Memoization and DPLL: Formula Caching Proof Systems

Paul Beame Russell ImpagliazZo
Computer Science and Engineering Computer Science and Engineering
University of Washington UC, San Diego
Box 352350 9500 Gilman Drive
Seattle, WA 98195-2350 La Jolla, CA 92093-0114
beane@s. washi ngt on. edu russel |l @s. ucsd. edu
Toniann Pitassi Nathan Segerlirid
Computer Science Department Computer Science and Engineering
University of Toronto UC, San Diego
Toronto, Ontario 9500 Gilman Drive
Canada M5S 1A4 La Jolla, CA 92093-0114
toni @s. toronto. edu nsegerli @s. ucsd. edu
Abstract the designer of the deterministic algorithm replaces the no

deterministic choices with a deterministic rule.

A fruitful connection between algorithm design and Many of the most interesting and productive algorith-
proof complexity is the formalization of thBPLL ap- mic approaches to satisfiability can be classified by such
proach to satisfiability testing in terms of tree-like reso- nondeterministic algorithms. The classic example is the
lution proofs. We consider extensions of thé’LL ap- DPLL backtracking approach to satisfiability. This ap-
proach that add some versionmemoizationremembering proach can be summarized by the following nondetermin-
formulas the algorithm has previously shown unsatisfiable. istic algorithm, whose input is a CNF formuka
Various versions of suctormula cachingalgorithms have
been suggested for satisfiability and stochastic satigiigbi DPLL(F){

([20, 1]). We formalize this method, and characterize the

. T If F'is empty
strength of various versions in terms of proof systems. &hes Reportsatisfiableandhalt
proof systems seem to be both new and simple, and have a If Fis contains the empty clause
rich structure. We compatre their strength to several stddie return
proof systems: tree-like resolution, regular resolutigen- Else choose a literal:
eral resolution, andRes(k). We give both simulations and DPLL(F],)
separations. DPLL(F|%)}

] The key nondeterministic step is when the algorithm
1 Introduction chooses the branching literal To create a determinis-
tic DPLL algorithm, a deterministic rule must be given for
An abstract propositional proof system can be defined this choice. In fact, many such deterministic rules have
as a nondeterministic algorithm for accepting proposiion been suggested, and the performance, empirically, has been
tautologies (or, equivalently, refuting contradictionaje found to be quite sensitive to the choice of this rule.
can also view such a nondeterministic algorithm aea- Since there are unlimited numbers of deterministic ver-
eral approachto divising deterministic algorithmswhere sions, it seems impossible to exactly analyze all possible
variations. However, the performance of thendetermin-
* Research supported by NSF CCR-0098066 and ITR-0219468. . . ; X .
 Research supported by NSF CCR-0098197. istic version of this algorithm can be characterlzed as acon-
1 Research supported by NSERC and an Ontario PRE Award. ventional proof system, tree-like resolution. Lower bosind
§ Research supported by NSF DMS-0100589 and CCR-0098197. for tree-like resolution refutations (e.g. [9, 7, 4, 5, 6) 3]

then can be used to prove the limitations of any determinis- exponential gaps are possible for each level.
tic instantiation. In section 2, we will give three lattices of memoized
Recently many variations of DPLL have been intro- DPLL algorithms, the basic lattice, the more powerful non-
duced (both for satisfiability and stochastic satisfiayjilit ~ deterministic lattice, and the intermediate “reason’idatt
One recent emerging idea is to cache intermediate resultsThe basic lattice represent transformations one could make
as the DPLL tree is searched. The technique of clause-to incorporate memoization to a generic DPLL algorithm.
learning, for which there have been many good implemen- These are the “off-the-shelf” proof systems that correspon
tations [11, 16, 13, 17], can be viewed as a form of mem- to taking your favorite DPLL algorithm and directly adding
oization of DPLL where the algorithm caches, in the form on memoization of different kinds, without otherwise mod-
of learned clauses, partial assignments that force caotrad ifying the original algorithm. This has the advantage of
tions. This technique which can be efficiently simulated by keeping them very close to possibly implementable algo-
Resolution is studied from the proof complexity point of rithms.
view in [2]. More generallymemoizationsaving solved However, a clever algorithm designer might be able to in-
sub-problems, is a modification that is useful in a variety of corporate memoization in a way that could not be simulated
back-tracking algorithms. For example, Robson uses mem-in the basic systems. Our “nondeterministic” systems are
oization to speed up a back-tracking algorithm for maxi- designed to represent the “ultimate limits” of these forms
mum independent set [14]. of memoization. It would be highly non-trivial to incorpo-
The methods that we are interested here involve cachingrate these features into an existing DPLL algorithm. How-
unsatisfiable residual formulas rather than caching dartia ever, we feel that any algorithm that somehow incorporated
assignments. They were first defined in [10] where DPLL- memoization into DPLL would probably fall into this lattice
based algorithms with caching are studied and implementedsomewhere. Thus, bounds on the strength of the nondeter-
to solve large probabilistic planning problems. In that pa- mistic lattice are bounds on the potential of the memoiza-
per, there are no analytic runtime guarantees, although thdion technique. The “reason” proof systems fall somewhere
empirical results are very promising. Very recently, [1l} de between naive implementation and unbounded cleverness.
fine DPLL-based algorithms with caching for counting sat- The basic lattice of algorithms are denofed' for some
isfying assignments and Bayesian inference and give timeT' C {W, S, R}, which stand for Weakening, Subsumption,
and space bounds that are as good as any known algorithnrand Restriction. The obvious relationships between these
for these problems in terms of a connectivity measure of the are that subsets of operations can be simulated by supersets
underlying set of clauses/Bayes network. The nondeterministic lattice will be denotéd:, . .. The
Thus while caching in many different guises for DPLL nondeterministic versions will be at least as strong as the
has been studied in the past, this paper is the first to specif-deterministic analog, and is again ordered by subset. The
ically formalize proof systems for SAbBased on adding reason lattice will be intermediate between the two. When
memoization of residual formulas to DPLL, and to ana- T is empty, all three variants will coincide.
lyze the complexity of these systems relative to standard The basic lattice will be the most natural viewed as an
systems. Many of our results are surprising, since at first extension of DPLL. However, we shall show in section 3
glance it seems that adding memoization to DPLL cannotthat the nondeterministic lattice can be characterized as a
strengthen the system beyond Resolution. corresponding set of proof systemS(C' + 7', with each
In this paper, we present several different ways to in- FC,,q.; Polynomially equivalent t&’C + T'. Thus, it will
troduce memoization into the nondeterministic DPLL al- be easier to reason about the power of the nondeterministic
gorithm, to get nondeterministic versions of the before- systems as proof systems than the basic systems.
mentioned algorithmic approaches. We then characterize We then compare these systems to each other and to the
the strength of these nondeterministic algorithms in terms standard resolution-like proof systems. For the most inter
of proof systems. Then we compare these proof systems teesting systems, our results can be summarized in Figure 1.1.
each other and to standard proof systems. This gives agood All of the proof systems can be simulated by Depth 2
sense of the relative strengths of the various approaches. Frege proofs. We do not know any weaker standard system
that can simulate even badi€.

1.1 Summary of Results
2 Memoization and DPLL: Formula Caching

The standard hierarchy of resolution-like proof systems
is: DPLL time (DPLL), which is equivalent to tree-like res- Memoization means saving previously stored sub-
olution proofs ; regular resolution, (REG); general resolu problems and using them to prune a back-tracking search.
tion (RES); and RES(k), for eadh > 2. This hierarchy In the satisfiability algorithms we consider, this will mean
is known to be strict under polynomial-simuability; in fact storing a list of previously refuted formulas and checking

Proof Systems it Systems it Systems that cannot
System p-simulates cannotp-simulate p-simulate it
FC DPLL REG (Theorem 4.6 DPLL (Corollary 2.2)
FCVSR DPLL REG (Theorem 4.6 DPLL (Corollary 2.2)
FCWS | REG (Theorem 4.8 - Res(k) (Theorem 4.9)
FCY ..: | REG (Theorem 3.2 - Res(k) (Theorems 3.12,4.10)
FCWS . | REG (Theorem 3.2 - Res(k) (Theorems 3.12,4.10)
FCWVSE | RES (Theorem 3.6 - Res(k) (Theorems 3.11/3.12,4.1D)
Figure 1. Relationship of various formula-caching proof sy stems to other resolution-like proof sys-
tems
whether the unsatisfiability of some formula in the list al- While we presenFC as a nondeterministic algorithm,
lows us to conclude easily, before branching, that our cur- one can also view it as a simple transformation for deter-
rent formula is unsatisfiable. ministic DPLL algorithms. We simply replace the nondeter-

A pure back-tracking algorithm usually corresponds to ministic branching rule with the rule used by the DPLL al-

a tree-like proof system, since the recursive refutatiors a gorithm. (For memory efficiency, an implementation would
done independently and not reused. Our original intuition probably also add a heuristic to decide whether to cache a
was that introducing memoization into a back-tracking al- restricted formula, or forget it.) This is a straight-fomsla
gorithm would move from a tree-like proof system to the way of adding memoization to DPLL, similar to other uses
corresponding DAG-like system. However, the real situa- of memoization in back-tracking. For example, Robson’s
tion turns out to be somewhat more complicated. There aremaximum independent set algorithm maintains a cache of
actually several reasonable ways to introduce memoizationmedium-size subgraphs with known bounds on their maxi-
into DPLL. None of them seem to be equivalent to DAG- mum independent sets, and checks if the current subgraph
like resolution, and many move beyond resolution. is in the cache.

The basic idea of the simplest memoized version of the We call the nondeterministic algorithm above, viewed
DPLL algorithm, is as mentioned above to record the un- as a proof systen'C. It is obviously at least as power-
satisfiable residual formulas found over the course of the ful as DPLL, since the presence of the cache only prunes
algorithm in a list and before applying recursion to include branches, never creates them.

checking the list to see if is already known to be unsat- In fact we show that it can be exponentially more pow-
isfiable. This yields the following algorithm whereis the erful than DPLL. Ben-Sasson, Impagliazzo, and Wigder-
cache of residual formulas known to be unsatisfiable. son [3], generalizing a construction of Bonet et al. [5], de-
fined certairgraph-pebbling tautologieFebq s, to sepa-
FC(F, L){ rate tree-like from regular resolution. They showed that fo
If F"is empty suitable choices of DAGE with O(n) edges and sef$and
Reportsatisfiableandhalt T the tree-like resolution complexity of these tautologis i
/I Check if L trivially implies that F' is unsatisfiable 9Q(n/logn)
If F' contains the empty clauseor F'isin L
return Lemma 2.1. For any in-degree 2 dagr and setsS and T
Elsechoose a literat: such thatPebg s 7 is unsatisfiable there is a polynomial-
Formula-Cachingf'|...L) time FC refutation ofPebg s, -
Formula-Cachingf'|z.) This is proved in section 4.

Add F'to L}
Corollary 2.2. There are formulas refutable in polynomial-

Running Formula-Caching{,$) allows one to determine time byFC that require time2("/1°g ") to refute by the
satisfiability of " as before. DPLL algorithm.

This shows thatFC cannot be simulated by a non-
memoized DPLL, but it does not show th&€ is strong
enough to efficiently simulate all of regular resolution. In
fact, we will later show that there are unsatisfiable formu-
las with small regular resolution refutations th&t cannot
efficiently refute.

a strengthening of the failed branch. So only the branch
wherez € S gets recursively explored.

As the above example illustrates, when we have Weaken-
ing and Subsumption, the order we explore branches mat-
ters. So in additon to a deterministic branching rule, we
would need a heuristic to determine the order of branches

Once we have the notion that we are checking the for- to construct a deterministic version B, Otherwise, it
mula F' against a cache of known unsatisfiable formulas is as easily implementable &€ .

there are other natural related checks that we might do. For

example, it may be the case thatcontains all the clauses
of some formula in the lisf. and this is nearly as easy to
check as whether or ndt is in the list. We call such a test
aWeakeningdest.

FCWY(F, L){
If F'is empty
Reportsatisfiableandhalt
Il Check if L trivially implies that F' is unsatisfiable
If F' contains the empty clauseor F' contains
all clauses of some formula ib
return
Elsechoose a literat
FCY(F|,,L)
FCY(F|,L)
Add F'to L}

There is another way that the unsatisfiability I6fcan
trivially follow from that of some formula inL. Given
clausesC and D such thatC subsumed, i.e. C C D,
we have thaC is a stronger constraint thall. Therefore

Finally, we can observe that given an unsatisfiable for-
mula G, the restricted formul#|, will also be unsatisfi-
able. This leads to a more complicated but still polynomial-
time triviality test. Furthermore, it is now the case thatemh
we derive the unsatisfiability of from that ofG € L there
may be good reason to addto L.

FCVSR(F, L){
If Fis empty
Reportsatisfiableandhalt
/I Check if L trivially implies that F' is unsatisfiable
If F' contains the empty clauseor there is
some(s in L and literal z such that
every clause off|, contains a clause of
Add FtoL
return
Elsechoose a literat
FCVSH(F),,L)
FCVSR(F|;.I)
Add F'to L}

We will see that even this extended test does not suf-
fice to efficiently simulate regular resolution however its

adding a subsumption test to Weakening we obtain an algoneyy ideas will be useful. One drawback of this test is that

rithm we denot&@C"S where the check whethértrivially

implies F' asks if there is a formul&' in L such that every
clause ofG contains a clause df. Again this is nearly as
easy to test as membershipifin L.

some potentially useful information about unsatisfiable fo

mulas may available to be learned but may be lost in the
return from a recursive call. For example, if for some for-
mula F' the restricted formuld’|,, has a small unsatisfiable

Weakening and Subsumption are very natural additionssybformulai; andF |z has a small unsatisfiable subformula

to a memoized backtracking algorithm. Among other bene- g then £ will have a small subformula whose restrictions
fits, they allow a limited amount of “without loss of gener- underz andz containG and H respectively. However,
ality” reason in addition to logical implications of the con FCWSE wj|| learn the formula containing all of’, not just
straints, because branches dominated by earlier ones gehis subformula. In order to take advantage of this kind of
pruned. For example, consider a simple back-tracking al-information we can augment the algorithm with a return
gorithm for finding an independent set of sizebranching value consisting of a formula giving a “reason” thétis

on a nodex with one neighboy. Without loss of general-
ity, the algorithm should include in the set. This can be

unsatisfiable. We describe this as an extensioR©f">.

We will see that this is strong enough to simulate regular

simulated by the Weakening and Subsumption rules. Theresolution efficiently.

algorithm first branches on whetherc S, then on whether

y € S, exploring ther € S branch first. The branch € S
forcesy ¢ S, so the sub-problem is to find an independent
setof sizek —1in G—{x,y}. Assume this recursive search
fails. The branch: ¢ S,y ¢ S is to find an independent set
of sizek in G — {xz, y}, a strengthening of the failed branch
that gets pruned. The final branghZ S,y € Sistofind an
independent set of size— 1in G — {z,y} — N(y), again

chs

reason(Fv L){
If Fis empty
Reportsatisfiableandhalt
/I Check if L trivially implies that F' is unsatisfiable
If F' contains the empty clause
return (A)
Else If there is a4 in L such that

every clause of7 contains a clause df Elsechoose a literat

return (G) chgzl;et(F |2, L)

Elsechoose a literat FCWSE (Fle,L)
G <—FCXZMW (F|,,L) Add F'to L}

HFcreason(F‘fiL)

J = Neea(@VC)ANANpep(zV D) If this completes without reporting thét is possibly sat-
Add Jto L isfiable then¥ will be unsatisfiable. It isimmediate that as a
AddFto L refutation systen¥CY" . . is at least as powerful &C".
return (J) It could possibly be more powerful, since the weakened for-

mula is remembered for later use. Similaiy¢Y | ef-
ficiently simulatesfCYS, andFCYVSE _ efficiently simu-

nondet

Given that we are using a cache of unsatisfiable formulasjates FCWVS®. Furthermore, based on results of the next

to prove that a formula is unsatisfiable, we may wish to ap- two sections we can show that essentially without loss of
ply the rules such as weakening, subsumption, or restrictio generality all of the modified formulas created during these
a little earlier in the process so that we can be more effi- algorithms can be taken to be sub-formulas of the original
cient at generating formulas that we have seen previously toinput formula being refuted.

be unsatisfiable. We could for example allow the algorithm |t may seem that some of these new systems allowing
to nondeterministically apply weakening at any pointin the nondeterministic manipulation df itself are a little unnat-
algorithm. This is a generalization of the usual pure litera yral. However, we shall see that they correspond directly
rule of DPLL which allows one to remove clauses contain- to some extremely natural inference systems for unsatisfi-
ing a literal that occurs only positively (or only negatiyel able CNF formulas that we define in the next section. Also,
in the formula. (Of course, a bad early choice of weakening reasoning about such systems covers many algorithms that
may suggest satisfiability when that is not the case, but theprune searches based on reasoning that identifies unneces-
system will remain be sound for proofs of unsatisfiability.) sary constraints , e.g, the pure literal rule or its general-

Similarly, we can define an algorithRC}\S ., that, aswell ization to autarchs ([12]), or deleting a node of degree 2
as allowing the removal of clauses, also allows the extensio or less from a 3-coloring problem. While such weaken-
of some number of clauses 6fby the addition of extralit- ing only guides the choice of branching variables in a pure

erals. Finally, we make the manipulation/ofnore extreme pack-tracking search, caching the simplified formula may
by also allowing the repeated addition of some number of make a more dramatic difference. In fact, we shall see that
new clauses that contain a literal that does not appear posmcmndd, the simplest of these extensions of the ba&ic

tively or negatively inF. (Thatis, after we have added some algorithm, is surprisingly powerful; in particular it is €a

such clauses, removed other clauses, and extended existingable of refuting formulas that are hard for systems more
clauses, we are allowed to repeat this process.) We denotgowerful than resolution.
this system byrCy 5% . (This last rule seems the most un-

natural, but it allows one to “forget” a variable branched on

this seems essential to simulating general resolution.) We3 Contradiction caching inference systems

give a description oF CY'5® - the other algorithms can be _ _ o
obtained by deleting appropriate lines. We now define several inference systems for unsatisfi-
able formulas that are closely related to some of the formula
FCWSE (F, L){ caching algorithms in the previous section. The objects of
If F'is empty thes proof systems will be conjunctive normal form (CNF)
Reportpossibly satisfiablandhalt formulas. CNF formulas will be assumed to be sets of
//Non-deterministic reverse weakening clauses and clauses will be assumed to be sets of literals so
Remove some subset of clauseg ¢possibly none) the order of clauses and of literals within each clause is im-
//Non-deterministic reverse subsumption material. In the followingy, v, z denote literals which can
For each clause of’, add some variables (possibly none) be variables or their negationg, 1) will denote CNF for-
/INon-deterministic reverse restriction mulas and”, D, E will denote clauses. (A clause also can
Some number of times, be viewed as simple case of a CNF formula.) The (unsatis-
choose a literal: that does not occur i, fiable) empty clause will be denotéd Given a formulay
add -z to some subset of clausesrof and literalz (or T), the formulap|, (respectivelyp|z) de-
and add a set of clauses all containimgo F'. notes the simplified CNF formula in which all clauses con-
/I Check if L trivially implies that F' is unsatisfiable tainingz (respectivelyr) have been removed and all clauses
If F' contains the empty clauseor F'isin L containingz (respectivelyx) are shortened by eliminating

return that literal. More generally given a sequence of litera)s,

for example, we writep|,,. = ¢|.|,|. and for a claus€’ the leaves and the Branch rule simulates the action at the
we identify C' with the sequence of negations of the literals internal nodes of the proof.) Therefore we easily have
in C and definep| to be the restriction op in which every o
literal of C' has been set to false. Lemma 3.1. For any unsatisfiable CNF formula,

We define several related proof systems for showing thatscc(F) <2-sppri(F).
CNF formulas are unsatisfiable based on the following in-
ference rules.

We can also see that CC+W has the full power of regular

resolution.
1. Axiom 4 A Theorem 3.2. For any unsatisfiable CNF formuld’,
2. Branching ¢|., p|lz - ¢ wherez is any variable ang scorw(F) < 3-srug(F).
is any CNF formula. Proof. Let C1,...,Cs = A be a regular resolution refuta-

3a. Limited WeakeningA - A A ¢ wherey is any CNF tion of F. By standard arguments, this refutation yields a
formula. directed acyclic grap® with a single root corresponding to

clauseA that forms a read-once branching program, whose
3. Weakening ¢ - » A ¢ wherey andiy are any CNF leaves are labeled by clausegigfand whose internal nodes
formulas. are labeled by variables and whose edges are labeled 0 and
1, that is the d.a.g. analog of the DPLL search tree for an
4. Subsumptionp AC 4 ¢ AD whereD C C areclauses ynsatisfied clause. Furthermore, for each clatisie the
andy is any CNF formula. refutation, on every path from the root toC' the partial
assignment defined by falsifies (every literal of C'.
For each clausé€’ in the refutation, defin&’(C') to be
the set of variables queried at descendants of the node cor-
responding ta” in P. By the read-once property @, any
variable inV'(C) cannot appear on any path from the root
to C in P. For each such claugg, defineF'#. to be the
CNF formula consisting of the clauses Bf having vari-

5. Restriction ¢ - ¢|, wherez is any literal andp is any
CNF formula.

Note: Another way to look at the Branching rule is to
begin with any two CNF formulag; and,, neither of
which contain a variable. Lety~2 = 11 N5 be the set of
common clauses of the two formulas andiét= 1; — 112 .
for i = 1,2. Then the rule allows us (tig?infer any CNF ables only_an’(O). .
formula¢ that for eachC' € 1] contains the clauseg v), We will show how to _derlv_e the sequence
for eachC € 1), contains the clausg” Vv 7), and for each F#_OU e e, = F#{\ Wh'Ch will be enough o
clauseC € 1> contains some subset o, (C'Vz), (C'V deriveF' in one more step sinck is (at worst) a weakening
7)} that includeg” or both the other two clauses. of F#A_' .)

A CC (contradiction cachingjefutation of a CNF for- If C'is a clause of, i.e. aleaf in the proof, thef# ¢
mula F is a sequence,, — F of CNF formulas co_ntalns the_empty clause an_d we can derive it in two steps
such that eacls; fori > 1 follows fromy;, j < ¢ using one using the Axiom and Wgakenmg.
of the proof rules (1)-(3a): Axiom, Branching, and Weak- _ SUPPOS&’ = (AVB) is the resolventofAvz) and(Bv
ening. If in addition we allow some forms of the Weakening #) In the proof and that we already have deriveg av.)
rule (3), the Subsumption proof rule (4), or the Restriction 2NdE# (sva). _
proof rule (5) we denote the system by some combination ~Since every literal inC' = (A v B) appears on ev-
of CC+ some combination of letters W, R, and S. ery/some path from the root to the nodeftorresponding

In addition to these proof systems we will also discuss © € no variable inA or B appears inV’'(A v z) or in-
several other proof systems, DPLL, which is tree-like res- V' (B V). Thereforel"# .y, does not contain any vari-
olution, REG, which is regular resolutioRes, which is abPlé from B and £'# 5.7 does not contain any variable
general resolution, anBes(k) for integerk > 1 whichis TOM A. ThereforeF's ava)lg = F#f(ava).
an extension of resolution that permitsDNF formulas in- Now every clause of'# av.) = F#(ava) |5 IS aclause
stead of clauses. of F\m by definition. Furthermore, sindé’(A Vv z)

Given a proof systent/ for refutating an unsatisfiable is a subset o¥’’'(C'), each clause of'# 4y, is also en-
CNF formula and lets; (F) be the minimum length of a tirely defined onV’’(C). Therefore by one step of Weaken-
refutation CNF formulaF' in systeml/. ing from F'# 4v,) We derive the CNF formula consisting

Itis clear that the basic CC proof system can efficiently Of the clauses of'| ;7575 = (F)lz that only contain
simulate the execution of any DPLL algorithm and thus can variables inV'(C). Similarly by one step of Weakening
polynomially simulate tree-like resolution proofs. (Th&-A from F# g,z we can derive the CNF formula consisting

iom and Limited Weakening together simulate the action at of the clauses 0F|m = (F|5)|+ that only contain

the variables inV'(C).
we deriveF#¢.

Finally, using the Branching rule
O

Our definition of the complexity of the size of refuta-
tions in CC, CC+W, CC+WS, CC+WR, etc. requires a little
more justification since we only count the number of lines
in our proofs and we are allowing arbitrary CNF formulas
for these lines. It is not cleax priori that the total number
of symbols in these proofs will be polynomial even if the
size of the original formula is small and the number of lines
is small.

We say that a CNF formul#@’ is a sub-formulaof an-
other CNF formulaG if every clause ofF' is contained in
some clause of7. We say that a CNF refutation system
U has thesub-formula propertyf there is some constait
such that for any unsatisfiable formutathere is a refuta-
tion of F' of size at most - sy (F') such that every line is a
sub-formula ofF'. If ¢ = 1 then we say that the proof sys-
tem has thexactsub-formula property. Resolution clearly
has the exact sub-formula property and it is immediate that
CC and CC+W have the exact subformula property sihice
is a sub-formula of any’ and for Branching and Weaken-

Restriction: Suppose that 4 ¢|, is the inference where

is a literal. By definition of restriction, each clauseyf|,

is contained in a clause @ff" and thus is contained in a
clause ofF'. Furthermore each such clause is also a clause
of |, so(y|,)" contains all clauses af”|,. In particu-

lar, this means that we can first deriyé |, by Restriction
from ¢! and then derivéy|,)" by Weakening fromp’|,..

This could possibly at most double the number of steps in
a CC+R refutation so the sub-formula property for CC+R
holds withe = 2. O

Therefore, given a CNF formulB with bounded clause
size as input and a polynomial size CC, CC+S, or CC+S
refutation ofF", there is one with at most a polynomial num-
ber of symbols.

The following shows that the addition of the Restric-
tion rule is sufficient to efficiently simulate the Subsump-
tion rule which justifies eliminating separate considenati
of CC+WRS.

Lemma 3.4. If C c D are clauses then there is@C +
W R derivation ofp A C fromy A D of length4|D — C|.

ing the given formulas are sub-formulas of the derived for- pygof. We prove this in the case th@ = C v z. The
mula. However, the same result is not obvious for CC+WS yagylt follows by repeating this process to redugeo C

or CC+WR since both Subsumption and Restriction have gne jiteral at a time. First apply Weakeninga D to yield

the converse property. Nonetheless we have: ©ADAC. Then apply Restriction to yieldp A D AC)|, =

(¢ A C)|. sinceD]|, is satisfied and eliminated from the
formula. We can also apply Restriction oA D A C to
derive(p A D A C)|z = (¢ A C)|zsinceD|z = C = C|z
and restriction distributes over conjunctions. (Here we us
Proof. For any CNF formulas” andG let G* be the for- our view of CNF formulas as sets of clauses to eliminate

mula G with all clauses that are not contained in some duplicates.) Applying Branching t@AC)|. and(¢AC) |z
clause ofF” removed. Given any refutatiop yieldsy A C in a total of 4 steps as required. O
of CNF formulaF, we claim thatp! ...
CC+S refutation of*', where we possibly may repeatd
line as som@f instead of deriving it by an inference rule.
The. Axiom is immediate so we consider the other cases of Theorem 3.6. For any unsatisfiable CNF formuld?,
the inference rule used: soosr(F) <n - spes(F).

Weakening: Clearly, an inferenge 4 ¢ A 3 can be re-
placed by an inferencg?” - o AT if ¥ is non-empty
and simply by repeating” otherwise. a CNF formulaF’ we show how to produce a CC+R deriva-
Branching: Consider a formula derived fromy|, and tion IT* of length at mosts that containsF—, . .., F—-

¢|z by Branching. By assumption we have already derived Observe that foC = A, F|5 = F and this implies the
(0l2)F = o4 (¢|. is a sub-formula ofy by definition) lemma since\ is the final clause in a resolution refutation
and similarly(¢|z) = |z and so we can use Branching of F.

to derivep!’. (Observe that if variable does not appear in We have two cases to consider for our induction depend-
F then no inference is required.) ing on the rule used ilil to derive the last clause.
Subsumption: Suppose than D 4 ¢ AC isthe inference (a): If C'is a clause of' thenF'|; contains the empty clause
whereC C D. If D is contained in a clause @f we have A. Therefore we can begin with A and deriveF'| by one
(@AD)F = " AD 4 pF' AC = (pAC)F using Subsump- step of Limited Weakening to add all the remaining clauses
tion. Otherwise(p A D)F = ot 4 pF' ACE = (oA C)F of F|.

using Weakening i€’ is contained in a clause @t or sim- (b): If C follows via resolving clausegl Vv z and B V T

ply copyingy? if C'is not. (wherez does not appear il or BandC = AV B)

Lemma 3.3. CC, CC+W, CC+WS, CC+WR have the sub-
formula property; for CC, CC+W and CC+WS this is the
exact sub-formula property.

P

3

Corollary 3.5. If F'is an unsatisfiable CNF formula in
variables then;oc+WR(F) <d4n - S(j(j+Wg(F).

Proof. Given a resolution derivatiod = C, ..., C, from

then by induction we have a CC+R refutation of length at containingz, the set of clauses @f("*) containingz; will

mostn(s — 1) that derivesi = F| 4, = F|z; andH =
Flgvs = Flg,. We repeatedly apply Restriction using the
elements o3 - A to deriveG |y = Flavpv; = (Flavg)lz

similarly we apply repeated Restriction using the elementsj € [k], let F; = ¢"M)|,, . andG; = b

of A — B to deriveH |7 = Flqvgvs = (Flavg)l.. Now
we can apply the Branching rule with= F |5 = F| 5
to obtainF'|5. SinceA v B contains at most — 1 dis-
tinct variables there were at most— 1 Restriction steps

and one Branching step to yield total refutation size of at ish to derivey(**) from £, andG = G,

mostns. O

Given a CNF formulaF' in variables{z,...,z,} and
an integerk, we can define a new formul&@"*) in
variables{z; ; i € [n],j € [k]} by replacing ev-
ery clauseC € F by a conjunction of clauses corre-
sponding toC with the substitutionz; «— z;1 A --- A
z;r and distributing the result to form clauses. That
is, if P and N are the indices of variables occurring
positively and negatively inC then C is replaced by

Niis...ojio) k)P (VieP zigi V' Vien Viem W) Note

that if C has sizéh then it is replaced by at mo#t clauses
each of size at most.

Lemma 3.7. If U is any of the systems CC, CC+W,
CC+R, CC+WR then for any unsatisfiable CNF formiila
su(FOR) < k- sy (F).

Proof. Given a formula caching refutatidi of F' of length
s we show how to derive all clauses Bf**) using at most

sk inference steps. Consider the rules used in the course o

the refutatiorl.

(1) ClearlyA("¥) = A,

(2) If the inference rule idl is Weakeningy 4 oA and we
have already("*) then we getp("*) + (M) A (M) also
by Weakening and the latter {$ A ¥)("*) by definition.
Further, if the Weakening inferencelhis Limited then the
same will hold true ifT("%),

For the Restriction and Branching rules we will drop the
variable subscript for notational convenience.

(3) If the inference rule il is Restriction then we have two
cases depending on whether the restriction literal is pasit
or negative. (i) If the rule applied i - ¢|, andz is
positive (i.e. the substitution i8 = z; A ... A z;) then
givenyp("¥) we apply a sequence éfrestrictions:

‘P(Ak) 4 <p(/\k')| (/\k)‘

21 B ' 2122 4.4 ‘p(/\k)‘zlzg...zk

and this is preciselyyl|,)"¥). (i) If the rule applied is
¢ 1 ¢|z the substitution iss = z; A ... A z; then given
@) we apply the single restrictiop("¥) (" k)|
(foranyj € [k]) and claim that the latter igp|z)"*). For
any clause” of ¢ containingz, every clause of (") will
containz; and thus be eliminated. For any clauSeof ¢

be of precisely the right form when shortened.
(4) Suppose that clauge € II follows from |, andp|z
using Branching and the substitutioris= z; A. . .Azy. For

21...25-1Z5 "
As above F, = o "F)|, . = (¢],)"¥). Furthermore, as
aboveG = (plz)M) = ") foranyj € [k]. Since
G contains no occurences of;, ..., z; for j € [k] we can
also writeG = G|.,. = p(Ak) ., =Gy We
...=Gi. To
do this we apply the Branching ruketimes, derivingFj,
from Fj, and Gy, using variablez;, F;_» from Fj,_; and
Fy,_1 using variabler;_1, etc. until finally we obtain the
desired clause using the branching rule applied’tcand
Gy. O

Zj21...25

-ZE

We can state an even more general result that allows ar-
bitrary disjoint substitutions of variables. Féta formula
in {z1,...,z,} ando = (o1,...,0,) be a sequence of
Booleans functions with; : {0, 1}* — {0,1}. We can de-
fine a new formula(*) in variables{z! | i € [n], j € [ki]}
in which eachy; is represented optimally in CNF and DNF
(depending on whether; appears positively or negatively
in a clause off") and the result expanded canonically into
clauses in some fashion. Itis not hard to show that the num-
ber of lines in a proof of'(?) is at most the number of lines
in the original proof multiplied the maximum over allof
the optimal read-once branching program size of

Note: We did not include Subsumption in Lemma 3.7

put it is also possible to simulate subsumption proofs with

a somewhat weaker bound. The issue is that for a single
clauseD, D"¥) may produce a large number of clauses
so the reduction of these clauses to the clauseS(6f)

for C C D may involve a large number of individual Sub-
sumption inferences. (In total, by the subformula property
the number of such clauses is bounded in terms of the size
of the target formula so if the original proof is polynomial
size the new proof will be as well.)

Corollary 3.8. Let {F'} be a family of unsatisfiable CNF
formulas.

e If {F'} has polynomial-size DPLL proofs thé¢i ("*)}
has polynomial-size CC proofs.

¢ If {F'} has polynomial-size regular resolution proofs
then{F("¥)} has polynomial-size CC+W proofs.

e If {F'} has polynomial-size resolution proofs then
{F("")} has polynomial-size CC+R proofs.

We first use this corollary to show that CC can efficiently
prove the pebbling tautologies mentioned in the previous
section.

Lemma 3.9. Given a directed acyclic grapf of in-degree Proof. Consider the family of polynomial-size formulas
2 with m edges and subsetS and 7' of its vertices, if GOP(G)"*+1) given by Theorem 3.10. Since the for-

Pebg s, 7 is unsatisfiable theso o (Pebg, s, 7) = O(m). mulas GOP(G) have polynomial size resolution refu-

tations, by Theorem 3.6 and Lemma 3.7 the formu-
Proof. (Sketch) The contradictioeb;, s v has two vari- las GOP(G)"*+1) have polynomial-size CC+R refuta-
ables per vertex, z; andz, and the statement thatcan ions. On the other hand by Theorem 3.10 they require
be pebbled is represented by the cla(geVv z!). The tau- exponential-sizées(k) refutations. 0

tology represents the statement that (1) all nodeS gan
be pebbled (2) if both of a nodes’ predecessors can be peb-
bled then so can the node itself (3) no nodélircan be
pebbled. We observe that this formula is derived by disjoin
substitutionz, = 2% v 2! from a simpler formulaP; s r
where we represent the ability to pebble nadby a sin-

) : (V) e
gle variabler,. ThatisPebg, s v = Fg g - Theformula Theorem 3.12. For any positive integek, there are for-
Pg.s,r can be proved unsatisfiable in a linear number of 1,55 with polynomial-size CC+W refutations that require

steps by unit propagation following a topological sort from exponential-siz&es(k) refutations.
S to T. Therefore it follows immediately in CC. By the

closure property of CC under disjoint substitution (thisis] o
instead ofA but the same result follows either by negating 4 Formula caching search and contradiction
variables and using the result foxk) or directly from the caching inference systems

read-once branching program generalization of Lemma 3.7)
Pebg,s,r also has a linear size proofin CC. ([

We can observe that not only do&€$OP(G) have

t polynomial-size resolution refutations but these refota
are in fact regular resolution refutations to derive the fol
lowing:

Theorem 4.1. FC and CC are polynomially equivalent

We now use Corollary 3.8 together with results of [15] refutation systems.

to separate the CC+R proof system frdtas(k) for any

constant. . serve that in an execution &C, each recursive call adds
In order to separatBes(k + 1) from Res(k), Segerlind, nrecisely one formula td. and each such formul@ is

Buss, and Impagliazzo [15] define an unsatisfiable CNF 4o apie either because it contains the empty clauaed
formula GOP(G) for any undirected grapltr (describ- 0 r6fore follows from the Axiom of CC via one step of
ing for thegraph ordering principleon G)_ and_ prove tha_t, Limited Weakening, or as the result 6, and ¥ being
aIthoughG()P(G). alwa.ys. h_as polynomlal-3|ze resolution in L and therefore follows via one Branching step.
refutations, there is an infinite family of grapissuch that For the reverse direction, It be the goal formula for

(Ak+1) i ial-
fs?;eagzg?g;fé?gf;ignosp I\(/Ii)re preci;Z?yUIé?\?eaéxgo(r‘l/ergl)al CC(and irypqtfoiFC). For.simplicity we will t:_;ll_<e the re_sult.

. A . ') ' ’ of every Limited Weakening rule as an additional axiom in
Wlth V] " definen(n — 1) vanables?:.u_m fqr all u 75 Y the CC proof so we have a proof whose only inference rule
which are intended to represent a transitive, irreflexinéiza Branching. By the sub-formula property of CC, w.l.o.g.
ifamu?e?g%ag) cf)gr g]niig;rﬁlrzirﬁn d1;h_uszf_hza\>/e every formula in the cc proof i; a sub—formuIaE‘fan.d
Ty) fo(ti;gnsi;ci’\ji’:y for all distinctu, v, w e.i;’vTh'elqjcj?rliaph thu; every subformula s a res_tncuon E‘ft_)y some-parnal .
ardqérin rinciple forG states thatljar; such. relation must assignmenp and each non-axiom node is associated with

gp P y a variable involved in the branching. Draw the DAG of in-

have an eIemen'F that is I.ocallly rmmmaldh Thus to rep- ferences in this simplified CC proof directed from the goal
resent the negation of this principle for eacke 1 we add formula back to the leaves. TH&C algorithm will follow

the ClaUSé‘/(M)EE Tuyv- a depth-first traversal of this proof and choose its branch

Theorem 3.10 ([15]). For any positive integek, there are variable according to the variables labeling the nodesén th
constants > 0 ande;, > 0, and an infinite famiI’y of graphs DAG it encounters. Whenever it traverses a forward edge or

{G} such thatGOP(G) has resolution refutations of size & Cross edge with respect to the DFS tree, by construction
O(n®) wheren = n(G) GOP(G)(/\k) has Res(k) refu- the associated formula will already be in the ca¢héelThe

tations of sizeD(n¢), GOP(G)**+1) has sizeO(n®) but number of recursive calls is equal to the number of edges in
requiresRes (k) refutations of siz@(»™), this proof DAG. O

Proof. To show that CC can efficiently simulat&C, ob-

Theorem 3.11. For any positive integek;, there are for- Corollary 4.2. For any in-degree 2 pebbling grapt and
mulas with polynomial-size CC+R refutations that require setss and T there is a polynomial-im&C refutation of
exponential-siz&es(k) refutations. Pebg, s v if this is contradictory.

However, this simulation does not extend to all of regular closed and so we can identifywith a partial ordex,, on
resolution. In particular, consider the family 6f" formu- V.
las, defined in [6], which separate regular resolution from Given a partial ordex, onV define
tree resolution. These were the inspiration for thé P ,
formulas defined above. In particular for anythe GT, e ={jeV]i<,j}
formula includes all clauses 6O P(K,,) whereK,, is the
complete graph o’V = {1,...,n} together withtotality
clausesz; ; vz, ;) foreachi # j. As shownin [6], like the
formulasPeb s T above, these formulas have polynomial-
size regular resolution refutations but require exporanti e prune(o) to be<, restricted toV — tops(o).
size tree resolution refutations.

Write G -y s H iff H follows from G solely via Weak- ~ Lemma 4.5.If G = GT,,|, tws H = GT,|; andG and
ening and Subsumption. We observe the following simple H do not containA or any unit clause theprune(o) =

e minimal(o) ={i| Aj€V,j <,1i},

e tops(o) = {k | Vi € minimal(o),i <, k}, and

properties ofHy . prune(T).
Proposition 4.3. (a) dwg is transitive, i.e. ifF' 4ws G Proof. For any pairj,k € V, if j andk are incompara-
andG -ws H thenF 4y s H. ble in <, thenG contains the clausér; ;. \/ = ;) which

must also appear i sinceH does not contairk or a unit

(b) If £ Aws H andG Hws HthenF' A G Hws H . clause. Thereforg andk are incomparable iR, .

(c) Forany literalz, if G -y s H thenG|, Hws H|,. SinceG does not contairk or a unit clause(contains

_ _ a non-minimality claus€’; = vjevfa" xj; of size at least

(d) For any literalz, if G 4ws H|, thenG' dws H 2 for eachi € minimal(o). ThereforeH must contain a
whereG' = ATV O). clauseD; C C; with at least two positive literals whose last

coordinate ig. This can only be the non-minimality clause
D; = VjEVf‘r" z;; and thus € minimal(r) ands’ C 7°.

then neithet: norz appears irC' and eitheC or (C'vz) ~ SiNCeanyj ¢ o' is incomparable ta in <,, it must be in-
appears inG. If C € G then there is som® € H with comparabletoin <, soj ¢ r'. Thereforeminimal(o) =
D C CD € H|,. If (CVT) € Gthenthereis somd € H minimal(7) and ea_ch_such minimal element hds= 7°.
with D C (C'vz) and thusD|, C C andD)|, € H|,. Thus Furthermore by definitiotops(o) = tops(7). .

(c) follows. For part (d), consider a clau&e v C) in G'. If j <, kandj, k € V —tops(o) then there is somee

SinceC € G there is aD € H|, with D C C. Then minimal(o) suchthat £, k. Therefore is incomparable
D C (VD) C (zV C), and since eitheD ¢ H or to bothj andk in <. ThereforeG will contain two clauses

(TV D) € H there is clause off contained in(z v C). of size 2 that are the restrictions of the transitivity clasis
ThusG’ - H. 0 for the triple (i, j, k), namely(—z; ; V x;) and(—zy ; V
x;;). These clauses must also appeatdfrand the only

Let unitprop(H) be the formula obtained frori after possible sources for them are the same transitivity clauses
applying unit propagations t . in GT5,. Thereforej <, k.

Therefore for allj,k € V — tops(c) = V — tops(7),
j <, kifand only if j <, k and thusprune(s) =
prune(T). O

Proof. Parts (a) and (b) follow immediately from the defini-
tion. Suppose that is a literal andz 4w s H. If C € G|,

Lemma4.4. If G 4y s H thenthere is a restriction such
thatG|. 4w s unitprop(H) andG|, has no unit clauses.

Proof. Assume that\ ¢ unitprop(H) for otherwise the
lemma follows immediately WithG|, = wunitprop(G). Theorem 4.6. Any FCVS® refutation of GT,, requires at
Otherwise letr be the set of assignments that are made dur- least2”? nodes.

ing unit propagation orH. By the proposition above we
haveG|, dws unitprop(H). If z is a unit clause irG|,
then, since\ ¢ unitprop(H), unitprop(H) must contain
x as a unit clause which is a contradiction. O

Proof. We show that there are at le@st 2 distinct residual
formulas in any such refutation, with the property that no
two of them can be inferred using Weakening, Subsumption
and Restriction from the same residual subformula.

We will be interested in formula§ = GT,|, andH = For any restrictionp such thatzT), |, does not infer\ via
GT,|, suchthati -y s H. Using Lemma 4.4 we willonly unit propagation, the transitive closure,, of the relation
need to study this whe@@ and H have no unit clauses and defined byp forms a partial ordex .. Call a branch point
H does not contain the empty clause. in an FCYSR executionnovelif (1) the residual formula

Observe that it = GT,,|, has no unit clauses and does GT,|, at the branch point does not infarby unit propa-
not contain the empty clause thenmust be transitively gation and (2) it branches on a variablg; such thai and

j are in different connected components of the Hasse dia-

gram associated witk ,-. Observe that if only. — 2 novel
branch points have been made on a path thgs(o*) = §.

Furthermore, every consistent branch can be extended unfirst time thent'C

til it contains at leasts — 2 novel branch points and the
restrictionsp defining these branches are inconsistent with
each other. Therefore there are at le2st? of them at
the novelty leveln — 2 and their transitive closures all
haveprune(oc) =<, and disagree about the relative order
of some pair of elements.

Let H = GT,|, be the residual formula at a novel
branch point and assume th@t = GT,|, infers H us-
ing Weakening, Subsumption, and Restriction. Therefore
G' 4ws H for G' = G or G|, for some literalz. Ap-
plying Lemma 4.4 we obtain a formu@’ = G'|, for the
restriction7’ such thatunitprop(H) = Hl|., G" dAws
unitprop(H), and G" does not have an empty or unit
clause. Letr be the restriction that is the combination of
m, «', andz and letr be the restriction that is the combi-
nation of p and=’'. By constructiorr andr correspond to
partial orders or{1,...,n}. By Lemma 4.5 we must have
<,= prune(t) = prune(cs) =<,.

Now if G is added toL before H in the execution of
FCWSR then eitherG is in the subtree belowd or there
is some variabler; ; on which 7 and p disagree. |If the
latter were to occur, the corresponding extended regiristi
o and7 would retain this disagreement, arg, and <,
would disagree about the relative orderioénd j. This
would contradict the requirement that. =<,. Therefore
any such clausé’ would have to be in the subtree below
H. Since these subtees are disjoint for every gaiand
H' of our set of clauses at novelty level- 2, the theorem
follows. O

Corollary 4.7. CC does not polynomially simulate regular
resolution.

Thus even the strongest of the basic formula caching sys-
tems is not strong enough to efficiently simulate regular res
olution. In fact, these systems cannot efficiently simulate
the orderedregular resolution method defined in the origi-
nal paper of Davis and Putnam [8] since, as shown in [6], the
formulasGT,, are provable in ordered regular resolution.

However, when we augment formula caching by having
it return the reason for unsatisfiability as well as the mere
fact of unsatisfiability, we can efficiently simulate regula
resolution (and much more).

Theorem 4.8. FCWVS

reason liN€a@rly simulates regular resolu-
tion.

Proof. We follow the general pattern of the proof of Theo-
rem 3.2. See the proof of that lemma for the notation we use
here. The sequence of branches followed byR

eason

algorithm will follow a depth-first search of the regular+es
olution d.a.g. refuting?”. We prove by induction that if a
node in this d.a. g labelled by clauékis reached for the
WS on(Flx, L) returns a formulal whose
variables are iV'(C) and such that/ Hws F#c¢. (On
subsequent visits] will suffice to prevent the algorithm
from descending below this node.)

The induction starts at the leaves(lflabels a leaf in the
proofthenC € F', F'#+ = A, and the algorithm returns.

If C = (AV B) is the resolvent of A Vv z) and (B V T)
which label its children then by the induction hypothesis
we have thafCY® has returned a formul& defined
onV'(A v z) such thatd -ws F#4v,) andG defined
onV'(BVz)suchthald “ws F#svz)-

By the argument in the proof of Lemma 3.2,
F# vz dws (Flg)l. and thus by transitivitye 4w s
(Flg)|z. Similarly, F# v,y “ws (Flg)lz and thus
H Aws (Flg)lz-

Applying Proposition 4.3(d), we have\ , (T V
D) Hws Flg and Ay y(z vV E) dws Flg. Propo-
sition 4.3(b) then implies that the clauskereturned by

FCWVS satisfies

reason

J= N@VvD)A N (xVE)-ws Flz.
DeG EeH

Now sinceV'(A v) andV'(B V T) are subsets df'(C')
andz € V'(C), every variable inJ is a subset o¥'(C).
The inference/ 4w s F|s depends only on the clauses of
F|5 that contain variables appearingJirso we can remove
all clauses off’| that have variables outsidé (C') while
maintaining the inference. Thus we havely s F#¢ as

required. The theorem follows immediately. O
Thus, in particular, for any grapf FCVS_ can effi-
ciently refuteGOP(G). By a similar idea to that used in

Lemma 3.7, given a refutation of a formufain FCY 5,

we can obtain aFC)'> refutation of F("*) of size at
mostO(k) times that ofF’ by replacing each branch on a
variablex; of F' by a sequence of branches on the variables
;j such thate; is replaced by/\f:1 z; ;. Applying this to
theGOP(G)(/\"“) formulas defined in Theorem 3.10, we
obtain:

Zj,

Theorem 4.9. For any posmve integek, there are formu-
las with polynomial-siz&CY 5, refutations that require
exponential-siz&es(k) refutations.

We conclude by showing the equivalences between the
more powerful nondeterministic formula caching systems
and the contradiction caching proof systems.

Theorem 4.10. The following pairs of refutation systems
are polynomially equivalent:

e CC+W andrCY

nondet

e CC+WS andrCWVs

nondet

e CC+WSRan@CY5E (which is polynomially equiv-
alenttoFCVE

nondet

Proof. In each case one can observe that the CC proofrules

[7] V. Chvatal and Endre Szemerédi. Many hard examples for

resolution.Journal of the ACM35(4):759-768, 1988.

M. Davis and H. Putnam. A computing procedure for quan-
tification theory. Communications of the ACM:201-215,
1960.

of Weakening, Subsumption and Restriction can reverse the [9] A. Haken. The intractability of resolutiorTheoretical Com-

result of the corresponding nondeterministic tinkeringhwi

the residual formuld’ in the FC system. Thus it is easy to
see that the systems involving CC can efficiently simulate

the corresponding systems involvifg .

The reverse simulation is a little trickier. As in the previ-
ous theorem we prune the proof DAG involving CC by tak-
ing the results of Limited Weakening as leaves. We again
follow a DFS of the proof DAG directed from the goal for-
mula to the leaves. Observe that in this DAG all nodes have 12
out-degree 1 except the Branching nodes. Whenever w
reach the result of a Branching inference we choose the as-
sociated variable and make the recursive call as we would
in plain CC. Otherwise we observe that we can follow the
path of out-degree 1 inferences back either to an axiom or to
a Branching inference. It is easy to check that the nondeter-

ministic tinkering with #" allowed in theF'C-based system

can simulate this path. That is, Weakening and Subsump-[14]
tion and Restriction can be simulated since each of the ma-
nipulations of F* allowed in theFC extension permits one

to reverse the corresponding inference rule. O

References

(1] F. Bacchus, S. Dalmao, and T. Pitassi. ~DPLL with [1g)
Caching: A new algorithm for #SAT and Bayesian infer-
ence. Technical Report TR03-003, Electronic Colloquium

in Computation Complexityht t p: / / ww. eccc. uni -
trier.del/eccc/,2003.

[2] Paul Beame, Henry Kautz, and Ashish Sabharwal. On the

power of clause learning. IRroceedings of the 18th IJCAI
2003. To appear.

[3] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson.
Near-optimal separation of treelike and general resolu-
tion. Technical Report TR00-005, Electronic Colloquium

in Computation Complexityht t p: / / www. eccc. uni -
trier.de/eccc/,2000.

[4] E.Ben-Sasson and A. Wigderson. Short proofs are narrow —

resolution made simple. IRroceedings of the Thirty-First
Annual ACM Symposium on Theory of Computipgges
517-526, Atlanta, GA, May 1999.

[5] M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johansen. On
the relative complexity of resolution refinements and cut-

ting planes proof systemsSIAM Journal on Computing
30(5):1462-1484, 2000.

[6] M. L. Bonet and N. Galesi. A study of proof search algo-

rithms for resolution and polynomial calculus. Broceed-

ings 40th Annual Symposium on Foundations of Computer

ScienceNew York,NY, October 1999. IEEE.

puter Sciencg39:297-305, 1985.

S. M. Majercik and M. L. Littman. Using caching to solve
larger probabilistic planning problems. Rroceedings of the
14th AAA| pages 954959, 1998.

Joao P. Marques-Silva and Karem A. Sakallah. Grasp — a
new search algorithm for satisfiability. Proceedings of the
International Conference on Computer-Aided Desiggiges
220-227, San Jose, CA, November 1996. ACM/IEEE.

B. Monien and E. Speckenmeyer. Solving satisfiability i
less than2™ steps. Discrete Applied Mathematicpages
287-295, 1985.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lin-
tao Zhang, and Sharad Malik. Chaff: Engineering an ef-
ficient SAT solver. InProceedings of the 38th Design Au-
tomation Conferengepages 530-535, Las Vegas, NV, June
2001. ACM/IEEE.

J. M. Robson. Algorithms for maximum independent sets.
Journal of Algorithms7(3):425-440, 1986.

N. Segerlind, S. Buss, and R. Impagliazzo. A switching
lemma for small restrictions and lower bounds f6DNF
resolution. InProceedings 43nd Annual Symposium on
Foundations of Computer Sciendéancouver, BC, Novem-
ber 2002. IEEE.

Hantao Zhang. Sato: An efficient propositional provér.
Proceedings of the International Conference on Automated
Deduction, LNAlvolume 1249, pages 272-275, July 1997.

Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz,
and Sharad Malik. Efficient conflict driven learning in a
boolean satisfiability solver. IRroceedings of the Interna-
tional Conference on Computer-Aided Desigrages 279—
285, San Jose, CA, November 2001. ACM/IEEE.

