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oization, in which formulas that the algorithm has previously shown to be unsatisfiable are re-
membered for later use. Such formula caching algorithms have been suggested for satisfiability
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introduction of a natural and implementable form of DPLL with caching, FCW

reason. This system
is surprisingly powerful: we prove that it can polynomially simulate regular resolution, and fur-
thermore, it can produce short proofs of some formulas that require exponential-size resolution
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1. INTRODUCTION

Over the last decade, many variations and extensions of DPLL have been
introduced (both for satisfiability and stochastic satisfiability). A generally
useful idea is to store intermediate results for later reuse as the DPLL tree
is searched. The technique of clause learning, for which there have been
many good implementations [Marques-Silva and Sakallah 1996; Zhang 1997;
Moskewicz et al. 2001; Zhang et al. 2001] and which has revolutionized practi-
cal satisfiability solving, can be viewed as a form of memoization (saving solved
subproblems, also called caching) of DPLL. In clause learning, the algorithm
stores, in the form of learned clauses, partial assignments that force contra-
dictions and uses these learned clauses to augment the clauses of the original
formula. This technique, which can be efficiently simulated by resolution, has
been studied from the point of view of proof complexity by Beame et al. [2004].
More generally, memoization is useful in a variety of backtracking algorithms.
As one example, Robson [1986] uses memoization to speed up a backtracking
algorithm for maximum independent set.

The methods that interest us here involve caching unsatisfiable residual for-
mulas rather than partial assignments. They were first defined by Majercik
and Littman [1998] where DPLL-based algorithms with caching are studied
and implemented to solve large probabilistic planning problems. In that pa-
per, there were no analytic runtime guarantees, although the empirical results
were very promising. More recently, Bacchus et al. [2003b; 2003a] defined
DPLL-based algorithms with caching for counting satisfying assignments and
Bayesian inference and gave time and space bounds that are as good as any
known algorithm for these problems in terms of a connectivity measure of the
underlying set of clauses/Bayes network.

Thus, while applications of memoization in many different guises for DPLL
have been studied in the past, this article is the first to specifically formalize
proof systems for SAT based on adding memoization of residual formulas to
DPLL, and to analyze the complexity of these systems. We present several dif-
ferent ways to introduce caching of unsatisfiable residual formulas into DPLL
algorithms. We characterize the strength of these nondeterministic algorithms
in terms of proof systems. Then we compare these proof systems to each other
and to standard proof systems. This gives a fairly complete picture of the rela-
tive strengths of the various approaches.
ACM Transactions on Computation Theory, Vol. 1, No. 3, Article 9, Pub. date: March 2010.
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Fig. 1. Generic DPLL algorithm.

Many of our results are surprising, since at first glance it seems that adding
memoization to DPLL cannot strengthen the system beyond resolution. One
of our most interesting results is the introduction of a natural and imple-
mentable form of DPLL with caching, FCW

reason. This system is surprisingly pow-
erful; we prove that it can produce short proofs of some formulas that require
exponential-size resolution proofs. Thus, adding formula caching to DPLL is
potentially much more powerful than clause learning, as clause learning is a
form of resolution.

As mentioned before, our results characterize the relative strengths of
various extensions of DPLL in terms of proof systems. Here we continue the
fruitful connection between algorithm design and proof complexity found in
the formalization of the DPLL approach to satisfiability testing in terms of
tree-like resolution proofs. In doing so, we view DPLL as a meta-algorithm,
as shown in Figure 1, whose input is a CNF formula F. As written, the step
“choose a literal x” is not fully specified. This is one of many examples in al-
gorithm design in which there is a single framework or meta-algorithm with a
variety of options for how this meta-algorithm should proceed at a given point
in its execution. We can thus think of this meta-algorithm as a nondetermin-
istic algorithm, in which the algorithm expresses as a nondeterministic choice
from among the options. In devising a deterministic algorithm within this
framework, the algorithm designer replaces the nondeterministic choices with
deterministic rules.

The nondeterminism only occurs in the step in which the algorithm chooses
the branching literal x. To create a deterministic DPLL algorithm, a deter-
ministic rule must be given for this choice. In the case of DPLL, such a rule
would likely include priority for literals in unit clauses which is equivalent
to including explicit unit clause propagation. Beyond this simple preference,
many such deterministic rules have been suggested over the years, and the
performance of DPLL, empirically, has been found to be quite sensitive to the
choice of this rule.

Since there are unlimited numbers of deterministic versions, it seems im-
possible to exactly analyze all possible variants. However, the performance of
the nondeterministic version of this algorithm has been characterized in terms
of tree-like resolution. Tree-like resolution is an example of an abstract propo-
sitional proof system, which is an efficient method for verifying proofs in propo-
sitional logic represented in a given format. A propositional proof system can
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be viewed alternatively as a nondeterministic algorithm for accepting proposi-
tional tautologies (or, equivalently, refuting contradictions). Proof complexity
studies how the lengths (sizes) required for such proofs depend on the proof
systems being employed. Lower bounds for the complexity of tree-like reso-
lution refutations [Haken 1985; Chvátal and Szemerédi 1988; Ben-Sasson and
Wigderson 2001] then can be used to prove the limitations of any deterministic
instantiation of DPLL. Although proof complexity studies refutation and proof,
as shown by Achlioptas et al. [2004], the time required by backtracking satisfi-
ability algorithms like DPLL is directly dependent on their efficiency as proof
systems. Thus, our surprising results on the efficiency of the formula caching
variants viewed as proof systems suggest that formula caching holds promise
for satisfiability testing as well.

1.1 Outline of Results

We describe our results in terms of the known hierarchy of resolution-like
proof systems: DPLL, which is equivalent to tree-like resolution; regular res-
olution (REG); general resolution; Res(k) for each k ≥ 2; depth-2 Frege (F2);
and extended resolution, which is equivalent to extended Frege (eF ). Most
of these proof systems are axiomatic, whereby a proof is a sequence of lines,
and each line follows from one or two previous lines by one of a fixed set of
axiom schemas. But as is the case with DPLL, nondeterministic satisfiability
algorithms can also be viewed as proof systems so we often refer to such algo-
rithms as proof systems. Proof systems can be related by a notion of efficient
simulation, called p-simulation, which says that efficient proofs in one system
can be translated to efficient proofs in another system. The definitions of proof
complexity, these proof systems, and p-simulation are given in Section 3.1. The
preceding hierarchy is known to be strict under p-simulation; in fact, exponen-
tial gaps in efficiency are known between each of its levels.

In Section 2, we describe the various variants of memoized DPLL algorithms
that constitute formula caching. We begin with a basic extension of DPLL
to include a cache of known unsatisfiable formulas, called FC. This checks
its input for membership in the cache before proceeding with the recursive
call. We also define extensions of this system that include more complicated,
but theoretically still efficiently implementable, checks than membership to
derive algorithms FCW and FCWS where W and S stand for Weakening and
Subsumption, respectively.

In each of these formula caching algorithms, no information other than the
cache contents and an indication of failure is available as the result of a recur-
sive call. We also consider an extension of these ideas that allows the recursive
call to return more pointed information about the reason for failure. When the
resulting algorithm incorporates Weakening and Subsumption, we obtain an
algorithm FCW

reason that is quite natural and is as efficiently implementable as
FCW but which we show to be much more powerful than FCW (or FCWS).

The formula caching systems with reasons suggest that there is consid-
erable scope for a clever algorithm designer to incorporate memoization in
ways that cannot be efficiently simulated in the aforesaid systems. We design
ACM Transactions on Computation Theory, Vol. 1, No. 3, Article 9, Pub. date: March 2010.
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Fig. 2. Relationship of various formula caching proof systems to other resolution-like proof
systems.

systems to represent the “ultimate limits” of these forms of memoization,
FCW

nondet and FCWS
nondet, in which the algorithm nondeterministically anticipates

the cached contradictions that will be weakened and/or subsumed to determine
unsatisfiability of its input. It would be highly nontrivial to incorporate these
features into an existing DPLL algorithm. However, we feel that any algo-
rithm that somehow incorporated memoization of cached contradictions into
DPLL would probably be efficiently simulated by our FCnondet systems. Thus,
bounds on the strength of the FCnondet systems are bounds on the potential of
the memoization technique.

From their definitions it is clear that as proof systems with the same options
T for Weakening and Subsumption, FCT is p-simulated by FCT

reason which is
in turn p-simulated by FCT

nondet and if neither Weakening nor Subsumption is
allowed then the FCreason and FCnondet coincide with FC.

In Section 3, after giving a detailed overview of proof complexity definitions
and the standard axiomatic proof systems related to resolution we define our
new contradiction caching axiomatic proof systems CC+T. We then relate these
contradiction caching proof systems to the FC algorithms viewed as proof sys-
tems and show that they are equivalent to the corresponding FCT

nondet proof
systems. In Section 4, we compare these systems to each other and to the
standard resolution-like proof systems. For the most interesting systems, our
results can be summarized in Figure 2. In Section 5, we study a generaliza-
tion of the CC and FC systems where we add a simple form R (for Restriction)
of the substitution rule, and prove that with this addition, it is p-equivalent
to extended Frege. We conclude in Section 6 with related results and future
directions.

History and Errata

The present article is based on a conference paper [Beame et al. 2003] in which
we more prominently used the Restriction rule (R), discussed here in Section 5,
in order to efficiently simulate general resolution. In that article we incor-
rectly claimed that the contradiction caching proof systems CC and the formula
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caching proof system FCWS
reason involving both Subsumption and Restriction have

the subformula property. It turns out that of these only CC and CC+W have
the subformula property. The subformula property, which is also shared by FC,
FCW, and our revised FCW

reason, is critical for our present Lemma 4.15 and the
resulting exponential separations between proof systems.

The fact that Restriction does not have the subformula property makes it
much more powerful than we had anticipated. It was brought to our attention
that using contradiction caching with this rule one can derive a renaming rule
and thus, for example, obtain efficient proofs of the pigeonhole principle, con-
trary to our mistaken claim that all of the CC systems, including the strongest
one, CC+WSR, could be p-simulated by depth-2 Frege systems. The “R” rule
is in fact quite powerful. We correct our error by proving in Section 5 that
CC+WSR is actually p-equivalent to the Extended Frege proof system.

In addition to the aforesaid changes, we have modified the definitions of the
formula caching proof systems that extend FC so that the algorithms are not
required to check the cache (or add a formula to the cache) on each recursive
call. This better reflects what one would do in practice but it also seems essen-
tial for the system FCW

reason to simulate regular resolution, as we now show in
Lemma 4.9.

2. MEMOIZATION AND DPLL: FORMULA CACHING

Memoization means saving previously solved subproblems and using them to
prune a backtracking search. In the satisfiability algorithms we consider, this
will mean storing a list of previously refuted formulas and checking whether
the unsatisfiability of some formula in the list allows us to conclude easily,
before branching, that our current formula is unsatisfiable.

A pure backtracking algorithm usually corresponds to a tree-like proof sys-
tem, since the recursive refutations are done independently and not reused.
Our original intuition was that introducing memoization into a backtracking
algorithm would move from a tree-like proof system to the corresponding DAG-
like system. However, the real situation turns out to be somewhat more com-
plicated. There are actually several reasonable ways to introduce memoization
into DPLL. None of them seem to be equivalent to DAG-like resolution, and
many move beyond resolution.

—Basic Formula Caching. The basic idea of the simplest memoized ver-
sion of the DPLL algorithm is, as mentioned before, to record the unsatisfiable
residual formulas found over the course of the algorithm in a list and before
applying recursion to include checking the list to see if F is already known to
be unsatisfiable. This yields the algorithm of Figure 3 where L is the cache
of residual formulas known to be unsatisfiable. Satisfiability is determined by
calling FC(F,∅).

While we present FC as a nondeterministic algorithm, one can also view
it as a simple transformation for deterministic DPLL algorithms. We simply
replace the nondeterministic branching rule with the rule used by the DPLL
algorithm and add some heuristics for Cache-Add and Cache-Check that would
decide for the purposes of memory and time efficiency whether or not to cache
ACM Transactions on Computation Theory, Vol. 1, No. 3, Article 9, Pub. date: March 2010.
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Fig. 3. The basic Formula Caching algorithm. Cache-Check and Cache-Add determine whether or
not to check the cache for F or add F to the cache, respectively.

a restricted formula and would determine whether it is worthwhile checking
the cache. Checking the cache would be particularly simple using some form
of hash table.

This is a straightforward way of adding memoization to DPLL, similar to
other uses of memoization in backtracking for other problems. For example,
Robson’s maximum independent set algorithm maintains a cache of medium-
size subgraphs with known bounds on their maximum independent set sizes,
and checks if the current subgraph is in the cache.

We call the preceding nondeterministic algorithm, viewed as a proof system,
FC. It is obviously at least as powerful as DPLL, since the presence of the cache
only prunes branches, never creates them.

—Formula Caching with Weakening. Once we have the notion that we are
checking the formula F against a cache of known unsatisfiable formulas there
are other natural related checks that we might do. For example, it may be the
case that F contains all the clauses of some formula in the list L. We can check
this in time that is polynomial as a function of the size of the formula F and
list L. We call such a test a Weakening test. This leads to the algorithm FCW

given in Figure 4.
—Formula Caching with Weakening and Subsumption. There is another

way that the unsatisfiability of F can trivially follow from that of some formula
in L. Given clauses C and D such that C subsumes D (i.e., C ⊂ D) we have
that C is a stronger constraint than D. Therefore adding a subsumption test
to Weakening we obtain the FCWS algorithm given in Figure 5 where the check
whether L trivially implies F asks “Is there is a formula G in L such that every
clause of G contains a clause of F?” Again this is polynomial as a function of
the sizes of F and L.

Weakening and Subsumption are very natural additions to a memoized
backtracking algorithm. Among other benefits, they allow a limited amount
of “without loss of generality” reasoning in addition to logical implications
of the constraints, because branches dominated by earlier ones get pruned.
To see how they can capture such “without loss of generality” reasoning, it is
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Fig. 4. Formula Caching with Weakening.

Fig. 5. Formula Caching with Weakening and Subsumption.

convenient to consider another context. For example, consider a simple back-
tracking algorithm for finding an independent set S of size k in a graph G,
branching on a node x with one neighbor N(x) = {y}. We will argue informally,
using a memoized backtracking algorithm with Weakening and Subsumption,
that without loss of generality, the algorithm should include x in the set. The
algorithm first branches on whether x ∈ S, then on whether y ∈ S, exploring
the x ∈ S branch first. The branch x ∈ S forces y �∈ S, so the subproblem is to
find an independent set of size k− 1 in G − {x, y}. Assume that this recursive
search fails. The branch x �∈ S, y �∈ S is to find an independent set of size k in
G−{x, y}, a strengthening of the failed branch that gets pruned by Weakening
and Subsumption. The final branch x �∈ S, y ∈ S is to find an independent set
of size k − 1 in G − {x, y} − N(y), again a strengthening of the failed branch.
Only the branch where x ∈ S gets recursively explored.

As the previous example illustrates, when we have weakening and sub-
sumption, the order in which the algorithm explores branches matters. So,
in addition to a deterministic branching rule, we would need a heuristic to
determine the order of branches to construct a deterministic version of FCWS.

—Formula Caching with Returned Reasons for Unsatisfiability. One draw-
back of even the strongest basic system, FCWS is that some potentially useful
ACM Transactions on Computation Theory, Vol. 1, No. 3, Article 9, Pub. date: March 2010.
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Fig. 6. Formula Caching with returned reasons for unsatisfiability.

information about unsatisfiable formulas may be available to be learned but
may be lost on the return from a recursive call. For example, if for some for-
mula F the restricted formula F|x has a small unsatisfiable subformula G and
F|x has a small unsatisfiable subformula H then F will have a small subfor-
mula whose restrictions under x and x contain G and H, respectively. However,
FCWS will learn the formula containing all of F, not just this subformula. In
order to take advantage of this kind of information we can augment the al-
gorithm with a return value consisting of a formula giving a “reason” that F
is unsatisfiable. In order to understand the algorithm, consider the following
example. Let F = F1 ∧ F2 ∧ F3, where F1 are those clauses that contain x,
F2 are those clauses containing x, and F3 are clauses that do not contain the
variable x. Then F|x = F′1 ∧ F3 and F|x = F′2 ∧ F3. Suppose we know that F|x
is unsatisfiable because of G, where G = (F′1)1 ∧ F1

3 , (F′1)1 ⊆ F′1 and F1
3 ⊆ F3.

Similarly suppose that we know that F|x is unsatisfiable because of H, where
H = (F′2)2 ∧ F2

3 , (F′2)2 ⊆ F′2 and F2
3 ⊂ F3. Now since G and H are both unsatis-

fiable, so is J = I ∧ A ∧ B, where I = F1
3 ∩ F2

3 , A is (F′1)1 with x added back, and
B is (F′2)2 with x added back. Thus J is added to the cache as the “reason” for
the unsatisfiability of F. We describe the algorithm as an extension of FCW in
Figure 6. We will see that this is strong enough to simulate regular resolution
efficiently.

—Formula Caching with Nondeterministic Rules. Given that we are using
a cache of unsatisfiable formulas to prove that a formula is unsatisfiable, we
may wish to apply the rules such as weakening, or subsumption a little earlier
in the process so that we can be more efficient at generating formulas that we
previously have seen to be unsatisfiable. We could, for example, allow the algo-
rithm to nondeterministically apply weakening at any point in the algorithm.
This is a generalization of the usual pure literal rule of DPLL which allows one
to remove clauses containing a literal that occurs only positively (or only nega-
tively) in the formula. (Of course, a bad early choice of weakening may suggest

ACM Transactions on Computation Theory, Vol. 1, No. 3, Article 9, Pub. date: March 2010.
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Fig. 7. Formula Caching with nondeterministic application of Weakening and Subsumption.

satisfiability when that is not the case, but the system will remain sound for
proofs of unsatisfiability.) Similarly, we can define an algorithm FCWS

nondet that,
as well as allowing the removal of clauses, also allows any clause of F to be
weakened by adding extra literals to it. We give a description of FCWS

nondet in
Figure 7; the other algorithms can be obtained by deleting appropriate lines.

If FCWS
nondet completes without reporting that F is possibly satisfiable then F

will be unsatisfiable. It is immediate that as a refutation system FCWS
nondet is

at least as powerful as FCWS. It could possibly be more powerful, since the
weakened formula is remembered for later use. Similarly, FCW

nondet efficiently
simulates FCW.

It may seem that some of these new systems allowing nondeterministic
manipulation of F itself are a little unnatural. However, we shall see that
they correspond directly to the extremely natural contradiction caching infer-
ence systems for unsatisfiable CNF formulas that we define in the next sec-
tion. Also, reasoning about such systems covers many algorithms that prune
searches based on reasoning that identifies unnecessary constraints, such as
the pure literal rule or its generalization to autarchs [Monien and Specken-
meyer 1985], or deleting a node of degree 2 or less from a 3-coloring problem.
While such weakening only guides the choice of branching variables in a pure
backtracking search, caching the simplified formula may make a more dra-
matic difference. In fact, we shall see that FCW

nondet is surprisingly powerful;
in particular it is capable of refuting formulas that are hard for systems more
powerful than resolution.

3. AXIOMATIC PROOF SYSTEMS

3.1 Proof Complexity

We review the basic definitions of proof complexity and give some important ex-
amples of propositional proof systems. Propositional proof complexity is often
defined in terms of proofs of tautologies but, since ϕ is a tautology if and only
ACM Transactions on Computation Theory, Vol. 1, No. 3, Article 9, Pub. date: March 2010.
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if ¬ϕ is unsatisfiable, propositional proof systems are equivalently stated in
terms of proofs of unsatisfiability (refutations) of propositional formulas. Fur-
thermore, following the usual arguments that it suffices to decide satisfiability
for CNF formulas, we obtain the following standard definition.

Definition 3.1. A propositional proof system for refuting CNF formulas is a
polynomial-time algorithm V (a verifier) such that for all CNF formulas ϕ, ϕ
is unsatisfiable if and only if there exists a string � (a V-refutation of ϕ) such
that V accepts input (ϕ,�).

This definition is very similar to the standard definition of verifiers for NP
except that it allows the algorithm’s running time to be polynomial in the size
of� and does not place any limit on this size. We often specify a proof system V
simply by describing a format for its V-refutations, assuming that this format
is easy to check.

The following definition allows us to define and compare the efficiency or
power of proof systems.

Definition 3.2. Given a proof system V for refuting unsatisfiable CNF for-
mulas, let sV(F) be the minimum size (length) of a V-refutation of F. For two
refutation/proof systems V1 and V2, we say that V2 p-simulates V1 if for every
unsatisfiable formula F, if there is a V1 refutation of F of length s, then there
is also a V2 refutation of F of size polynomial in s and the size of F. V1 and V2
are p-equivalent if V1 p-simulates V2 and conversely, V2 p-simulates V1.

Any complete (deterministic or nondeterministic) algorithm A for SAT
corresponds to a propositional proof system VA whose refutations have size
essentially equal to the running time of A on unsatisfiable formulas: The VA-
refutation of such a formula F is a transcript of the execution of A that fails
to find an assignment for F. (The transcript size is actually the product of the
time and the space used by the algorithm.) VA simply checks that this tran-
script correctly follows A. For simplicity we use A itself to refer to this proof
system. One such example is DPLL; a DPLL refutation of an unsatisfiable F is
a complete DPLL search tree on input F.

A resolution refutation of a CNF formula F is a sequence of clauses
C1, . . . ,Cr = � where � is the empty clause and each Ci is either a clause of F
or follows from two previous clauses C j,Ck for j,k < i by the resolution rule,
which says that for any variable x and any disjunctions of literals A and B one
can derive the clause (A∨B). from clauses (A∨x) and (B∨¬x). (This derivation
is called “resolving on x” and (A ∨ B) is called the resolvent.) Since resolution
is sound and complete it forms a propositional proof system for refuting CNF
formulas.

The inferences in the resolution refutation form a directed acyclic graph
(DAG): the nodes are the C1, . . . ,Cr = � and for each Ci derived from C j and
Ck there are edges from Ci to C j and Ck. A tree-like resolution refutation is
a resolution refutation in which this graph forms a directed tree (each node
has indegree at most one). It is well known that as a proof system DPLL is
equivalent to tree-like resolution; for example, see Urquhart [1995].

ACM Transactions on Computation Theory, Vol. 1, No. 3, Article 9, Pub. date: March 2010.
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Another natural special case of resolution is called regular resolution. In a
regular resolution refutation, if a clause Ci is the result of resolving away a
variable x then no clause derived from Ci can contain the variable x, that is,
there is no path in the graph of inferences between two clauses that are the
result of resolving on the same variable. Optimal tree-like resolution refuta-
tions are regular. Regular resolution is therefore at least as efficient as DPLL
but it also covers the original Davis-Putnam proof system [Davis and Putnam
1960] and can be exponentially more efficient than DPLL [Bonet et al. 2000].
In turn, general resolution can be exponentially more efficient than regular
resolution [Alekhnovich et al. 2001].

One can define more general inference systems for refuting CNF formulas
by allowing inference on more complex objects than clauses. In particular, for
positive integer k, Res(k) is a proof system similar to resolution but it allows k-
DNF formulas as objects instead of clauses. In this system there is an inference
rule deriving (A∨B1∨ . . .∨Bk) from (A∨(x1∧ . . .∧xk)) and (B1∨¬x1), . . . , (Bk∨
¬xk) and rules for the distributive laws. Res(1) is easily seen to be the same
as resolution. It is known that for any k, Res(k + 1) can be exponentially more
efficient than Res(k) [Segerlind et al. 2002].

More general still is the following system F2 which is a standard depth-2
refutation system (sometimes called depth-2 Frege) for CNF formulas defined
by Pitassi and Urquhart [1995]. Note that, unlike resolution, which has an
implied conjunction between its clauses, in F2, each formula in the proof is
self-contained and is itself a CNF formula.

Definition 3.3 [Pitassi and Urquhart 1995]. F2 is a refutation system for
CNF formulas. Let x denote a variable; let A and B denote a disjunction of
literals, and let F and G denote CNF formulas. F2 has a single axiom schema,
(x ∧ x), and the following 5 rules:

R0’: A ∧ A ∧ F→ A ∧ F
R1’: F→ F ∧ B
R2’: (A ∨ B) ∧ F→ A ∧ F
R3’: (A ∧ F), (B ∧ F)→ (A ∨ B) ∧ F
R4’: F ∧ (x), G ∧ (x)→ F ∧ G

An F2 refutation of a CNF formula F is sequence of CNF formulas,
F1, F2, . . . , Fr = F, each of which is either an axiom or follows from previous
formulas by one of the F2 inference rules.

Cook and Reckhow [1977], who originally formalized proof complexity, de-
fined two of the most important and general classes of proof systems, Frege and
Extended Frege proofs. Frege proofs follow the pattern of standard axiomatic
inference systems as in F2 given earlier. However, they allow arbitrary propo-
sitional logic formulas rather than being restricted to depth-2 formulas. (As
shown by Cook and Reckhow [1977], any sound and implicationally complete
sets of inference rules yield equivalent proof systems.) This ability to allow
more complicated intermediate formulas yields a proof system that is expo-
nentially more powerful than F2 [Buss 1987; Beame et al. 1992].
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Finally, in addition to the proof rules of Frege systems, Extended Frege
proofs allow the introduction of new extension variables to stand for entire
formulas as the proof proceeds. This introduction is standard in mathematical
arguments. Extension variables may make a proof much more concise and can
be viewed as allowing Boolean circuits as objects in proofs. Simply allowing
these extension variables is very powerful: By augmenting ordinary resolution
with an extension rule, one derives a proof system called Extended Resolution
which is equivalent in power to Extended Frege proof systems.

3.2 Contradiction Caching Inference Systems

We now define several inference systems for unsatisfiable formulas that are
closely related to some of the formula caching algorithms in the previous
section. The objects of these proof systems will be Conjunctive Normal Form
(CNF) formulas. CNF formulas will be assumed to be sets of clauses and
clauses will be assumed to be sets of literals so the order of clauses and
of literals within each clause is immaterial. In the following, x, y, z denote
literals which can be variables or their negations, ϕ,ψ will denote CNF for-
mulas, and C, D, E will denote clauses. (A clause also can be viewed as
simple case of a CNF formula.) The (unsatisfiable) empty clause will be
denoted �.

Definition 3.4. Given a CNF formula ϕ and literal x (or x), the formula ϕ|x
(respectively ϕ|x) denotes the simplified CNF formula in which all clauses con-
taining x (respectively x) have been removed and all clauses containing x (re-
spectively x) are shortened by eliminating that literal. More generally, given a
sequence of literals xyz, for example, we write ϕ|xyz = ϕ|x|y|z and for a clause C
we identify C with the sequence of negations of the literals in C and define ϕ|C
to be the restriction of ϕ in which every literal of C has been set to false.

We define several related proof systems for showing that CNF formulas are
unsatisfiable based on the following inference rules.

1. Axiom. 
 �

2. Branching. ϕ|x, ϕ|x 
 ϕ where x is any variable and ϕ is any CNF
formula.

3a. Limited Weakening. � 
 � ∧ ψ where ψ is any CNF formula.
3. Weakening. ϕ 
 ϕ ∧ ψ where ϕ and ψ are any CNF formulas.
4. Subsumption. ϕ ∧ C 
 ϕ ∧ D where D ⊆ C are clauses and ϕ is any CNF

formula.

Definition 3.5. A CC (contradiction caching) refutation of a CNF formula F
is a sequence ϕ1, . . . , ϕs = F of CNF formulas such that each ϕi for i> 1 follows
from ϕ j, j < i using one of the proof rules (1)–(3a): axiom, Branching, and
Weakening. If in addition we allow some forms of the weakening rule (3), or
the Subsumption proof rule (4), we denote the system by CC+, together with
the appropriate subset of letters W and S.

ACM Transactions on Computation Theory, Vol. 1, No. 3, Article 9, Pub. date: March 2010.



9: 14 · P. Beame et al.

Fig. 8. The relative complexity of caching proof systems. Solid arcs denote p-simulation. Dashed
arcs with slashes denote exponential separation.

4. THE RELATIVE COMPLEXITY OF CACHING PROOF SYSTEMS

Figure 8 shows the relative complexity of our two new types of caching sys-
tems compared with standard proof systems related to resolution. Two proof
systems within the same box indicate that they are p-equivalent. An arrow
ACM Transactions on Computation Theory, Vol. 1, No. 3, Article 9, Pub. date: March 2010.
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from proof system V2 to V1 indicates that V2 p-simulates V1. A dashed arrow
with a slash from V1 to V2 indicates that V1 does not p-simulate V2.

In order to present a more manageable view of the hierarchy of proof sys-
tems, we concentrate on the main systems only in Figure 8. In particular, we
could have presented more variations of the FC and CC systems, augmented
with every possible subset of {W,S}. However, because W , and S are tractable,
we chose to include either both (FCWS and CC+WS) or neither of them (FC and
CC). In practice, this makes sense since adding both to the system is nearly as
efficient as adding only one. However, when we state our simulations and sep-
arations, we will present the weakest possible system necessary for any upper
bound, and the strongest possible system for the lower bounds.

4.1 Simulations between Proof Systems

Immediately from their definitions, we have the following easy p-simulations.

PROPOSITION 4.1. Let T ⊆ {W,S}, and let T′ ⊆ T. Then we have the follow-
ing simulations:

(1.) CC+T p-simulates CC+T′.
(2.) FCT

nondet p-simulates FCT′
nondet.

(3.) FCT
reason p-simulates FCT′

reason.

(4.) FCT p-simulates FCT′ .
(5.) FCT

nondet p-simulates FCT
reason.

It is clear that the basic CC proof system can efficiently simulate the ex-
ecution of any DPLL algorithm, and thus can p-simulate tree-like resolution
proofs. (The axiom and Limited Weakening together simulate the action at the
leaves and the Branching rule simulates the action at the internal nodes of the
proof.) Also, because FC is a generalization of DPLL, FC p-simulates DPLL.
Thus we have the following lemma.

LEMMA 4.2. Both CC and FC p-simulate DPLL.

We now show how the FC and CC systems are related to each other.

THEOREM 4.3. For any T ⊆ {W,S}, CC+T is p-equivalent to FCT
nondet. In

particular,

(1.) CC is p-equivalent to FC.
(2.) CC+W is p-equivalent to FCW

nondet.

(3.) CC+WS is p-equivalent to FCWS
nondet.

PROOF. We first do the forward directions: We construct each CC+T proof
to consist of the formulas in the cache of the FCT

nondet execution in the order in
which they were added. To show that CC can efficiently simulate FC, observe
that in an execution of FC, each recursive call adds precisely one formula to
L and each such formula F is derivable either because it contains the empty
clause � and therefore follows from the axiom of CC via one step of Limited
Weakening, or as the result of F|x and F|x being in L and therefore follows via
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one Branching step. Similarly, CC+W can p-simulate FCW
nondet, and CC+WS can

p-simulate FCWS
nondet. If some formula F′ was derivable from F by nondetermin-

istic Weakening, then this can be simulated by a Weakening step of CC+W.
Similarly, nondeterministic subsumption can be simulated by a Subsumption
step of CC+WS. Thus it is left to show that FCT

nondet can p-simulate CC+T.
Let F be the goal formula for CC+T which will be the input for FCT

nondet.
Draw the DAG of inferences in this CC+T proof with edges directed from each
formula back to its antecedents. Remove all formulas in the proof that are not
reachable from the goal formula F; by construction, this is still a CC+T deriva-
tion of F. We apply induction on the size of CC+T derivations and assume by
induction that at each point in a postorder traversal of this DAG, the cache L
of FCT

nondet contains the formulas for all Branching nodes in the DAG that have
been fully explored up to this point.

The FCT
nondet algorithm will follow a depth-first traversal of this DAG and

make a recursive call to FCT
nondet on the input formula, and on the formula for

each child of an outdegree two (Branching) node in the DAG. Let ϕ be such a
formula. We describe the execution of the recursive call FCT

nondet(ϕ, L):
Consider the path of outdegree one nodes in the DAG from ϕ to the first

node ψ that contains � or is the result of a branching inference (outdegree 2).
(If ϕ already contains � then this path is empty and ψ = ϕ|x.) This (possibly
empty) path contains only inferences in T. It is easy to see that any sequence
of Weakening inferences in a CC+W derivation can be simulated by a single in-
stance of the nondeterministic reverse weakening from ϕ to ψ in FCW

nondet, any
sequence of Subsumption inferences in the CC+S derivation can be simulated
by a single instance of the nondeterministic reverse subsumption from ϕ to ψ,
and that any interleaved sequence of Weakening and Subsumption inferences
in a CC+WS derivation can be simulated by a single instance of nondetermin-
istic reverse weakening followed by nondeterministic reverse subsumption in
FCWS

nondet. Thus, in any case, FCT
nondet can produce the same ψ as in the CC+T

derivation.
If the formula ψ contains � (it is an axiom or follows from � by Limited

Weakening) then the call FCT
nondet(ϕ, L) will return without finding a satisfying

assignment to ϕ. If the node with the formula ψ in the DAG is the result of a
Branching inference and has been fully explored then by the inductive assump-
tion ψ is in the cache L and the call FCT

nondet(ϕ, L) will return without finding
a satisfying assignment for ϕ. Otherwise ψ is the result of Branching infer-
ence on some variable x but has not yet been fully explored. We can suppose
without loss of generality that the depth-first traversal visits the node labeled
ψ|x before ψ|x. Then since ψ is not in the cache, the execution of FCT

nondet(ϕ, L)
can choose this literal x and therefore make recursive calls to FCT

nondet(ψ|x, L),
followed by FCT

nondet(ψ|x, L). By the inductive hypothesis both calls return with-
out finding a satisfying assignment and add formulas to the cache for all fully
explored branching nodes below them. Finally, FCT

nondet(ϕ, L) adds the formula
ψ to the cache, finishes exploring the descendants of ϕ and returns without
finding a satisfying assignment for ϕ. This yields the claimed property for L
as a result of this recursive call. The number of recursive calls of FCT

nondet is at
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most the size of the CC+T derivation and each recursive call can be efficiently
simulated.

We prove that both CC and CC+W have the subformula property which can
be useful for understanding the structure of proofs. It does not seem that
CC+WS has the subformula property; one symptom of this is the fact that in a
CC+WS proof, it is possible to branch on a variable x more than once along a
path in the proof DAG.

Definition 4.4. A CNF formula F is a subformula of another CNF formula
G if every clause of F is contained in some clause of G. A CNF refutation
system V has the subformula property if for any unsatisfiable formula F there
is a refutation of F of size at most sV(F) such that every line is a subformula
of F.

LEMMA 4.5. CC and CC+W have the subformula property.

PROOF. Let ϕ be derived from ϕ1 and ϕ2 via a sound inference rule. The
rule is monotone if for every clause C in ϕ1 or ϕ2, there is a clause C′ in ϕ that
contains C. It is easy to check that all rules of CC and CC+W are monotone,
and thus any derivation in CC or CC+W is monotone. Now from this it is easy
to see that the subformula property holds. Suppose for sake of contradiction
that that we have a CC+W (or CC) refutation of F, and further assume that
some intermediate formula G is not a subformula of F.

Then there is there is some clause C of F that is not contained in any clause
of G. But this contradicts our monotonicity condition.

Next we will prove that CC+W has at least the power of regular resolution.

THEOREM 4.6. CC+W p-simulates regular resolution.

PROOF. Let C = C1, ...,Cs = � be a regular resolution refutation of F. The
structure of this refutation can be revealed by viewing the refutation as a di-
rected acyclic graph P. Each node in P corresponds to a clause from C; the
root node (the node with indegree 0) corresponds to the empty clause Cs = �,
and each leaf node (nodes with outdegree 0) corresponds to a clause from F. If
clause Ck is derived from clauses Ci and C j in C, then there are directed edges
from Ck to Ci and from Ck to C j.

For each clause C in the refutation, define V ′(C) to be the set of variables
queried at descendants of the node corresponding to C in P. By the read-once
property of P, any variable in V ′(C) cannot appear on any path from the root
to C in P. For each such clause C, define F#C to be the CNF formula consisting
of the clauses of F|C having variables only in V ′(C).

We will show how to derive the sequence F#C1, . . . , F#Cs = F#� which will be
enough to derive F in one more step since F is (at worst) a weakening of F#�.

If C is a clause of F which must be a leaf in the proof, then F#C contains the
empty clause and we can derive it in two steps using the axiom and Weakening.

Suppose C = (A ∨ B) is the resolvent of (A ∨ x) and (B ∨ x) in the proof and
that we already have derived F#(A∨x) and F#(B∨x).
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Since every literal in C = (A ∨ B) appears on every/some path from the root
to the node of P corresponding to C, no variable in A or B appears in V ′(A ∨ x)
or in V ′(B ∨ x). Therefore F#(A∨x) does not contain any variable from B and
F#(B∨x) does not contain any variable from A. Therefore F#(A∨x)|B = F#(A∨x).

Now every clause of F#(A∨x) = F#(A∨x)|B is a clause of F|(A∨B∨x) by definition.
Furthermore, since V ′(A ∨ x) is a subset of V ′(C), each clause of F#(A∨x) is also
entirely defined on V ′(C). Therefore by one step of Weakening from F#(A∨x) we
derive the CNF formula consisting of the clauses of F|(A∨B∨x) = (F|C)|x that only
contain variables in V ′(C). Similarly by one step of Weakening from F#(B∨x) we
can derive the CNF formula consisting of the clauses of F|(A∨B∨x) = (F|C)|x that
only contain the variables in V ′(C). Finally, using the Branching rule we derive
F#C.

CC+W is equivalent to FCW
nondet which does not seem to be particularly im-

plementable. As we will see in Section 4.2, if we consider only the basic FCT

proof systems we will not be able to match the power of regular resolution.
However, when we augment formula caching by having it return the reason
for unsatisfiability as well as the mere fact of unsatisfiability, we can still effi-
ciently simulate regular resolution (and much more, as we will see shortly). To
do this we first make the following observations about the execution of FCW

reason.

Definition 4.7. Define the dynamic programming DAG of an execution of
FCW

reason on input F as a (directed acyclic) graph with a node for each recursive
call made by FCW

reason. The label of a node associated with a recursive call for
formula F′ is a pair (F′, J′). Some nodes will also be tagged with variable
names. The graph is built as the algorithm proceeds. Consider the execution
of a recursive call on F′. We have the following cases:

—If F′ contains � then label the node with (F′,�); the node will have no out-
edges and therefore will be a sink in the DAG.

—If Cache-Check was true for this call and a reason J′ for the unsatisfiability
of F′ was found and returned from the cache then label the node (F′, J′).
There must have been some previous recursive call on F” on which Cache-
Add was true that caused J′ to be placed in the cache. Add an edge from
(F′, J′) to the node for the recursive call on F”. (It is possible that F′′ = F′.)

—Otherwise, let x be the literal chosen for branching. Tag the node for F′ with
this variable. Add an edge (the left edge) to a node for the recursive call
on F′|x, finish that recursive call, add an edge (the right edge) to a node for
the recursive call on F′|x, and label the node for this call on F′ with the pair
(F′, J′) where J′ is the reason returned by the call on input F′.

We say that a formula G is a strengthening of a formula H, written G � H,
if and only if H is a weakening of G.

LEMMA 4.8. In the dynamic programming DAG for an execution of
FCW

reason(F,∅), if a node v is labeled (F′, J′) then:

(a) J′ is the reason returned on the associated recursive call on F′ in this
execution,
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(b) if v has outdegree 1 then it points to a node labeled (F′′, J′) of outdegree 2,
and

(c) J′ is a strengthening of F′.

PROOF. Part (a) is immediate from the definition. Part (b) follows since any
node of outdegree 1 points to a node for a call in which a formula was placed in
the cache, which only happens at branching nodes.

We prove part (c) by induction starting at the nodes of outdegree 0 in the
dynamic programming DAG. Nodes of outdegree 0 have labels (F′,�) such that
F′ contains �. This clearly satisfies (c). We now have two cases.

The node labeled (F′, J′) has outdegree 1 and results from a cache hit that
returned J′. Since this is a cache hit, F′ must be a weakening of J′ so (c) holds.

The node labeled (F′, J′) has outdegree 2 and results from combining the
recursive calls for F′|x and F′|x. This node is tagged with the variable in x and
the two nodes it points to are labeled (F′|x,G′) and (F′|x,H′) for some G′ and
H′. We apply the inductive hypothesis to each of these nodes. In particular, all
clauses in G′ are in F′|x and all clauses in H′ are in F′|x. By construction, if a
clause C occurs in G′ but not H′ then C is in F′|x and (C ∨ x) must be a clause
in F′. Similarly if a clause C occurs in H′ but not G′ then (C ∨ x) must be a
clause in F′. If C occurs in both G′ and H′ then it occurs in both F′|x and F′|x.
Therefore either C occurs in F′ or both (C∨x) and (C∨x) occur in F′. Therefore
by the construction of J′ in the FCW

reason code, every clause of J′ is in F′ and (c)
holds.

THEOREM 4.9. FCW
reason p-simulates regular resolution.

PROOF. We follow the general pattern of the proof of Theorem 4.6. We de-
scribe an execution of FCW

reason on input F so that the dynamic programming
DAG of the FCW

reason execution is essentially the same as the regular resolution
DAG refuting F (and is constructed as a depth-first search of that DAG). As in
the proof of Theorem 4.6, in a regular resolution proof of F, V(C) consists of
the set of variables that are queried below the node corresponding to clause C,
and F#C consists of those clauses of F|C having variables only in V(C). (By the
read-once property of the proof, the set V(C) is disjoint from the set of variables
queried along the path from the root to C.)

We will prove inductively that the branching nodes of the dynamic program-
ming DAG are in a 1-1 correspondence with the nonsink nodes of the regular
resolution DAG such that a node labeled by clause C in the regular resolu-
tion DAG corresponds to a branching node with label (F|D, JD) such that the
following invariant properties hold.

(1) D contains C (C ⊆ D);
(2) D is disjoint from V ′(C) (thus, by (1) and (2), F#C � F|D; that is, F#C is a

strengthening of F|D);
(3) JD � F#C; that is, JD is a strengthening of F#C;
(4) JD is in the cache when the call for that node completes.
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Since by Lemma 4.8(b) nodes of outdegree 1 can only occur singly between
pairs of outdegree 2 nodes, this will show that the size of the dynamic pro-
gramming DAG will be linear in the size of the regular resolution DAG. The
theorem will follow since the running time of FCW

reason is polynomial in the size
of its dynamic programming DAG and the size of the input formula since it has
one node for each recursive call.

To define the execution, we follow the depth-first search of the regular reso-
lution DAG from the root labeled �. In this execution Cache-Add will always
be true. We express this as an induction based on the completion times for the
nodes in the depth-first search of the regular resolution DAG. That is, we show
that if (1)–(4) are true for all nodes in the DAG completed prior to visiting node
v and if (1) and (2) are true for v when v is first visited then (1)–(4) will be true
for v and all nodes completed at the time that v is completed. Observe that
the initial call of FCW

reason is on the formula F|� = F as required for the roots
to correspond. Therefore, since (1) and (2) hold for the root which is completed
last, the invariants follow.

Consider a node labeled C for which the corresponding recursive call on F|D
has been made by FCW

reason. If C is a clause of F then the corresponding D from
(1) satisfies C ⊆ D so F|D will contain �, the corresponding node will be a
sink in the dynamic programming DAG and the execution will return. If C is a
derived clause of the regular resolution proof then C = (A ∨ B) is the resolvent
of some pair of clauses (A ∨ x) and (B ∨ x) where (B ∨ x) is the first of the two
children of C to be explored in the depth-first search of the regular resolution
DAG. In the execution of FCW

reason on input F|D, we select Cache-Check to be
false, x to be the literal chosen, and Cache-Add to be true. (We can still choose
x since x ∈ V ′(C) and by property (2), V ′(C) is disjoint from the variables in D,
and thus x does not occur in D.)

FCW
reason will first make a recursive call on (F|D)|x. By the argument in the

proof of Theorem 4.6, F#(B∨x) � (F|D)|x. Since D contains C and the variables
in D are disjoint from V ′(C), (F|D)|x contains all clauses in (F|C)|x on V ′(C).
Therefore, since V ′(B ∨ x) is a subset of V ′(C), F#(B∨x) � (F|D)|x. Also, any
variable in (D ∨ x) but not (B ∨ x) is disjoint from V ′(B ∨ x).

If (B∨ x) is a clause in the proof that has not yet been explored then we can
apply the preceding argument inductively for (B ∨ x) and the call on F|(D∨ x) =
(F|D)|x to return some JD′ such that JD′ � F#(B∨x) � (F|D)|x.

If (B ∨ x) is a clause in the proof that has previously been explored then by
the inductive hypothesis that node is labeled by a pair (F|D′ , JD′ ) such that D′
is disjoint from V ′(B ∨ x), JD

′ � F#(B∨x), and JD
′ is in the cache. Therefore on

the call (F|D)|x we select Cache-Check to be true. In this case JD′ � F|D|x, so we
select JD′ to be returned from the cache as the reason for the unsatisfiability
of (F|D)|x.

After the return from the call on (F|D)|x, the same argument is applied to the
other call on (F|D)|x to derive that it returns a JD′′ such that JD′′ � F#(A∨x) �
(F|D)|x.

Thus the reasons JD′ and JD′′ returned from the two recursive calls satisfy
JD′ � F#(B∨x) and JD′′ � F#(A∨x). Then, by construction, the clauses of the
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formula JD = J that is returned from the call on F|D are defined on V ′(C) =
{x}∪V ′(A∨x)∪V ′(B∨x) and by Lemma 4.8(c) they are contained in F|D. Since
D is an extension of C that is disjoint from V ′(C), F#C is precisely the set of all
clauses of F|D that are defined on V ′(C) and thus JD � F#C as required. Since
Cache-Add is true, JD will be in the cache when this call returns.

The following lemma shows that F2 can p-simulate CC+WS, and therefore
all of the caching systems introduced so far can be p-simulated by F2.

LEMMA 4.10. F2 p-simulates CC+WS.

PROOF. We want to show that F2 can p-simulate CC+WS. Technically
speaking, the axiom � and any clause containing it cannot be derived because
it is not representable. Still, we can show inductively how to efficiently convert
any CC+WS refutation of a CNF formula that does not contain �. Weakening
is equivalent to R1’, and Subsumption is equivalent to R2’. We first show the
base case that any clause in the CC+WS refutation not containing� whose an-
tecedent(s) contain � can be derived. Observe that removing � in the CC+WS
refutation requires a Branching rule that creates clauses x∧¬x, among others,
which can be derived in F2. The clauses x∧¬x can be augmented by Weakening
(R1’) to produce the corresponding formula in the CC+WS refutation. Since we
have the base case as well as Weakening and Subsumption it is left to show
how to simulate Branching. We want to show how to derive some formula F
from F|x and F|x in F2. Assume that F has the following form.

(x ∨ D1) ∧ . . .∧ (x ∨ D j) ∧ (x ∨ E1) ∧ . . . ∧ (x ∨ Ek) ∧ G.

Then F|x is equal to (D1)∧ . . .∧ (D j)∧G, and F|x is equal to (E1)∧ . . .∧ (Ek)∧G.
From D1 ∧ D2 ∧ . . .∧ D j and (x∧ x), derive (D1 ∨ x)∧ . . .∧ (D j∨ x)∧ (x)∧G,

by repeated applications of R1’ and R3’. Similarly, from E1 ∧ E2 ∧ . . .∧ Ek and
(x ∧ x), derive (E1 ∨ x) ∧ . . . ∧ (Ek ∨ x) ∧ (x)∧ G. Now use R2’ and R4’ to derive
F as desired.

4.2 Separations between Proof Systems

In this section, we will show that DPLL cannot p-simulate even the most ba-
sic caching systems, FC and CC. We give CNF examples where FCW

reason has
polynomial size refutations but that are known to require exponential size res-
olution and Res(k) refutations.

The idea behind most of our lower bounds is as follows. Suppose that we
want to show that some resolution-like system R cannot p-simulate a partic-
ular caching system, call it C. We will begin with a CNF formula F that has
a small proof in R, but such that if we replace each variable in F by a small
conjunction of variables and distribute to again obtain a CNF formula, then
the resulting formula, F′, now requires large R-proofs. On the other hand, we
will show that the caching system C can prove F′ efficiently whenever it can
prove F efficiently. Thus if C can efficiently prove F, then it will follow that
F′ is our formula that has short C-proofs, but that requires large R-proofs. We
proceed formally as follows.
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Definition 4.11. The size (or width) of clause C is the number of literals in
C. The clause-width (or simply width) of a CNF formula F is the maximum
width of any of its clauses.

Definition 4.12. Let F be a CNF formula. We can define a new formula F(∧k)

in variables {zi, j : i ∈ [n], j ∈ [k]} by replacing every clause C ∈ F by a con-
junction of clauses corresponding to C with the substitution xi← zi,1 ∧ · · · ∧ zi,k
and distributing the result to form clauses. That is, if P and N are the in-
dices of variables occurring positively and negatively in C then C is replaced
by

∧
( j1,... j|P|)∈[k]|P|

(∨
i∈P zi, ji ∨

∨
i∈N

∨
j∈[k] zi, j

)
. Note that if C has at most d pos-

itive literals then it is replaced by at most kd clauses each of size at most dk.
Thus if F has at most d positive literals per clause then F(∧k) has size at most
kd+1 times the size of F.

Definition 4.13. Let π be a partial assignment to the x variables (which we
identify with the sequence of literals on those variables made true by the as-
signment). We say that a partial assignment π̂ to the z variables is equivalent
to π if and only if for every i:

(i) if xi is in π then zi, j is in π̂ for all j ∈ [k];
(ii) if xi is in π then there is some zi, j in π̂ ;

(iii) if neither xi not xi is in π then none of the zi, j nor zi, j is in π̂ .

The following lemma follows from the definitions.

LEMMA 4.14. Let π be a partial assignment to the x variables on which CNF
formula F is defined, and let π̂ be an equivalent assignment to the z variables.
Then (F(∧k))|π̂ = (F|π)(∧k).

LEMMA 4.15. If V is any of the systems CC, CC+W, FC, FCW, or FCW
reason,

then for any unsatisfiable CNF formula F with at most d positive literals per
clause, then sV(F(∧k)) ≤ 2kd+2 · sV(F).

PROOF. CC and CC+W have the subformula property by Lemma 4.5, FCW

has the subformula property by construction and FCW
reason has the subformula

property by Lemma 4.8(c). Since the substitution F(∧k) increases the size of
each subformula of F by at most a kd+1 factor it suffices to prove an upper
bound on the number of clauses in a refutation of F(∧k) as a function of that
of F.

First, given a CC or CC+W refutation � of F of length s we show how to
derive all clauses of �(∧k) using at most sk inference steps. Consider the rules
used in the course of the refutation �.

(1) Clearly �(∧k) = �.
(2) If the inference rule in � is Weakening ϕ 
 ϕ ∧ ψ and we have already

ϕ(∧k) then we get ϕ(∧k) 
 ϕ(∧k) ∧ ψ (∧k) also by Weakening and the latter is
(ϕ∧ψ)(∧k) by definition. Further, if the Weakening inference in � is limited
then the same will hold true in �(∧k).
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(3) Suppose that clause ϕ ∈ � follows from ϕ|x and ϕ|x using Branching and
the substitution is x = z1∧ . . .∧zk. (We have dropped the indices i from both
the x and z variables for convenience.) For j ∈ [k], let Fj = ϕ(∧k)|z1...z j and
G j = ϕ(∧k)|z1...z j−1z j. As before, Fk = ϕ(∧k)|z1...zk = (ϕ|x)(∧k). Furthermore, as
before G = (ϕ|x)(∧k) = ϕ(∧k)|z j for any j ∈ [k]. Since G contains no occurrences
of z1, . . . , zk for j ∈ [k] we can also write G = G|z1...z j−1 = ϕ(∧k)|z jz1...z j−1 = G j.
We wish to derive ϕ(∧k) from Fk and G = G1 = . . . = Gk. To do this we apply
the branching rule k times, deriving Fk−1 from Fk and Gk using variable zk,
Fk−2 from Gk−1 and Fk−1 using variable zk−1, etc., until finally we obtain
the desired clause using the Branching rule applied to F1 and G1.

Next we will show the same result for FCW
reason. The argument for FCW is a

simplification of this proof and the result for FC follows because it is equivalent
to CC. Given a refutation of a formula F in FCW

reason, we show how to obtain an
FCW

reason refutation of F(∧k) of size at most O(k) times that of F by replacing each
branch on a variable x of F by a sequence of branches on the variables z j for
j ∈ [k]. (Again we drop the indices i on the x and z variables for convenience.)
More precisely, let F be a CNF formula, and let T be the dynamic programming
DAG explored by FCW

reason as it is refuting F. T(∧k) will denote the corresponding
dynamic programming DAG that we show can be created by FCW

reason as it is
refuting F(∧k).

We will define an execution creating a T(∧k) so that for any partial assign-
ment π to the x variables defining a node v(π) in T corresponding to a recursive
call on F|π , there is an equivalent assignment z(π) defining a node v̂(π) in T(∧k)

such that for every formula G cached in T when exploring node v(π) the cor-
responding formula G(∧k) is cached in T(∧k) and if J is the reason returned at
v(π), J(∧k) is returned at v̂(π). We prove this by induction over the execution
that yields T.

Let π be an assignment that corresponds to a node in T. We define an
equivalent assignment z(π) that will correspond to a node of T(∧k) recursively
as follows.

—If π is the empty assignment then z(π) is also empty.
—If π corresponds to node v in T with left child corresponding to πx and

right child corresponding to πx then z(πx) = z(π)z1 · · · zk and z(πx) =
z(π)z1 · · · zk−1zk.

—If π corresponds to node v in T with left child corresponding to πx and right
child corresponding to πx then z(πx) = z(π)z1 and z(πx) = z(π)z1 · · · zk.

By the previous definition z(π) is equivalent to π . The node v̂(π) will be a node
in T(∧k) that corresponds to z(π).

Assume that the inductive hypothesis holds for all nodes whose execution
completed before that of v = v(π) in the execution defining T (i.e., the nodes
which precede v in the postorder traversal of T) where π is a partial assign-
ment to the x variables. If v has outdegree 0 in T then � is in F|π and will also
be in F(∧k)|z(π ) = (F|π)(∧k) so both calls return �. If v has outdegree 1 in T then
it corresponds to a cache hit and some strengthening J of F|π was found in the
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cache by FCW
reason for the call on F|π . By the inductive hypothesis, J(∧k) will be

in the cache for the corresponding call on F(∧k)|z(π ) and will be a strengthen-
ing of F(∧k)|z(π ). In this call select Cache-Check to be true and select J(∧k) to
be returned from the cache. It remains to consider what happens when v has
outdegree 2. We have two cases: the left child corresponds to a recursive call
on F|πx and right child corresponds to a recursive call on F|πx, or vice versa. In
the execution creating T(∧k) of FCW

reason the query of x at node v will be replaced
by a sequence of queries to the variables z1, . . . , zk in order.

First, assume that x is the left (first) branch and x is the right (second)
branch in T starting at v, In T(∧k) each positive literal z j will be assigned be-
fore the corresponding negative literal is tried and thus there will be a sub-
tree in the DAG T(∧k) of k + 1 leaves with a long left branch corresponding to
the assignment z(π)z1 · · · zk and a series of short right branches correspond-
ing to assignments z(π)z1 · · · z j−1z j for j ∈ [k]. In particular, T(∧k) contains the
node v̂(πx), where v̂(πx) is the node in T(∧k) corresponding to the assignment
z(πx) = z(π)z1 · · · zk as defined earlier, and similarly T(∧k) contains the node
v̂(πx) corresponding to the assignment z(πx) = z(π)z1 · · · zk−1zk.

By definition of FCW
reason, some G is the reason returned at node v(πx) and

some H is the reason returned at node v(πx) where, by Lemma 4.8, G and H
are strengthenings of F|πx and F|πx, respectively. In completing the execution
for node v, the formula

J =
∧

C∈F|π∩G∩H

C ∧
∧

C∈(G∩H)\F|π
(x ∨ C)(x ∨ C) ∧

∧
C∈G\H

(x ∨ C) ∧
∧

C∈H\G
(x ∨C)

is returned. We want to show that J(∧k) is returned at node v̂(π) in T(∧k).
By the induction hypothesis, G(∧k) is returned at node v̂(πx) which corre-

sponds to assignment z(πx) = z(π)z1 · · · zk. Similarly, H(∧k) is returned at node
v̂(πx) which corresponds to assignment z(πx) = z(π)z1 · · · zk−1zk. By the proper-
ties of G and H, G(∧k) and H(∧k) are strengthenings of F(∧k)|z(πx) and F(∧k)|z(πx)
respectively. Without loss of generality we can assume that these were added
to the cache as well.

By the preceding lemma, (F|πx)(∧k) = F(∧k)|z(πx) and (F|πx)(∧k) = F(∧k)|z(πx).
For all subsequently considered assignments z(π)z1 · · · z j−1z j for j< k, observe
that F(∧k)|z(π )z1·z j−1z j contains all clauses of the formula F(∧k)|z(πx). (If there is a
clause A in F(∧k)|z(πx) that was shortened from a clause in F(∧k)|z(π ) then (A∨z j)
is in F(∧k)|z(π ) for every j≤ k and thus A is in F(∧k)|z(π )z1·z j−1z j.) Thus at the call
corresponding to z(π)z1 · · · z j−1z j, we select Cache-Check to be true and obtain
a cache hit from the reason H(∧k) so these nodes of T(∧k) result in immediate
contradictions for FCW

reason. We do not bother to cache the intermediate reasons
returned at these nodes until the computation returns to node v̂(π). By the
preceding lemma, G(∧k) = (J|x)(∧k) = J(∧k)|z(πx), and similarly H(∧k) = (J|x)(∧k) =
J(∧k)|z(πx). It follows that J(∧k) is returned at node v̂(π) since the variables z j
will be added to the returned reasons up the tree from nodes v̂(πx) and v̂(πx)
to v̂(π) to exactly mimic the result of the substitution of z1 ∧ . . . ∧ zk for x.

The second case to consider is when πx corresponds to the left child of v and
πx corresponds to the right child of v in T. In this case the proof proceeds in
ACM Transactions on Computation Theory, Vol. 1, No. 3, Article 9, Pub. date: March 2010.



Formula Caching in DPLL · 9: 25

much the same way, except that now the subtree of T(∧k) has one long right
branch corresponding to the assignment z(π)z1 · · · zk and k left branches corre-
sponding to assignments z(π)z1 · · · z j−1z j for j ∈ [k], for a total of k + 1 leaves.
In this case, the leaf v̂(πx) corresponding to assignment z(πx) = z(π)z1 will be
traversed first and its returned reason will cause cache hits for leaves with
assignments z(π)z1 · · · z j−1z j for j> 1. The only other leaf that will be explored
is the leaf v̂(πx) corresponding to assignment z(πx). The remaining reason-
ing is completely analogous to the first case. The overall result follows by
induction.

COROLLARY 4.16. Let {F} be a family of unsatisfiable CNF formulas with
at most d positive literals per clause where kd is nO(1).

—If {F} has polynomial-size DPLL proofs then {F(∧k)} has polynomial-size CC
proofs.

—If {F} has polynomial-size regular resolution proofs then {F(∧k)} has
polynomial-size CC+W proofs.

We first use this corollary to show that CC can be exponentially more powerful
than DPLL. Ben-Sasson et al. [2000], generalizing a construction of Bonet et al.
[2000], defined certain graph-pebbling tautologies Peb G,S,T to separate tree-
like from regular resolution.

Definition 4.17. Let G = (V, E) be a directed, acyclic graph over vertices V =
{x1, . . . , xn}, and m edges E. Assume that G is connected and every nonsource
vertex has indegree 2. Let S, T be disjoint subsets of V. Then PG,S,T is the
following CNF formula. The underlying variables are xi, i ∈ [n]. There are
three types of clauses: (i) The source clauses, (xi), for all xi ∈ S, state that
every variable corresponding to a source vertex can be pebbled; (ii) For each
nonsource vertex xk with predecessors xi and x j, we have a clause (¬xi∨¬x j∨xk)
saying that if both predecessors of xk are pebbled then xk can be pebbled; (iii)
For every sink vertex x j ∈ T we have a clause (¬x j) asserting that vertex x j

cannot be pebbled.

Earlier we defined a formula F(∧k) from F. In an analogous way we can
define a formula F(∨k) from F. In particular, we define the ”2ORification” of
PG,S,T as follows.

Definition 4.18. Let G = (V, E) be a directed acyclic graph on n vertices,
and let PG,S,T be the CNF formula as defined earlier. Then the 2ORification of
PG,S,T , P(∨2), which we will denote by Peb G,S,T is as follows. The underlying
variables are xa

i , xb
i , i ∈ [n]. The clauses are as follows: (i) The source clauses

(xa
i ∨ xb

i ) for all xi ∈ S; (ii) For every nonsource vertex xk with predecessors
xi and x j, we have the clauses (¬xa

i ∨ ¬xa
j ∨ xa

k ∨ xb
k ), (¬xa

i ∨ ¬xb
j ∨ xa

k ∨ xb
k ),

(¬xb
i ∨ ¬xa

j ∨ xa
k ∨ xb

k ), (¬xb
i ∨ ¬xb

j ∨ xa
k ∨ xb

k ); (iii) The sink clauses (¬xa
j), (¬xb

j )
for all x j ∈ T.

LEMMA 4.19. Given a directed acyclic graph G of indegree 2 with m
edges and subsets S and T of its vertices, if PebG,S,T is unsatisfiable then
sCC(Peb G,S,T) = O(m).
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PROOF. (Sketch) Recall that the negation of PG,S,T is a tautology asserting
that: (1) all nodes in S can be pebbled; (2) if both predecessors of a node can
be pebbled, then so can the node itself; and (3) no node in T can be pebbled.
Recall that Peb G,S,T = P(∨2)

G,S,T . The formula PG,S,T can be proved unsatisfiable
in a linear number of steps by unit propagation following a topological sort
from S to T. Therefore it follows immediately in CC. Although this is an (∨2)
substitution, by negating variables and using the closure property of CC under
disjoint (∧2) substitution of Lemma 4.15 and the fact that each clause of PG,S,T

has constant size, Peb G,S,T also has a linear size proof in CC.

THEOREM 4.20. DPLL cannot p-simulate FC nor CC.

PROOF. Ben-Sasson et al. [2000] show that for suitable choices of directed
acyclic graphs G with O(n) edges, and sets S and T, the tree-like resolution
complexity of Peb G,S,T is 2�(n/ log n). This combined with Lemma 4.19 proves
that DPLL cannot p-simulate CC (nor FC).

We now use Corollary 4.16 together with results of Segerlind et al. [2002] to
separate the CC+W proof system from Res(k) for any constant k.

In order to separate Res(k + 1) from Res(k), Segerlind et al. [2002] define an
unsatisfiable CNF formula GO P(G) for any undirected graph G (describing
the graph ordering principle on G) as follows.

Definition 4.21. Let G = (V, E) be an undirected graph with |V| = n. The
graph ordering principle defined on G is denoted by GO P(G). There are n(n−1)
underlying variables xi, j for all i, j ≤ n, i �= j, which are intended to describe a
transitive, irreflesiven antisymmetric relation on the vertices of G. The clauses
express the (false) fact that in any such relation, there is no locally minimal
vertex in G: (i) The clauses (xi, j ∨ x j,i) represent antisymmetry; (ii) the clauses
(xi, j ∨ x j,k ∨ xi,k) represent transitivity for all distinct i, j,k ∈ [n]; (iii) finally for
each j ∈ [n] we have the clause

∨
(i, j)∈E xi, j, expressing that j is not minimal.

The following theorem states that although GO P(G) always has
polynomial-size regular resolution refutations, there is an infinite family of
graphs G such that for any constant k, GO P(G)(∧k+1) requires exponential-size
Res(k) refutations.

THEOREM 4.22 [SEGERLIND ET AL. 2002]. For any positive integer k, there
are constants c > 0 and εk > 0, and an infinite family of graphs {G} such
that GO P(G) has regular resolution refutations of size O(nc) where n = n(G),
and GO P(G)(∧k) has Res(k) refutations of size O(nc), but GO P(G)(∧k+1) requires
Res(k) refutations of size 2�(nεk ).

THEOREM 4.23. For any positive integer k, there are formulas with
polynomial-size CC+W refutations and polynomial-size FCW

reason refutations
that require exponential-size Res(k) refutations.

PROOF. Consider the family of polynomial-size formulas GO P(G)(∧k+1). By
Theorem 4.22, the formulas GO P(G) have polynomial-size regular resolution
refutations. Also, in Theorem 4.22, since GO P(G)(∧k+1) has Res(k + 1) refuta-
tions of size O(nc), (k + 1)d is polynomial in n = n(G) where d is the maximum
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degree of G. Therefore, by Corollary 4.16, the formulas GO P(G)(∧k+1) have
polynomial-size CC+W refutations and polynomial-size FCW

reason refutations.
On the other hand by Theorem 4.22 they require exponential-size Res(k)
refutations.

We will now show that the returned reasons are essential to the good prop-
erties of FCW

reason by showing that FCWS cannot p-simulate regular resolution.
In particular, consider the family of GT formulas, defined by Bonet and Galesi
[1999], which separate regular resolution from tree resolution.

Definition 4.24. For any n the GTn formula includes all clauses of GO P(Kn)
where Kn is the complete graph on V = {1, ...,n} together with totality clauses
(xi, j ∨ x j,i) for each i �= j.

As shown by Bonet and Galesi [1999], like the formulas Peb G,S,T , these
formulas have polynomial-size regular resolution refutations but require
exponential-size tree resolution refutations.

Write G 
WS H iff H follows from G solely via Weakening and Subsumption.
We observe the following simple properties of 
WS.

PROPOSITION 4.25.

(a) 
WS is transitive. That is, if F 
WS G and G 
WS H then F 
WS H.
(b) If F 
WS H and G 
WS H then F ∧ G 
WS H .
(c) For any literal x, if G 
WS H then G|x 
WS H|x.

PROOF. Parts (a) and (b) follow immediately from the definition. Suppose
that x is a literal and G 
WS H. If C ∈ G|x then neither x nor x appears in C
and either C or (C ∨ x) appears in G. If C ∈ G then there is some D ∈ H with
D ⊆ C D ∈ H|x. If (C ∨ x) ∈ G then there is some D ∈ H with D ⊆ (C ∨ x) and
thus D|x ⊆ C and D|x ∈ H|x. Thus (c) follows.

Let unitprop(H) be the formula obtained from H after applying unit propa-
gations to H.

LEMMA 4.26. If G 
WS H then there is a restriction π such that G|π 
WS

unitprop(H) and G|π has no unit clauses.

PROOF. Assume that � /∈ unitprop(H) for otherwise the lemma follows im-
mediately with G|π = unitprop(G). Otherwise let π be the set of assignments
that are made during unit propagation on H. By Proposition 4.25 we have
G|π 
WS unitprop(H). If x is a unit clause in G|π then, since � /∈ unitprop(H),
unitprop(H) must contain x as a unit clause, which is a contradiction.

We will be interested in formulas G = GTn|σ and H = GTn|τ such that
G 
WS H. Using Lemma 4.26 we will only need to study this when G and H
have no unit clauses and H does not contain the empty clause.

Observe that if G = GTn|σ has no unit clauses and does not contain the
empty clause then σ must be transitively closed and so we can identify σ with
a partial order <σ on V.
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Given a partial order <σ on V define

—σ i = {j ∈ V | i<σ j},
—minimal(σ ) = {i ∈ V | � ∃ j ∈ V, j<σ i},
—tops(σ ) = {k ∈ V | ∀i ∈ minimal(σ ), i<σ k}, and
—prune(σ ) to be <σ restricted to V − tops(σ ).

LEMMA 4.27. If G = GTn|σ 
WS H = GTn|τ and G and H do not contain �
or any unit clause then prune(σ ) = prune(τ ).

PROOF. For any pair j,k ∈ V, if j and k are incomparable in <σ then G
contains the clause (x j,k

∨
xk, j) which must also appear in H since H does not

contain � or a unit clause. Therefore j and k are incomparable in <τ .
Since G does not contain � or a unit clause, G contains a nonminimality

clause Ci =
∨

j∈V−σ i x j,i of size at least 2 for each i ∈ minimal(σ ). Therefore H
must contain a clause Di ⊆ Ci with at least two positive literals whose last coor-
dinate is i. This can only be the nonminimality clause Di =

∨
j∈V−τ i x j,i and thus

i ∈ minimal(τ ) and σ i ⊆ τ i. Since any j /∈ σ i is incomparable to i in <σ , it must
be incomparable to i in<τ so j /∈ τ i. Therefore minimal(σ ) = minimal(τ ) and each
such minimal element has σ i = τ i. Furthermore by definition tops(σ ) = tops(τ ).

If j <σ k and j,k ∈ V − tops(σ ) then there is some i ∈ minimal(σ ) such
that i �<σ k. Therefore i is incomparable to both j and k in <σ . Therefore G
will contain two clauses of size 2 that are the restrictions of the transitivity
clauses for the triple (i, j,k), namely (¬xi, j∨ xi,k) and (¬xk,i∨ x j,i). These clauses
must also appear in H and the only possible sources for them are the same
transitivity clauses in GTn. Therefore j<τ k.

Therefore for all j,k ∈ V − tops(σ ) = V − tops(τ ), j<σ k if and only if j <τ k
and thus prune(σ ) = prune(τ ).

THEOREM 4.28. Any FCWS refutation of GTn requires at least 2n−2 nodes.

PROOF. We show that there are at least 2n−2 distinct residual formulas in
any such refutation, with the property that no two of them can be inferred
using Weakening and Subsumption from the same residual subformula.

For any restriction ρ such that GTn|ρ does not infer � via unit propagation,
the transitive closure, ρ∗, of the relation defined by ρ forms a partial order
<ρ∗ . Call a branch point in an FCWS execution novel if (1) the residual for-
mula GTn|ρ at the branch point does not infer � by unit propagation and (2)
it branches on a variable xi, j such that i and j are in different connected com-
ponents of the Hasse diagram associated with <ρ∗ . Observe that if only n− 2
novel branch points have been made on a path then tops(ρ∗) = ∅. Furthermore,
every consistent branch can be extended until it contains at least n− 2 novel
branch points and the restrictions ρ defining these branches are inconsistent
with each other. Therefore there are at least 2n−2 of them at the novelty level
n− 2 and their transitive closures σ all have prune(σ ) =<σ and disagree about
the relative order of some pair of elements.

Let H = GTn|ρ be the residual formula at a novel branch point and as-
sume that G = GTn|π infers H using Weakening and Subsumption. Applying
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Lemma 4.26 we obtain a formula G′ = G|π ′ for the restriction π ′ such that
unitprop(H) = H|π ′ , G′ 
WS unitprop(H), and G′ does not have an empty or
unit clause (because the branch point associated with H is novel and G in-
fers H.) Let σ be the restriction that is the combination of π and π ′ and let
τ be the restriction that is the combination of ρ and π ′. By construction σ
and τ correspond to partial orders on {1, . . . ,n}. By Lemma 4.27 we must have
<τ= prune(τ ) = prune(σ ) =<σ .

Now if G is added to L before H in the execution of FCWS then there are
two cases. Either G is in the subtree below H, or G is in a subtree that was
traversed before the node corresponding to H is traversed. In this latter case,
G is in a subtree to the left of the node corresponding to H, and thus there
is some branching node where a variable xi, j is queried, on which π and ρ
disagree. If the latter were to occur, the corresponding extended restrictions σ
and τ would retain this disagreement, and <σ and<τ would disagree about the
relative order of i and j. This would contradict the requirement that <τ=<σ .
Therefore any such clause G would have to be in the subtree below H. Since
these subtrees are disjoint for every pair H and H′ of our set of clauses at
novelty level n− 2, the theorem follows.

COROLLARY 4.29. FCWS does not polynomially simulate regular resolution.

Thus, even the strongest of the basic formula caching systems is not strong
enough to efficiently simulate regular resolution. In fact, these systems cannot
efficiently simulate the ordered regular resolution method defined in the orig-
inal paper of Davis and Putnam [1960] since, as shown by Bonet and Galesi
[1999], the formulas GTn are provable in ordered regular resolution.

However, as we saw earlier, if we augment formula caching by having it
return the reason for unsatisfiability as well as the mere fact of unsatisfiability,
to obtain FCW

reason then we can not only efficiently simulate regular resolution
but also can efficiently refute formulas that require exponential size Res(k)
refutations.

5. CONTRADICTION CACHING SYSTEMS WITH 0-1 SUBSTITUTION

In a preliminary version of this work [Beame et al. 2003], we defined an addi-
tional rule for the CC and FC systems that was called the restriction rule. To
be consistent with earlier terminology, we should have called this rule the 0-1
substitution rule.

Definition 5.1. The restriction rule (also called the 0-1 substitution rule) in
a CC system allows ϕ|x (or ϕ|x) to be inferred from ϕ.

We define the letter “R” to denote the 0-1 substitution (or restriction) rule.
Thus CC+WSR is the contradiction caching system that includes weakening,
subsumption, and restriction.

We mistakenly claimed that CC+WSR was no more powerful than depth-2
Frege systems. In fact, we show shortly that the restriction rule is surprisingly
powerful; in fact adding it makes the system p-equivalent to Extended Frege
systems. The proof of this follows the paper of Buss [1995] where he shows
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that a standard Frege system plus 0-1 substitution is p-equivalent to Extended
Frege. In Pitassi and Urquhart [1995], Buss’s result was further refined to
show that even a depth-2 Frege system plus 0-1 substitution is p-equivalent to
Extended Frege.

Definition 5.2 [PITASSI AND URQUHART 1995]. S0,1F2 is a refutation sys-
tem for CNF formulas. It contains the axiom and rules of F2 plus the 0-1
substitution rule.

The following two lemmas show that CC+WSR is p-equivalent to Extended
Frege.

LEMMA 5.3 [PITASSI AND URQUHART 1995]. S0,1F2 is p-equivalent to
Extended Frege.

LEMMA 5.4. CC+WSR is p-equivalent to S0,1F2.

PROOF. We first show that CC+WSR can p-simulate S0,1F2. The axiom, (x∧
x) can be derived from the axiom of CC plus an application of Branching. Rule
R0’ is implicit in the CC system, because CNF formulas are viewed as sets of
clauses in the CC systems. Rule R1’ is equivalent to Weakening; Rule R2’ is
equivalent to Subsumption; and clearly the substitution rules are equivalent.
It is left to show how to simulate rules R3’ and R4’.

First, we show how to simulate rule R4’. Given (F ∧ x), and (G ∧ x) we want
to derive (F∧G). First, apply Weakening to obtain (F∧G ∧ x) and (F∧G ∧ x).
Apply the Restriction rule to obtain (F∧G)|x from (F∧G ∧ x). Similarly apply
the Restriction rule to obtain (F∧G)|x from (F∧G∧x). Finally apply Branching
to obtain (F ∧ G) as desired.

Lastly, rule R3’ can be simulated as follows. Given A∧F and B∧F, we want
to derive (A ∨B)∧ F. If A ∨B contains some literal x and B contains x then we
apply Subsumption to derive x∧ F and x∧ F and then rules R4’ followed by R0’
(already simulated) to derive F, and finally Weakening to derive (A ∨ B) ∧ F.
Similarly, if either A or B contains both x and x then we can derive F by
Restriction on x and x and Branching to return F and then Weakening as
before. Otherwise, suppose that B = (l1 ∨ l2 ∨ ... ∨ lk ∨ B′) where B′ consists of
the literals of B that are contained in A. We need to derive (A ∨ l1∨ ...∨ lk)∧ F.

For each i = 1, . . . ,k, apply Weakening to derive

li ∧ F (ai)

from B ∧ F. Next, apply Restriction and Branching to derive

(A ∨ l1) ∧ (A ∨ l1) ∧ F (b)

from (A ∧ F). (Restriction is only required if F contains instances of l1 or l1; in
this case we apply Restriction under l1 and l1, which yields A∨F|l1 and A∨F|l1
since A does not contain l1 or l1, and then Branching in order to derive (b).)
Next, we apply Subsumption to derive

(l1) ∧ (A ∨ l1) ∧ F (b1)
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from (b). Similarly, apply Restriction and Branching followed by Subsumption
to derive

(l1) ∧ (l2) ∧ (A ∨ l1 ∨ l2) ∧ F (b2)

from (b1). Continue in this way (applying Restriction and Branching followed
by Subsumption) to derive

(l1) ∧ · · · ∧ (lk) ∧ (A ∨ l1 ∨ l2 ∨ · · · ∨ lk) ∧ F. (bk)

Now by repeated application of rule R4’ (which we have already shown how to
simulate), we can eventually derive (A ∨ l1 ∨ l2 ∨ · · · ∨ lk)∧ F from (bk) and (ai),
i = 1, · · · ,k, as desired.

In the other direction, we want to show how S0,1F2 can p-simulate CC+WSR.
We have already proven that F2 can p-simulate CC+WS. From this it is easy
to see that S0,1F2 can p-simulate CC+WSR, because the substitution rules are
equivalent.

6. CONCLUSIONS AND OPEN PROBLEMS

In this article, we have initiated a study of the proof complexity of DPLL proofs
augmented with various forms of formula caching. As we have discovered, the
complexity of DPLL with caching is surprisingly subtle and counterintuitive.
Naively, we expected that adding caching capabilities to tree-like resolution
would give us the power of general resolution. However, this intuition is very
wrong. In fact, we were unable to come up with any natural and efficiently im-
plementable version of caching that could p-simulate resolution. On the other
hand, we were able to define a simple and theoretically implementable version
of DPLL with formula caching (FCW

reason), that is sometimes exponentially more
powerful than both resolution and Res(k)!

Can these advantages be translated to practice? One of the most interesting
of our new systems is the system FCW

reason. While, in theory, this system can be
exponentially more powerful than clause learning, it is not clear if this supe-
riority can be achieved in practice. A challenging task would be to develop an
implementation of a variant of FCW

reason that would be competitive against state-
of-the-art complete satisfiability solvers. An important issue is cache lookup
efficiency. Successful implementations of clause learning are able to utilize
extremely fast lookups using hashing. It remains to be seen whether FCW

reason
lookups can be performed efficiently enough to be of practical value. Some
combination of clause learning and formula caching seems to have the best
potential of outperforming clause learning by itself. In such an implementa-
tion, the partial truth assignment (the “reason”) would be stored in the cache.
Then a cache lookup could be of one of several types. A cheap lookup would
involve checking if the current partial assignment ρ contains σ , for some σ in
the cache. This corresponds to a clause learning lookup. A more costly lookup
would check if f restricted by ρ is subsumed by f restricted by σ , for some σ in
the cache. This corresponds to a formula cache lookup. A reasonable approach
would be to perform the cheap lookup at first, and only later in the search
attempt to perform the more costly formula cache lookups.
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A number of other open problems remain. Most notable are the connec-
tions to resolution. What is the weakest, if any, of these caching systems that
can p-simulate resolution? It would be particularly interesting if this could be
shown for the FCW

reason proof system. In the reverse direction, can any of the
basic FC, FCW, or FCWS systems be p-simulated by resolution or even regular
resolution? Secondly, what is the relationship between clause learning and for-
mula caching? Because any clause learning proof is a resolution proof, FCW

reason
can be much more powerful than clause learning. But what about the reverse
direction? Does FCW

reason p-simulate clause learning? Thirdly, is CC+WS p-
equivalent to F2? We were able to show that F2 p-simulates CC+WS, but what
about the reverse direction? In particular, can R4’ be simulated by CC+WS? Fi-
nally, how do these systems compare with the backtracking models introduced
by Alekhnovich et al. [2005] for solving satisfiability?
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CHVÁTAL, V. AND SZEMERÉDI, E. 1988. Many hard examples for resolution. J. ACM 35, 4,

759–768.
COOK, S. A. AND RECKHOW, R. A. 1977. The relative efficiency of propositional proof systems.

J. Symb. Logic 44, 1, 36–50.
DAVIS, M. AND PUTNAM, H. 1960. A computing procedure for quantification theory. Comm. ACM

7, 201–215.
HAKEN, A. 1985. The intractability of resolution. Theor. Comput. Sci. 39, 297–305.
MAJERCIK, S. M. AND LITTMAN, M. L. 1998. Using caching to solve larger probabilistic planning

problems. In Proceedings of the 15th National Conference on Artificial Intelligence. The AAAI
Press/The MIT Press, 954–959.

MARQUES-SILVA, J. P. AND SAKALLAH, K. A. 1996. Grasp – A new search algorithm for satisfi-
ability. In Proceedings of the International Conference on Computer-Aided Design. ACM/IEEE,
220–227.

MONIEN, B. AND SPECKENMEYER, E. 1985. Solving satisfiability in less than 2n steps. Discr.
Appl. Math. 10, 3, 287–295.

MOSKEWICZ, M. W., MADIGAN, C. F., ZHAO, Y., ZHANG, L., AND MALIK, S. 2001. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference.
ACM/IEEE, 530–535.

PITASSI, T. AND URQUHART, A. 1995. The complexity of the Hajós calculus. SIAM J. Discr. Math.
8, 3, 464–483.

ROBSON, J. M. 1986. Algorithms for maximum independent sets. J. Algor. 7, 3, 425–440.
SEGERLIND, N., BUSS, S., AND IMPAGLIAZZO, R. 2002. A switching lemma for small restrictions

and lower bounds for k-DNF resolution. In Proceedings of the 43rd Annual Symposium on Foun-
dations of Computer Science. IEEE, 604–613.

URQUHART, A. 1995. The complexity of propositional proofs. Bull. Symb. Logic 1, 4, 425–467.
ZHANG, H. 1997. Sato: An efficient propositional prover. In Proceedings of the International Con-

ference on Automated Deduction. Lecture Notes in Artificial Intelligence vol. 1249. Springer,
272–275.

ZHANG, L., MADIGAN, C. F., MOSKEWICZ, M. H., AND MALIK, S. 2001. Efficient conflict driven
learning in a boolean satisfiability solver. In Proceedings of the International Conference on
Computer-Aided Design. ACM/IEEE, 279–285.

Received July 2008; revised December 2009; accepted December 2009

ACM Transactions on Computation Theory, Vol. 1, No. 3, Article 9, Pub. date: March 2010.


