 in the position x↾vars(C) .

Rejecting InputsV . Bob maps his y ∈ Ym
into the reject-

ing input N (y) of SATX,H as follows. For each constraint

C ∈ R, the truth table tC : Xvars(C) → {0, 1} has tC (α) = 1

if and only if the boolean string дvars(C) (α ,y↾vars(C)) ∈

{0, 1}vars(C)
satisfies the corresponding clause C of the un-

derlying CNF C.

Note the distinction between the two constraint satisfaction

problems above. The unsatisfiable CNF C is fixed beforehand, and

we use its constraint graph H as the underlying topology of the

possible input CSPs to SATX,H . The domain of the CSPs in the

SATX,H problem is X, which is the domain of Alice’s inputs to

Search(C) ◦ дm .

It is clear that the inputs Y (x) are accepted by SATX,H , since

the CSP encoded by Y (x) is satisfied by x . To see that the inputs

N (y) are rejecting inputs, suppose otherwise and let x ∈ Xm be

the satisfying assignment of the CSP encoded by N (y). By defini-

tion of N (y), it follows that for each constraint C ∈ C we have

tC (x↾vars(C)) = 1, which only occurs if дm (x ,y) is a satisfying as-
signment to the CNF formula C. This is a contradiction since C is

unsatisfiable.

3 RANK MEASURE LOWER BOUNDS
In this section we state our main theorem and record its conse-

quences.

Theorem 4. Let N be a sufficiently large positive integer. There
is an explicit monotone function f : {0, 1}N → {0, 1} computable in
NP, sets U ⊆ f −1 (1), V ⊆ f −1 (0), and a real-valued |U | × |V|
matrix A such that

µA (f) ≥ 2
αN

for some universal constant α > 0.

There is a long history of results relating the rank measure µA to

monotone computational models. For the sake of brevity, we record

them all in a single lemma below. First we record some notation

representing monotone circuit complexity classes. If f : {0, 1}N →

{0, 1} is a monotone function, let

mNC1 (f) = monotone formula size of f ,
mL(f) = monotone switching network size of f ,
mSPF (f) = monotone span program size (over the field F) of

f ,
mCC(f) = monotone comparator circuit size of f .

Lemma 5. Let f be a monotone boolean function. Let F be any field,
and let A be any matrix over F. Then

µA (f) ≤ mSPF (f) ≤ mL(f) ≤ mNC1 (f),

and
µA (f) ≤ mCC(f) ≤ mNC1 (f).

Proof Sketch. We record references for each of the results:

(1) mL(f) ≤ mNC1 (f) is folklore, and can be found in Jukna

[16],

(2) mSPF (f) ≤ mL(f) was proved by Karchmer and Wigder-

son [18],

(3) µA (f) ≤ mSPF (f) was shown by Gál [9],

(4) The two results µA (f) ≤ mCC(f) ≤ mNC1 (f) are proved
by Robere et al [29]. □

By the previous lemma, Theorem 4 implies strongly exponential

lower bounds in all of these models.

1250

STOC’17, June 2017, Montreal, Canada Toniann Pitassi and Robert Robere1

Theorem 1. There is a universal constant α > 0 and an explicit
monotone function computable in NP on N variables that requires
size 2αN in the following models of computation: monotone formulas,
monotone switching networks, real monotone span programs, and
monotone comparator circuits.

Note that for any monotone function f on N inputs we have

mNC1 (f) ≤ N 2
N

since we can construct a simple monotone DNF

accepting each of the minterms of f . It follows that our lower
bound is asymptotically the best possible — up to constants in the

exponent — in each of these models for any monotone function.

The function f for which we obtain the strongly exponential

lower bound in Theorem 4 is SATX,H where X is some large (but

constant-size) domain and H is the constraint graph encoding the

Tseitin formula on a highly expandingd-regular graph. The proof of
the lower bound closely follows the previous lower bounds on the

rank measure in [29]: in Section 4, we prove a lifting theorem which

reduces constructing a matrix A for Theorem 4 to obtaining large

algebraic gaps on the search problem Search(TseitinG). Then, in
Section 5, we show that Search(TseitinG) has linear-size algebraic
gaps.

4 REDUCING THE RANK MEASURE TO
ALGEBRAIC GAPS

The rest of the paper is devoted to the proof of Theorem 4. We first

define an algebraic query complexity measure that was introduced

in [29]. Recall that degp is the size of the largest non-zero Fourier

coefficient of p.

Definition 6. Let C be an unsatisfiable CNF onm variables. The

algebraic gap complexity of Search(C) is the largest integer k for

which there is a boolean function p : {0, 1}m → R such that

degp =m and degp↾C ≤ m − k

for all clauses C in C.

Next we state and prove our lifting theorem. The proof of this

theorem follows the strategy from [29], although we pay closer

attention to the size of the gadget. A striking consequence is that

if we can find an unsatisfiable CNF C with constant width and

Ω(m)-size algebraic gaps then we obtain strongly exponential lower

bounds on the rank measure for the corresponding SAT problem.

To contrast, the strongest algebraic gap bounds proved in [29] are

sublinear, which led to weakly exponential lower bounds.

Theorem 7. Letm,d be positive integers and let C be an unsatis-
fiable d-CNF onm variables and with constraint graph H . Suppose
the algebraic gap complexity of Search(C) is εm for some ε > 0.
Let λ > 2

1/ε be a positive integer and let X = [λ] × {0, 1}. Let
δ = δ (ε) = ε log

2
λ − 1. There is a matrix A such that

µA (SATX,H) ≥
2
δm

d + 1
.

Proof. Let p : {0, 1}m → R be the function witnessing the

algebraic gap complexity of Search(C). Let X = [λ] × {0, 1} and let

Y = {0, 1}λ . Define the Sherstov gadget дλ : X ×Y → {0, 1} to be

the function д((x ,w),y) = yx ⊕w, and let

A = [p (дmλ (x ,y))]x ∈Xm,y∈Ym .

(The matrix A is typically called a pattern matrix in the literature).

LetU ,V be the collections of minterms and maxterms (resp.) of

SATX,H constructed using the communication problem Search(C)◦
дmλ . We lower bound

µA (SATX,H) =
rankA

max

R∈RSATX,H (U,V)
rankA↾R

.

To bound the rank of the numerator, we use a lemma by Sherstov

[33] showing that the rank of A is completely specified by the

Fourier spectrum of p.

Lemma 8 (Theorem 4.3 in [33]). The rank of the matrix

A = [p (дmλ (x ,y))]x ∈Xm,y∈Ym

is

rankA =
∑

S :p̂ (S),0

λ |S | .

The companion to the previous lemma, proved in [29], shows

that the rank of each submatrix A↾R is specified by the Fourier

spectrum of the restricted function p↾C , where C is a clause of C.

Lemma 9 (Lemma 4.6 in [29]). Consider the communication search
problem Search(C) ◦дmλ . Let (C,α) be any input variable of SATX,H ,
and let R be the rectangle corresponding to (C,α) in RSATX,H (U ,V).
Then

rank(A↾R) =
∑

S :p̂↾C (S),0

λ |S | .

Note that the above sum is taken over all subsets S of the unrestricted
variables of p↾C .

Since degp =m, Lemma 8 implies that

rankA =
∑

S :p̂ (S),0

λ |S | ≥ λm .

On the other hand, let R ∈ RSATX,H (U ,V) be chosen arbitrarily

and let (C,α) be the input variable of SATX,H corresponding to R.
Note that we may assume that p̂ (S) = 0 for all S ⊆ [m] with |S | <
m− εm w.l.o.g. since this does not affect the algebraic gap exhibited

by p. Since degp↾C ≤ m − εm, it follows that all of the non-zero

Fourier coefficients p̂↾C (S
′) are obtained as a linear combination of

non-zero Fourier coefficients of p̂ (S) where |S | ≤ |S ′ | +d . Applying
Lemma 9 and using these two facts, we have

rankA↾R =
∑

S :p̂↾C (S),0

λ |S | ≤
d∑
i=0

(
m

m − εm − i

)
λ(m−εm−i)

≤ 2
m

d∑
i=0

λ(m−εm−i)

≤ 2
m (d + 1)λ(m−εm) .

1251

Strongly Exponential Lower Bounds for Monotone Computation STOC’17, June 2017, Montreal, Canada

Putting it all together we get

µA (fC) =
rankA

max

R∈RfC (Y,N)
rankA↾R

≥
λm

(d + 1)2mλ(m−εm)

≥
λεm

(d + 1)2m

≥
2
δm

d + 1

where δ = ε log
2
λ − 1. □

5 ALGEBRAIC GAPS FOR THE TSEITIN
SEARCH PROBLEM

In this section, wewill show that ifG is a highly expandingd-regular
graph, then Search(TseitinG) has linear algebraic gap complexity.

Let G = (V ,E) be any d-regular graph with an odd number of

nodes, and for any subset of verticesU ⊆ V let Cut(U) denote the
collection of edges with exactly one endpoint inU . Recall that the

(edge-)expansion of G is

ε (G) = min

{
|Cut(U) |

|U |
: U ⊆ V , 0 < |U | ≤ ⌊|V |/2⌋

}
.

The following theorem is the main result of this section.

Theorem 10. Let d be a positive integer, let G = (V ,E) be a
d-regular graph with an odd number of nodes and m = d · |V |/2
edges. Then Search(TseitinG) has algebraic gap complexity at least
ε (G)m/3d .

Using Theorems 10 and 7 we can prove our main theorem.

Theorem 4. Let N be a sufficiently large positive integer. There
is an explicit monotone function f : {0, 1}N → {0, 1} computable in
NP, sets U ⊆ f −1 (1), V ⊆ f −1 (0), and a real-valued |U | × |V|
matrix A such that

µA (f) ≥ 2
αN

for some universal constant α > 0.

Proof. Recall that Ramanujan graphs are d-regular graphs G =
(V ,E) with expansion

ε (G) ≥ 1/2 − 1/
√
d − 1.

Marcus, Spielman and Srivastava [21] proved that Ramanujan graphs
2

exist for all d and n = |V |. Let d = 10 and let G = (V ,E) be any Ra-

manujan graph with |V | odd andm = d |V |/2 edges. By Theorem 10,

the search problem Search(TseitinG) has algebraic gap complexity

at least

ε (G)m/3d ≥

(
1

6d
−

1

3d
√
d − 1

)
m =

m

180

.

Let λ = 2
181

; then δ = log
2
(λ)/180− 1 = 181/180− 1 > 0. Applying

Theorem 7, there is a matrix A such that

µA (SATX,H) ≥
2
δm

11

2
In this construction of Ramanujan graphs the resulting graphs are actually multi-

graphs — they can have multiple edges — but this does not affect our use of them.

where H is the constraint graph of TseitinG and X = [λ] × {0, 1}.

By definition, the function SATX,H has N = 2
d−1m(2λ)d input

variables, and thus setting α = 2δ/(4λ)d we have

µA (SATX,H) ≥
2
αN

11

.

Moreover, it is clear that SATX,H can be computed in NP. □

In the rest of the section we focus on proving the algebraic

gap complexity lower bounds for Search(TseitinG). As a first step,
we reformulate algebraic gaps for Search(TseitinG) as a system

of linear equations. We abuse notation and write Cut(u) to mean

Cut({u}) whenever u is a vertex; note that this is simply the set of

edges incident tou. Also, when writing Fourier coefficients p̂ (S), we
will write p̂ (S,D) to mean p̂ (S ∪ D) for the sake of readability. For
any positive integer k such that 0 ≤ k ≤ |E | define the following
system of linear equations on variables p̂ (S) for S ⊆ E.

G (G,k).

High Degree. p̂ (E) = 1

Vertex Constraints. For each subset S ⊆ E with |S | ≥ |E |−k ,
each vertex u with Cut(u) ∩ S = ∅, and each even-sized

subset C ⊆ Cut(u) add the equation

0 =
∑

D⊆Cut(u)

(−1) |D∩C |p̂ (S,D).

Lemma 11. Let G = (V ,E) be a d-regular, odd-sized graph, and
let 0 ≤ k ≤ |E |. If G (G,k) is satisfiable then Search(TseitinG) has
algebraic gap complexity at least k + 1.

Proof Sketch. Let p̂ be a solution to the system and define

p (x) =
∑
|S | ≥m−k p̂ (S)χS (x). Since p̂ (E) = 1 we have that degp =

|E |. Now, consider any vertex v in the graphG, and consider any

clause C in the 2
d−1

clauses enforcing the constraint z (v) = 1. If

we let C+ represent the collection of positive literals in C , then

p̂↾C (S) =
∑

D⊆vars(C)

(−1) |D∩C
+ |p̂ (S,D).

Since the Fourier coefficients p̂ (S) of p satisfy the vertex constraints

for v it follows that p̂↾C (S) = 0 whenever |S | ≥ m − k , and thus

degp↾C ≤ m − k − 1. □

The previous lemma shows that Theorem 10 will follow if we can

construct a solution for G (G,k) when k = ε (G)m−1. As stated, it is
not clear how to construct solutions toG (G,k) even for smallk . Our
approach is to construct a new family of equations E∗ which follow

semantically from G (G,k), and then show that the new system is

(essentially) triangular, which immediately gives us satisfiability.

This is the same tactic that was used in the previous work arguing

about algebraic gap lower bounds [29], but here we must be more

careful. In [29], the system of equations corresponding to G (G,k)
was defined from a GEN instance (i.e. pebbling contradictions or,

equivalently, Horn clauses), and the equations had a natural “asym-

metry” which simplified the construction of E∗. Unfortunately, the

Tseitin equations are highly symmetric, and this makes a direct

translation of the argument from [29] impossible. We resolve this

problem by working with a simpler family of constraints that imply

(and, in fact, are equivalent to) the Tseitin constraints, and show

1252

STOC’17, June 2017, Montreal, Canada Toniann Pitassi and Robert Robere1

that the argument from [29] can be suitably modified to apply to

these simpler constraints.

For any set of edges S ⊆ E and any set U ⊆ V we let E (S,U)
denote the equation

p̂ (S) = (−1) |U |p̂ (S△Cut(U)).

Observe that E (E,V) is simply p̂ (E) = (−1) |V |p̂ (E), which is equiv-

alent to p̂ (E) = 0 since |V | is odd by assumption. We equip these

equations with some natural deduction rules.

Deduction IfU1,U2 are sets of vertices and S is a set of edges

then

E (S,U1), E (S,U2) ⊢ E (S△Cut(U1),U1△U2).

Symmetry IfU is a set of vertices and S is a set of edges then

E (S,U) ⊢ E (S△Cut(U),U).

As we claimed above it suffices to consider E-equations instead of

the vertex constraints.

Lemma 12. For each vertex u ∈ V and any set S ⊆ E with Cut(u) ∩
E = ∅, the family of vertex constraints for u and the set S is implied
by the family of E-equations

{E (S ∪ D, {u}) | D ⊆ Cut(u)} .

Proof. For each u ∈ V and S ⊆ E with Cut(u) ∩ S = ∅, the
vertex constraints for u are the equations of the form

0 =
∑

D⊆Cut(u)

(−1) |D∩C |p̂ (S,D)

for each even-sized subset C ⊆ Cut(u). Suppose that p̂ satisfies all

equations in the family

{E (S ∪ D, {u}) | D ⊆ Cut(u)} ,

and let C be an arbitrary even-sized subset of Cut(u). Then∑
D⊆Cut(u)

(−1) |D∩C |p̂ (S,D)

is equal to

1

2

∑
D⊆Cut(u)

(−1) |D∩C |p̂ (S,D)+ (−1) |(Cut(u)\D)∩C |p̂ (S,Cut(u) \D)),

but since D ∩C and (Cut(u) \ D) ∩C partition C and |C | is even it

follows that

(−1) |(Cut(u)\D)∩C | = (−1) |D∩C | .

Since p̂ satisfies E (S ∪ D, {u}) we have

p̂ (S,D) = −p̂ (S,Cut(u) \ D)

for all D ⊆ Cut(u), thus

1

2

∑
D⊆Cut(u)

(−1) |D∩C |p̂ (S,D)

+ (−1) |(Cut(u)\D)∩C |p̂ (S,Cut(u) \ D))

=
1

2

∑
D⊆Cut(u)

(−1) |D∩C | (p̂ (S,D) − p̂ (S,D)) = 0. □

Given G,k , define the index set I (G,k) to contain all pairs

(S,U) ⊆ 2
E × V such that m − k ≤ |S | ≤ m − |Cut(u) | and

S ∩ Cut(u) = ∅. Let E∗ (G,k) be the closure of the collection of

equations ⋃
(S,u)∈I (G,k)

{E (S ∪ D, {u}) | D ⊆ Cut(u)}

under the above deduction rules. We first claim that for every

equation E (S,U) ∈ E∗ (G,k) we have |S |, |S△Cut(U) | ≥ m − k .
This is because the deduction rules do not allow the introduction of

new p̂ (S) coefficients — they only relate coefficients which already

appear in the initial set of equations. Since each coefficient in the

initial set has size at leastm − k the claim follows.

Now, defineG∗ (G,k) to be
{
p̂ (E) = 1

}
∪E∗ (G,k). By the previous

lemma, if G∗ (G,k) is satisfiable then so is G (G,k). Moreover, the

equation E (E,V) is p̂ (E) = 0, and thus if E∗ (G,k) contains E (E,V)
this directly contradicts the equation p̂ (E) = 1 in G∗ (G,k). The
next lemma shows that this is the only obstruction to the system’s

satisfiability.

Lemma 13. For any graph G = (V ,E) with |V | odd and for any
integer 0 ≤ k ≤ |E |, the system G∗ (G,k) is satisfiable unless it
contains E (E,V).

Proof. Assume that G∗ (G,k) does not contain E (E,V), and
the solution p̂ is constructed by Algorithm 1. Intuitively the algo-

rithm sets values p̂ (S) from the “top-down” using the equations in

G∗ (G,k): it first assigns p̂ (E) = 1, and then for each of the smaller

sets S it chooses an equation E ∈ G∗ (G,k) containing p̂ (S) arbi-
trarily and updates p̂ (S) according to E.

Algorithm 1: Defining p̂ (S)

Set p̂ (E) = 1;

foreach i = 1, 2, . . .k do
Let S be the collection of all sets S ⊆ E of sizem − i;
while ∃S ∈ S such that E (S,U) ∈ G∗ (G,k) with
|S△Cut(U) | > |S | do

Choose any such equation E (S,U) ∈ G∗ (G,k)
arbitrarily;

Set p̂ (S) = (−1) |U |p̂ (S△Cut(U));

Remove S from S;

end
Set p̂ (S) = 0 for all remaining S ∈ S;

end
Set p̂ (S) = 0 for all remaining sets S ;
return p̂

The correctness of the algorithm follows from the next claim.

Claim. Let p̂ be defined by Algorithm 1, and let S ⊆ E be any set

with |S | ≥ m − k . For any i = 0, 1, . . . ,k the following holds. Let

U ⊆ V be any set of vertices for which E (S,U) ∈ G∗ (G,k) and
|S△U |, |S | ≥ m − i . Then E (S,U) is satisfied by p̂.

Proof of Claim. We prove the claim by induction on i . As a
base case we have i = 0, and thus |S | = |S△Cut(U) | = m. This

implies that S = S△Cut(U) = E, and thus U is either V or ∅. If

1253

Strongly Exponential Lower Bounds for Monotone Computation STOC’17, June 2017, Montreal, Canada

U = V then E (E,V) ∈ G∗ (G,k), which is a contradiction. On the

other hand, if U = ∅, then note that E (E, ∅) is just the equation
p̂ (E) = p̂ (E) which is trivially satisfied.

Assume that the claim holds for all j < i , and we prove the

claim when j = i . Let S ⊆ E and U ⊆ V be any sets such that

E (S,U) ∈ G∗ (G,k) and |S |, |S△Cut(U) | ≥ m − i .We assume U is

non-empty in order to avoid trivialities, and we prove

p̂ (S) = (−1) |U |p̂ (S△Cut(U)).

If both sets satisfy |S |, |S△Cut(U) | > m − i , then the claim follows

from the inductive hypothesis, so assume that at least one of the

sets has sizem − i .
Clearly if the algorithm sets p̂ (S) = p̂ (S△Cut(U)) = 0 simultane-

ously (i.e. at the end of the for loop) then the equation is satisfied. So,

assume that one of the values was assigned first, and by symmetry

assume that the first value assigned is p̂ (S△Cut(U)). We break into

two cases:

Case 1. |S | < |S△Cut(U) |.
Observe that this implies that |S | = m − i . Consider the time

at which p̂ (S) is assigned. Since |S△Cut(U) | > m − i it is clear
that p̂ (S) will be set by the end of the while loop in which S
is considered. If the algorithm uses the equation E (S,U) to set

p̂ (S) = (−1) |U |p̂ (S△Cut(U)) then we are done, so suppose other-

wise. It follows that there is a setU ′ such that E (S,U ′) ∈ G∗ (G,k),
|S△Cut(U ′) | > |S |, and the algorithm assigns

p̂ (S) = (−1) |U
′ |p̂ (S△Cut(U ′)).

Applying the deduction rule to E (S,U) and E (S,U ′) we get

E (S△Cut(U),U△U ′)

which is

p̂ (S△Cut(U)) = (−1) |U △U
′ |p̂ (S△Cut(U ′)).

Now, |S△Cut(U) |, |S△Cut(U ′) | > m − i , and so by the inductive

hypothesis p̂ satisfies E (S△Cut(U),U△U ′). Thus

p̂ (S) = (−1) |U
′ |p̂ (S△Cut(U ′)) = (−1) |U

′ |+ |U △U ′ |p̂ (S△Cut(U))

= (−1) |U |p̂ (S△Cut(U)).

Case 2. |S | = |S△Cut(U) |.
In this case |S | = |S△Cut(U) | =m−i . By assumption p̂ (S△Cut(U))

is set first, and so theremust be a setU ′′ such that E (S△Cut(U),U ′′)
is in G∗ (G,k), |S△Cut(U)△Cut(U ′′) | > m − i , and the algorithm

sets

p̂ (S△Cut(U)) = (−1) |U
′′ |p̂ (S△Cut(U)△Cut(U ′′)).

First, observe that p̂ (S) must be defined in the while loop (that

is, it can not be assigned to 0 at the end of the iteration of the

for loop). For suppose otherwise. Applying the deduction rule to

E (S△Cut(U),U ′′) and E (S△Cut(U),U) yields the equation

E (S△Cut(U)△Cut(U),U△U ′′) = E (S,U△U ′′)

which is p̂ (S) = (−1) |U △U
′′ |p̂ (S△Cut(U)△Cut(U ′′)). But

|S△Cut(U)△Cut(U ′′) | > m − i,

and so the equation E (S,U△U ′′) will cause p̂ (S) to be assigned in

the while loop.

So, let us suppose that both S and S△Cut(U) were set in the

while loop. As in the previous case, there is a set U ′ such that

E (S,U ′) ∈ G∗ (G,k), |S△Cut(U ′) | > |S |, and the algorithm assigns

p̂ (S) = (−1) |U
′ |p̂ (S△Cut(U ′)).

Applying the deduction rule to E (S,U) and E (S,U ′) yields

E (S△Cut(U),U△U ′),

and then applying the deduction rule again to E (S△Cut(U),U△U ′)
and E (S△Cut(U),U ′′) yields

E (S△Cut(U)△Cut(U)△Cut(U ′),U△U ′△U ′′)

= E (S△Cut(U ′),U△U ′△U ′′)

which is the equation

p̂ (S△Cut(U ′)) = (−1) |U △U
′△U ′′ |p̂ (S△Cut(U)△Cut(U ′′)).

Both S△Cut(U ′) and S△Cut(U)△Cut(U ′′) have greater thanm − i
elements since p̂ (S) and p̂ (S△Cut(U)) were assigned in the while

loop, and so by the inductive hypothesis the above equation holds.

Therefore

p̂ (S) = (−1) |U
′ |p̂ (S△Cut(U ′))

= (−1) |U
′ |+ |U △U ′△U ′′ |p̂ (S△Cut(U)△Cut(U ′′))

= (−1) |U
′ |+ |U △U ′△U ′′ |+ |U ′′ |p̂ (S△Cut(U))

= (−1) |U |p̂ (S△Cut(U)). □

Applying the Claim when i = k , we get that the output p̂ of

the algorithm satisfies every equation E (S,U) in G∗ (G,k), and it

clearly satisfies p̂ (E) = 1. The proof is complete. □

We now show that if the system E∗ (G,k) contains E (U ,V), then
the Tseitin formula TseitinG on G has a width-2k Gaussian proof.

Let us recall the Gaussian refutation system. Each line of a Gaussian

refutation of TseitinG is a linear equation over F2 of the form

LU ≡
⊕

e ∈Cut(U)

xe = |U | mod 2.

The axioms are of the form L {u } , where u is any node inV , and the

lines are equipped with a single derivation rule of the form

LU1
,LU2

⊢ LU1△U2
.

A Gaussian refutation of the Tseitin formula onG is a derivation

of 0 = 1 from axiom lines

{
L {u } | u ∈ V

}
. The width of a line LU

in a Gaussian refutation is |Cut(U) |, and the width of a Gaussian

refutation is the maximum width of all of the lines in the refutation.

Once we have this result in hand, we are finished thanks to the

following proposition.

Proposition 14. Let G = (V ,E) be a d-regular graph on an odd
number of vertices andm edges. Any Gaussian refutation of TseitinG
requires width at least ε (G)2m/3d .

Proof. Fix the first line LU in any Gaussian refutation that is

derived from between |V |/3 and 2|V |/3 initial lines. Since |V | =
2m/d we have 2m/3d ≤ |U | ≤ 4m/3d . Every edge in Cut(U) occurs
in LU , and thus the width of LU is ε (G) |U | ≥ ε (G)2m/3d . □

1254

STOC’17, June 2017, Montreal, Canada Toniann Pitassi and Robert Robere1

Lemma 15. Let G = (V ,E) be a graph with |V | odd, and let 0 ≤
k ≤ |E |. If E∗ (G,k) contains E (U ,V) then the Tseitin formula on G
has Gaussian width at most 2k .

Proof. Let P be a proof of E (U ,V) in the E-calculus. We turn

P into a Gaussian refutation as follows. The axioms E (S, {u}) are
turned into axiom lines L {u } . Inductively, if we apply the deduction
rule E (S,U1), E (S,U2) ⊢ E (S△U1,U1△U2) then we derive the line

LU1△U2
from the lines LU1

,LU2
. The symmetry rule is idempotent

(it does not affect the Gaussian refutation). It should be clear that

the final line in this inductive construction is LV ≡ 0 = 1, since |V |
is odd.

Let ℓ = |Cut(U) | be the width of the widest line LU in the

Gaussian refutation produced from P, and consider the correspond-

ing line E (S,U) which produced the line LU . This line is equiva-

lent to the equation p̂ (S) = (−1) |U |p̂ (S△Cut(U)). We claim that

min {|S |, |S△Cut(U) |} ≤ m − ℓ/2, and thus k ≥ ℓ/2, which proves

the theorem. To see this, first suppose that |S∩Cut(U) | ≤ ℓ/2. Then

|Cut(U) \ S | ≥ ℓ − |S ∩ Cut(U) | ≥ ℓ/2,

and thus

|S | + |Cut(U) \ S | = |S ∪ Cut(U) | ≤ m

so |S | ≤ m − ℓ/2. On the other hand, suppose |S ∩ Cut(U) | > ℓ/2.
Then

|S△Cut(U) | + |S ∩ Cut(U) | = |S ∪ Cut(U) | ≤ m,

and thus

|S△Cut(U) | + ℓ/2 ≤ m,

or equivalently |S△Cut(U) | ≤ m − ℓ/2. □

Proof of Theorem 10. By Lemma 13 the system G∗ (G,k) is
satisfiable unless it contains E (E,V). By the previous lemma and

proposition, if G∗ (G,k) contains E (E,V) then k ≥ ε (G)m/3d ; thus,
G∗ (G, ε (G)m/3d − 1) is satisfiable. Lemma 11 therefore implies that

Search(TseitinG) has algebraic gap complexity at least ε (G)m/3d .
□

REFERENCES
[1] László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower bounds for

monotone span programs. Combinatorica, 19(3):301–319, 1999.
[2] Amos Beimel, Anna Gál, and Mike Paterson. Lower bounds for monotone span

programs. Computational Complexity, 6(1):29–45, 1997.
[3] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting

planes proofs with small coefficients. J. Symb. Log., 62(3):708–728, 1997.
[4] Allan Borodin. On relating time and space to size and depth. SIAM J. Comput.,

6(4):733–744, 1977.

[5] Siu Man Chan and Aaron Potechin. Tight bounds for monotone switching

networks via fourier analysis. Theory of Computing, 10:389–419, 2014.
[6] Arkadev Chattopadhyay and Anil Ada. Multiparty communication complexity

of disjointness. Electronic Colloquium on Computational Complexity (ECCC),
15(002), 2008.

[7] László Csirmaz. The dealer’s random bits in perfect secret sharing schemes.

Studia Sci. Math. Hungary, 32(3-4):429–437, 1996.
[8] Yuval Filmus, Pavel Hrubes, and Massimo Lauria. Semantic versus syntactic

cutting planes. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium
on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016,
Orléans, France, volume 47 of LIPIcs, pages 35:1–35:13. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

[9] Anna Gál. A characterization of span program size and improved lower bounds

for monotone span programs. Computational Complexity, 10(4):277–296, 2001.
[10] Anna Gál and Pavel Pudlák. A note on monotone complexity and the rank of

matrices. Inf. Process. Lett., 87(6):321–326, 2003.
[11] Mika Göös. Lower bounds for clique vs. independent set. In IEEE 56th Annual

Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 1066–1076, 2015.

[12] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block

sensitivity. In Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 847–856, 2014.

[13] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication

vs. partition number. In Venkatesan Guruswami, editor, IEEE 56th Annual Sym-
posium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20
October, 2015, pages 1077–1088. IEEE Computer Society, 2015.

[14] Danny Harnik and Ran Raz. Higher lower bounds onmonotone size. In F. Frances

Yao and Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages
378–387. ACM, 2000.

[15] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: amplifying

communication complexity hardness to time-space trade-offs in proof complexity.

In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC
2012, New York, NY, USA, May 19 - 22, 2012, pages 233–248, 2012.

[16] Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27.

Springer Science & Business Media, 2012.

[17] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity

require super-logarithmic depth. SIAM J. Discrete Math., 3(2):255–265, 1990.
[18] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of

the Eigth Annual Structure in Complexity Theory Conference, San Diego, CA, USA,
May 18-21, 1993, pages 102–111, 1993.

[19] James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size

of semidefinite programming relaxations. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR,
USA, June 14-17, 2015, pages 567–576, 2015.

[20] Troy Lee and Adi Shraibman. Disjointness is hard in the multiparty number-on-

the-forehead model. Computational Complexity, 18(2):309–336, 2009.
[21] AdamW. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families

IV: bipartite ramanujan graphs of all sizes. In Venkatesan Guruswami, editor,

IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015, pages 1358–1377. IEEE Computer Society,

2015.

[22] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,

2014.

[23] Aaron Potechin. Bounds on monotone switching networks for directed connec-

tivity. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 553–562, 2010.

[24] Pavel Pudlák and Jirí Sgall. Algebraicmodels of computation and interpolation for

algebraic proof systems. In Proof Complexity and Feasible Arithmetics, Proceedings
of a DIMACS Workshop, New Brunswick, New Jersey, USA, April 21-24, 1996, pages
279–296, 1996.

[25] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Com-
binatorica, 19(3):403–435, 1999.

[26] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear

depth. J. ACM, 39(3):736–744, 1992.

[27] Alexander A. Razborov. Lower bounds for the monotone complexity of some

boolean functions. Soviet Math. Dokl., 31:354–357, 1985.
[28] Alexander A. Razborov. Applications of matrix methods to the theory of lower

bounds in computational complexity. Combinatorica, 10(1):81–93, 1990.
[29] Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Expo-

nential lower bounds for monotone span programs. Electronic Colloquium on
Computational Complexity (ECCC), 23:64, 2016.

[30] Benjamin Rossman. Correlation bounds against monotone ncˆ1. In David

Zuckerman, editor, 30th Conference on Computational Complexity, CCC 2015,
June 17-19, 2015, Portland, Oregon, USA, volume 33 of LIPIcs, pages 392–411.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[31] Claude Shannon et al. The synthesis of two-terminal switching circuits. Bell
System Technical Journal, 28(1):59–98, 1949.

[32] Alexander A. Sherstov. Communication lower bounds using dual polynomials.

Bulletin of the EATCS, 95:59–93, 2008.
[33] Alexander A. Sherstov. The pattern matrix method. SIAM J. Comput., 40(6):1969–

2000, 2011.

1255

	Abstract
	1 Introduction
	2 Definitions
	2.1 Unsatisfiable Formulas and Search Problems
	2.2 From Search Problems to Monotone CSPs

	3 Rank Measure Lower Bounds
	4 Reducing the Rank Measure to Algebraic Gaps
	5 Algebraic Gaps for the Tseitin Search Problem
	References

