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Abstract

A fruitful connection between algorithm design and
proof complexity is the formalization of theDPLL ap-
proach to satisfiability testing in terms of tree-like reso-
lution proofs. We consider extensions of theDPLL ap-
proach that add some version ofmemoization, remembering
formulas the algorithm has previously shown unsatisfiable.
Various versions of suchformula cachingalgorithms have
been suggested for satisfiability and stochastic satisfiability
([10, 1]). We formalize this method, and characterize the
strength of various versions in terms of proof systems. These
proof systems seem to be both new and simple, and have a
rich structure. We compare their strength to several studied
proof systems: tree-like resolution, regular resolution,gen-
eral resolution, andRes(k). We give both simulations and
separations.

1 Introduction

An abstract propositional proof system can be defined
as a nondeterministic algorithm for accepting propositional
tautologies (or, equivalently, refuting contradictions). We
can also view such a nondeterministic algorithm as agen-
eral approachto divising deterministic algorithms, where� Research supported by NSF CCR-0098066 and ITR-0219468.y Research supported by NSF CCR-0098197.z Research supported by NSERC and an Ontario PRE Award.x Research supported by NSF DMS-0100589 and CCR-0098197.

the designer of the deterministic algorithm replaces the non-
deterministic choices with a deterministic rule.

Many of the most interesting and productive algorith-
mic approaches to satisfiability can be classified by such
nondeterministic algorithms. The classic example is the
DPLL backtracking approach to satisfiability. This ap-
proach can be summarized by the following nondetermin-
istic algorithm, whose input is a CNF formulaF :

DPLL(F )f
If F is empty

Reportsatisfiableandhalt
If F is contains the empty clause�

return
Elsechoose a literalx

DPLL(F jx)
DPLL(F jx)g

The key nondeterministic step is when the algorithm
chooses the branching literalx. To create a determinis-
tic DPLL algorithm, a deterministic rule must be given for
this choice. In fact, many such deterministic rules have
been suggested, and the performance, empirically, has been
found to be quite sensitive to the choice of this rule.

Since there are unlimited numbers of deterministic ver-
sions, it seems impossible to exactly analyze all possible
variations. However, the performance of thenondetermin-
istic version of this algorithm can be characterized as a con-
ventional proof system, tree-like resolution. Lower bounds
for tree-like resolution refutations (e.g. [9, 7, 4, 5, 6, 3])



then can be used to prove the limitations of any determinis-
tic instantiation.

Recently many variations of DPLL have been intro-
duced (both for satisfiability and stochastic satisfiability).
One recent emerging idea is to cache intermediate results
as the DPLL tree is searched. The technique of clause-
learning, for which there have been many good implemen-
tations [11, 16, 13, 17], can be viewed as a form of mem-
oization of DPLL where the algorithm caches, in the form
of learned clauses, partial assignments that force contradic-
tions. This technique which can be efficiently simulated by
Resolution is studied from the proof complexity point of
view in [2]. More generally,memoization, saving solved
sub-problems, is a modification that is useful in a variety of
back-tracking algorithms. For example, Robson uses mem-
oization to speed up a back-tracking algorithm for maxi-
mum independent set [14].

The methods that we are interested here involve caching
unsatisfiable residual formulas rather than caching partial
assignments. They were first defined in [10] where DPLL-
based algorithms with caching are studied and implemented
to solve large probabilistic planning problems. In that pa-
per, there are no analytic runtime guarantees, although the
empirical results are very promising. Very recently, [1] de-
fine DPLL-based algorithms with caching for counting sat-
isfying assignments and Bayesian inference and give time
and space bounds that are as good as any known algorithm
for these problems in terms of a connectivity measure of the
underlying set of clauses/Bayes network.

Thus while caching in many different guises for DPLL
has been studied in the past, this paper is the first to specif-
ically formalize proof systems for SATbased on adding
memoization of residual formulas to DPLL, and to ana-
lyze the complexity of these systems relative to standard
systems. Many of our results are surprising, since at first
glance it seems that adding memoization to DPLL cannot
strengthen the system beyond Resolution.

In this paper, we present several different ways to in-
troduce memoization into the nondeterministic DPLL al-
gorithm, to get nondeterministic versions of the before-
mentioned algorithmic approaches. We then characterize
the strength of these nondeterministic algorithms in terms
of proof systems. Then we compare these proof systems to
each other and to standard proof systems. This gives a good
sense of the relative strengths of the various approaches.

1.1 Summary of Results

The standard hierarchy of resolution-like proof systems
is: DPLL time (DPLL), which is equivalent to tree-like res-
olution proofs ; regular resolution, (REG); general resolu-
tion (RES); and RES(k), for eachk � 2. This hierarchy
is known to be strict under polynomial-simuability; in fact,

exponential gaps are possible for each level.
In section 2, we will give three lattices of memoized

DPLL algorithms, the basic lattice, the more powerful non-
deterministic lattice, and the intermediate “reason” lattice.
The basic lattice represent transformations one could make
to incorporate memoization to a generic DPLL algorithm.
These are the “off-the-shelf” proof systems that correspond
to taking your favorite DPLL algorithm and directly adding
on memoization of different kinds, without otherwise mod-
ifying the original algorithm. This has the advantage of
keeping them very close to possibly implementable algo-
rithms.

However, a clever algorithm designer might be able to in-
corporate memoization in a way that could not be simulated
in the basic systems. Our “nondeterministic” systems are
designed to represent the “ultimate limits” of these forms
of memoization. It would be highly non-trivial to incorpo-
rate these features into an existing DPLL algorithm. How-
ever, we feel that any algorithm that somehow incorporated
memoization into DPLL would probably fall into this lattice
somewhere. Thus, bounds on the strength of the nondeter-
mistic lattice are bounds on the potential of the memoiza-
tion technique. The “reason” proof systems fall somewhere
between naive implementation and unbounded cleverness.

The basic lattice of algorithms are denotedFCT for someT � fW;S;Rg, which stand for Weakening, Subsumption,
and Restriction. The obvious relationships between these
are that subsets of operations can be simulated by supersets.
The nondeterministic lattice will be denotedFCTnondet. The
nondeterministic versions will be at least as strong as the
deterministic analog, and is again ordered by subset. The
reason lattice will be intermediate between the two. When
T is empty, all three variants will coincide.

The basic lattice will be the most natural viewed as an
extension of DPLL. However, we shall show in section 3
that the nondeterministic lattice can be characterized as a
corresponding set of proof systems,CC + T , with eachFCTnondet polynomially equivalent toCC+T . Thus, it will
be easier to reason about the power of the nondeterministic
systems as proof systems than the basic systems.

We then compare these systems to each other and to the
standard resolution-like proof systems. For the most inter-
esting systems, our results can be summarized in Figure 1.1.

All of the proof systems can be simulated by Depth 2
Frege proofs. We do not know any weaker standard system
that can simulate even basicFC.

2 Memoization and DPLL: Formula Caching

Memoization means saving previously stored sub-
problems and using them to prune a back-tracking search.
In the satisfiability algorithms we consider, this will mean
storing a list of previously refuted formulas and checking
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Figure 1. Relationship of various formula-caching proof sy stems to other resolution-like proof sys-
tems

whether the unsatisfiability of some formula in the list al-
lows us to conclude easily, before branching, that our cur-
rent formula is unsatisfiable.

A pure back-tracking algorithm usually corresponds to
a tree-like proof system, since the recursive refutations are
done independently and not reused. Our original intuition
was that introducing memoization into a back-tracking al-
gorithm would move from a tree-like proof system to the
corresponding DAG-like system. However, the real situa-
tion turns out to be somewhat more complicated. There are
actually several reasonable ways to introduce memoization
into DPLL. None of them seem to be equivalent to DAG-
like resolution, and many move beyond resolution.

The basic idea of the simplest memoized version of the
DPLL algorithm, is as mentioned above to record the un-
satisfiable residual formulas found over the course of the
algorithm in a list and before applying recursion to include
checking the list to see ifF is already known to be unsat-
isfiable. This yields the following algorithm whereL is the
cache of residual formulas known to be unsatisfiable.FC(F , L)f

If F is empty
Reportsatisfiableandhalt

// Check if L trivially implies that F is unsatisfiable
If F contains the empty clause� or F is inL

return
Elsechoose a literalx

Formula-Caching(F jx,L)
Formula-Caching(F jx,L)
AddF toLg

Running Formula-Caching(F ,;) allows one to determine
satisfiability ofF as before.

While we presentFC as a nondeterministic algorithm,
one can also view it as a simple transformation for deter-
ministic DPLL algorithms. We simply replace the nondeter-
ministic branching rule with the rule used by the DPLL al-
gorithm. (For memory efficiency, an implementation would
probably also add a heuristic to decide whether to cache a
restricted formula, or forget it. ) This is a straight-forward
way of adding memoization to DPLL, similar to other uses
of memoization in back-tracking. For example, Robson’s
maximum independent set algorithm maintains a cache of
medium-size subgraphs with known bounds on their maxi-
mum independent sets, and checks if the current subgraph
is in the cache.

We call the nondeterministic algorithm above, viewed
as a proof system,FC. It is obviously at least as power-
ful as DPLL, since the presence of the cache only prunes
branches, never creates them.

In fact we show that it can be exponentially more pow-
erful than DPLL. Ben-Sasson, Impagliazzo, and Wigder-
son [3], generalizing a construction of Bonet et al. [5], de-
fined certaingraph-pebbling tautologiesPebG;S;T to sepa-
rate tree-like from regular resolution. They showed that for
suitable choices of DAGsGwithO(n) edges and setsS andT the tree-like resolution complexity of these tautologies is2
(n= logn).
Lemma 2.1. For any in-degree 2 dagG and setsS andT
such thatPebG;S;T is unsatisfiable there is a polynomial-
timeFC refutation ofPebG;S;T .

This is proved in section 4.

Corollary 2.2. There are formulas refutable in polynomial-
time byFC that require time2
(n= logn) to refute by the
DPLL algorithm.



This shows thatFC cannot be simulated by a non-
memoized DPLL, but it does not show thatFC is strong
enough to efficiently simulate all of regular resolution. In
fact, we will later show that there are unsatisfiable formu-
las with small regular resolution refutations thatFC cannot
efficiently refute.

Once we have the notion that we are checking the for-
mula F against a cache of known unsatisfiable formulas
there are other natural related checks that we might do. For
example, it may be the case thatF contains all the clauses
of some formula in the listL and this is nearly as easy to
check as whether or notF is in the list. We call such a test
aWeakeningtest.FCW(F , L)f
If F is empty

Reportsatisfiableandhalt
// Check if L trivially implies that F is unsatisfiable
If F contains the empty clause� or F contains

all clauses of some formula inL
return

Elsechoose a literalxFCW(F jx,L)FCW(F jx,L)
AddF toLg

There is another way that the unsatisfiability ofF can
trivially follow from that of some formula inL. Given
clausesC andD such thatC subsumesD, i.e. C � D,
we have thatC is a stronger constraint thanD. Therefore
adding a subsumption test to Weakening we obtain an algo-
rithm we denoteFCWS where the check whetherL trivially
impliesF asks if there is a formulaG in L such that every
clause ofG contains a clause ofF . Again this is nearly as
easy to test as membership ofF in L.

Weakening and Subsumption are very natural additions
to a memoized backtracking algorithm. Among other bene-
fits, they allow a limited amount of “without loss of gener-
ality” reason in addition to logical implications of the con-
straints, because branches dominated by earlier ones get
pruned. For example, consider a simple back-tracking al-
gorithm for finding an independent set of sizek, branching
on a nodex with one neighbory. Without loss of general-
ity, the algorithm should includex in the set. This can be
simulated by the Weakening and Subsumption rules. The
algorithm first branches on whetherx 2 S, then on whethery 2 S, exploring thex 2 S branch first. The branchx 2 S
forcesy 62 S, so the sub-problem is to find an independent
set of sizek�1 inG�fx; yg. Assume this recursive search
fails. The branchx 62 S, y 62 S is to find an independent set
of sizek in G�fx; yg, a strengthening of the failed branch
that gets pruned. The final branchx 62 S; y 2 S is to find an
independent set of sizek � 1 in G � fx; yg �N(y), again

a strengthening of the failed branch. So only the branch
wherex 2 S gets recursively explored.

As the above example illustrates, when we have Weaken-
ing and Subsumption, the order we explore branches mat-
ters. So in additon to a deterministic branching rule, we
would need a heuristic to determine the order of branches
to construct a deterministic version ofFCWS. Otherwise, it
is as easily implementable asFC.

Finally, we can observe that given an unsatisfiable for-
mulaG, the restricted formulaGjx will also be unsatisfi-
able. This leads to a more complicated but still polynomial-
time triviality test. Furthermore, it is now the case that when
we derive the unsatisfiability ofF from that ofG 2 L there
may be good reason to addF toL.FCWSR(F , L)f

If F is empty
Reportsatisfiableandhalt

// Check if L trivially implies that F is unsatisfiable
If F contains the empty clause� or there is

someG in L and literalx such that
every clause ofGjx contains a clause ofF

AddF toL
return

Elsechoose a literalxFCWSR(F jx,L)FCWSR(F jx,L)
AddF toLg

We will see that even this extended test does not suf-
fice to efficiently simulate regular resolution however its
new ideas will be useful. One drawback of this test is that
some potentially useful information about unsatisfiable for-
mulas may available to be learned but may be lost in the
return from a recursive call. For example, if for some for-
mulaF the restricted formulaF jx has a small unsatisfiable
subformulaG andF jx has a small unsatisfiable subformulaH thenF will have a small subformula whose restrictions
underx andx containG andH respectively. However,FCWSR will learn the formula containing all ofF , not just
this subformula. In order to take advantage of this kind of
information we can augment the algorithm with a return
value consisting of a formula giving a “reason” thatF is
unsatisfiable. We describe this as an extension ofFCWS.
We will see that this is strong enough to simulate regular
resolution efficiently.FCWSreason(F , L)f

If F is empty
Reportsatisfiableandhalt

// Check if L trivially implies that F is unsatisfiable
If F contains the empty clause�

return (�)
Else If there is aG in L such that



every clause ofG contains a clause ofF
return (G)

Elsechoose a literalxG FCWreason(F jx,L)H  FCWreason(F jx,L)J  VC2G(x _ C) ^VD2H(x _D)
Add J toL
AddF toL
return (J)

Given that we are using a cache of unsatisfiable formulas
to prove that a formula is unsatisfiable, we may wish to ap-
ply the rules such as weakening, subsumption, or restriction
a little earlier in the process so that we can be more effi-
cient at generating formulas that we have seen previously to
be unsatisfiable. We could for example allow the algorithm
to nondeterministically apply weakening at any point in the
algorithm. This is a generalization of the usual pure literal
rule of DPLL which allows one to remove clauses contain-
ing a literal that occurs only positively (or only negatively)
in the formula. (Of course, a bad early choice of weakening
may suggest satisfiability when that is not the case, but the
system will remain be sound for proofs of unsatisfiability.)
Similarly, we can define an algorithmFCWSnondet that, as well
as allowing the removal of clauses, also allows the extension
of some number of clauses ofF by the addition of extra lit-
erals. Finally, we make the manipulation ofF more extreme
by also allowing the repeated addition of some number of
new clauses that contain a literal that does not appear posi-
tively or negatively inF . (That is, after we have added some
such clauses, removed other clauses, and extended existing
clauses, we are allowed to repeat this process.) We denote
this system byFCWSRnondet. (This last rule seems the most un-
natural, but it allows one to “forget” a variable branched on;
this seems essential to simulating general resolution.) We
give a description ofFCWSRnondet; the other algorithms can be
obtained by deleting appropriate lines.FCWSRnondet(F , L)f

If F is empty
Reportpossibly satisfiableandhalt

//Non-deterministic reverse weakening
Remove some subset of clauses ofF (possibly none)
//Non-deterministic reverse subsumption
For each clause ofF , add some variables (possibly none)
//Non-deterministic reverse restriction
Some number of times,

choose a literalx that does not occur inF ,
add:x to some subset of clauses ofF ,
and add a set of clauses all containingx toF .

// Check if L trivially implies that F is unsatisfiable
If F contains the empty clause� orF is inL

return

Elsechoose a literalxFCWSRnondet(F jx,L)FCWSRnondet(F jx,L)
AddF toLg

If this completes without reporting thatF is possibly sat-
isfiable thenF will be unsatisfiable. It is immediate that as a
refutation systemFCWnondet is at least as powerful asFCW.
It could possibly be more powerful, since the weakened for-
mula is remembered for later use. Similarly,FCWSnondet ef-
ficiently simulatesFCWS, andFCWSRnondet efficiently simu-
latesFCWSR. Furthermore, based on results of the next
two sections we can show that essentially without loss of
generality all of the modified formulas created during these
algorithms can be taken to be sub-formulas of the original
input formula being refuted.

It may seem that some of these new systems allowing
nondeterministic manipulation ofF itself are a little unnat-
ural. However, we shall see that they correspond directly
to some extremely natural inference systems for unsatisfi-
able CNF formulas that we define in the next section. Also,
reasoning about such systems covers many algorithms that
prune searches based on reasoning that identifies unneces-
sary constraints , e.g, the pure literal rule or its general-
ization to autarchs ([12]), or deleting a node of degree 2
or less from a 3-coloring problem. While such weaken-
ing only guides the choice of branching variables in a pure
back-tracking search, caching the simplified formula may
make a more dramatic difference. In fact, we shall see thatFCWnondet, the simplest of these extensions of the basicFC
algorithm, is surprisingly powerful; in particular it is ca-
pable of refuting formulas that are hard for systems more
powerful than resolution.

3 Contradiction caching inference systems

We now define several inference systems for unsatisfi-
able formulas that are closely related to some of the formula
caching algorithms in the previous section. The objects of
thes proof systems will be conjunctive normal form (CNF)
formulas. CNF formulas will be assumed to be sets of
clauses and clauses will be assumed to be sets of literals so
the order of clauses and of literals within each clause is im-
material. In the following,x; y; z denote literals which can
be variables or their negations,';  will denote CNF for-
mulas andC;D;E will denote clauses. (A clause also can
be viewed as simple case of a CNF formula.) The (unsatis-
fiable) empty clause will be denoted�. Given a formula'
and literalx (or x), the formula'jx (respectively'jx) de-
notes the simplified CNF formula in which all clauses con-
tainingx (respectivelyx) have been removed and all clauses
containingx (respectivelyx) are shortened by eliminating
that literal. More generally given a sequence of literalsxyz,



for example, we write'jxyz = 'jxjyjz and for a clauseC
we identifyC with the sequence of negations of the literals
inC and define'jC to be the restriction of' in which every
literal ofC has been set to false.

We define several related proof systems for showing that
CNF formulas are unsatisfiable based on the following in-
ference rules.

1. Axiom: a �
2. Branching: 'jx; 'jx a ' wherex is any variable and'

is any CNF formula.

3a. Limited Weakening: � a � ^  where is any CNF
formula.

3. Weakening: ' a ' ^  where' and are any CNF
formulas.

4. Subsumption: '^C a '^D whereD � C are clauses
and' is any CNF formula.

5. Restriction: ' a 'jx wherex is any literal and' is any
CNF formula.

Note: Another way to look at the Branching rule is to
begin with any two CNF formulas 1 and 2, neither of
which contain a variablex. Let 1\2 =  1\ 2 be the set of
common clauses of the two formulas and let 0i =  i� 1\2
for i = 1; 2. Then the rule allows us to infer any CNF
formula� that for eachC 2  01 contains the clause(C _x),
for eachC 2  02 contains the clause(C _ x), and for each
clauseC 2  1\2 contains some subset offC; (C_x); (C_x)g that includesC or both the other two clauses.

A CC (contradiction caching)refutation of a CNF for-
mulaF is a sequence'1; : : : ; 's = F of CNF formulas
such that each'i for i > 1 follows from'j , j < i using one
of the proof rules (1)-(3a): Axiom, Branching, and Weak-
ening. If in addition we allow some forms of the Weakening
rule (3), the Subsumption proof rule (4), or the Restriction
proof rule (5) we denote the system by some combination
of CC+ some combination of letters W, R, and S.

In addition to these proof systems we will also discuss
several other proof systems, DPLL, which is tree-like res-
olution, REG, which is regular resolution,Res, which is
general resolution, andRes(k) for integerk > 1 which is
an extension of resolution that permitsk-DNF formulas in-
stead of clauses.

Given a proof systemU for refutating an unsatisfiable
CNF formula and letsU (F ) be the minimum length of a
refutation CNF formulaF in systemU .

It is clear that the basic CC proof system can efficiently
simulate the execution of any DPLL algorithm and thus can
polynomially simulate tree-like resolution proofs. (The Ax-
iom and Limited Weakening together simulate the action at

the leaves and the Branch rule simulates the action at the
internal nodes of the proof.) Therefore we easily have

Lemma 3.1. For any unsatisfiable CNF formulaF ,sCC(F ) � 2 � sDPLL(F ).
We can also see that CC+W has the full power of regular

resolution.

Theorem 3.2. For any unsatisfiable CNF formulaF ,sCC+W (F ) � 3 � sREG(F ).
Proof. Let C1; :::; Cs = � be a regular resolution refuta-
tion of F . By standard arguments, this refutation yields a
directed acyclic graphP with a single root corresponding to
clause� that forms a read-once branching program, whose
leaves are labeled by clauses ofF , and whose internal nodes
are labeled by variables and whose edges are labeled 0 and
1, that is the d.a.g. analog of the DPLL search tree for an
unsatisfied clause. Furthermore, for each clauseC in the
refutation, on every path� from the root toC the partial
assignment defined by� falsifies (every literal of)C.

For each clauseC in the refutation, defineV 0(C) to be
the set of variables queried at descendants of the node cor-
responding toC in P . By the read-once property ofP , any
variable inV 0(C) cannot appear on any path from the root
to C in P . For each such clauseC, defineF#C to be the
CNF formula consisting of the clauses ofF jC having vari-
ables only inV 0(C).

We will show how to derive the sequenceF#C1 ; : : : ; F#Cs = F#� which will be enough to
deriveF in one more step sinceF is (at worst) a weakening
of F#�.

If C is a clause ofF , i.e. a leaf in the proof, thenF#C
contains the empty clause and we can derive it in two steps
using the Axiom and Weakening.

SupposeC = (A_B) is the resolvent of(A_x) and(B_x) in the proof and that we already have derivedF#(A_x)
andF#(B_x).

Since every literal inC = (A _ B) appears on ev-
ery/some path from the root to the node ofP corresponding
to C, no variable inA or B appears inV 0(A _ x) or inV 0(B _ x). ThereforeF#(A_x) does not contain any vari-
able fromB andF#(B_x) does not contain any variable
fromA. ThereforeF#(A_x)jB = F#(A_x).

Now every clause ofF#(A_x) = F#(A_x)jB is a clause
of F j(A_B_x) by definition. Furthermore, sinceV 0(A _ x)
is a subset ofV 0(C), each clause ofF#(A_x) is also en-
tirely defined onV 0(C). Therefore by one step of Weaken-
ing from F#(A_x) we derive the CNF formula consisting
of the clauses ofF j(A_B_x) = (F jC)jx that only contain
variables inV 0(C). Similarly by one step of Weakening
from F#(B_x) we can derive the CNF formula consisting
of the clauses ofF j(A_B_x) = (F jC)jx that only contain



the variables inV 0(C). Finally, using the Branching rule
we deriveF#C .

Our definition of the complexity of the size of refuta-
tions in CC, CC+W, CC+WS, CC+WR, etc. requires a little
more justification since we only count the number of lines
in our proofs and we are allowing arbitrary CNF formulas
for these lines. It is not cleara priori that the total number
of symbols in these proofs will be polynomial even if the
size of the original formula is small and the number of lines
is small.

We say that a CNF formulaF is a sub-formulaof an-
other CNF formulaG if every clause ofF is contained in
some clause ofG. We say that a CNF refutation systemU has thesub-formula propertyif there is some constant

such that for any unsatisfiable formulaF there is a refuta-
tion of F of size at most
 � sU (F ) such that every line is a
sub-formula ofF . If 
 = 1 then we say that the proof sys-
tem has theexactsub-formula property. Resolution clearly
has the exact sub-formula property and it is immediate that
CC and CC+W have the exact subformula property since�
is a sub-formula of anyF and for Branching and Weaken-
ing the given formulas are sub-formulas of the derived for-
mula. However, the same result is not obvious for CC+WS
or CC+WR since both Subsumption and Restriction have
the converse property. Nonetheless we have:

Lemma 3.3. CC, CC+W, CC+WS, CC+WR have the sub-
formula property; for CC, CC+W and CC+WS this is the
exact sub-formula property.

Proof. For any CNF formulasF andG let GF be the for-
mula G with all clauses that are not contained in some
clause ofF removed. Given any refutation'1; : : : ; 's = F
of CNF formulaF , we claim that'F1 ; : : : ; 'Fs = F is a
CC+S refutation ofF , where we possibly may repeat a'Fi
line as some'Fj instead of deriving it by an inference rule.
The Axiom is immediate so we consider the other cases of
the inference rule used:
Weakening: Clearly, an inference' a ' ^  can be re-
placed by an inference'F a 'F ^ F if  F is non-empty
and simply by repeating'F otherwise.
Branching: Consider a formula' derived from'jx and'jx by Branching. By assumption we have already derived('jx)F = 'F jx ('jx is a sub-formula of' by definition)
and similarly('jx)F = 'F jx and so we can use Branching
to derive'F . (Observe that if variablex does not appear inF then no inference is required.)
Subsumption: Suppose that'^D a '^C is the inference
whereC � D. If D is contained in a clause ofF we have('^D)F = 'F ^D a 'F ^C = ('^C)F using Subsump-
tion. Otherwise,('^D)F = 'F a 'F ^CF = ('^C)F
using Weakening ifC is contained in a clause ofF or sim-
ply copying'F if C is not.

Restriction: Suppose that' a 'jx is the inference wherex
is a literal. By definition of restriction, each clause of'F jx
is contained in a clause of'F and thus is contained in a
clause ofF . Furthermore each such clause is also a clause
of 'jx so ('jx)F contains all clauses of'F jx. In particu-
lar, this means that we can first derive'F jx by Restriction
from'F and then derive('jx)F by Weakening from'F jx.
This could possibly at most double the number of steps in
a CC+R refutation so the sub-formula property for CC+R
holds with
 = 2.

Therefore, given a CNF formulaF with bounded clause
size as input and a polynomial size CC, CC+S, or CC+S
refutation ofF , there is one with at most a polynomial num-
ber of symbols.

The following shows that the addition of the Restric-
tion rule is sufficient to efficiently simulate the Subsump-
tion rule which justifies eliminating separate consideration
of CC+WRS.

Lemma 3.4. If C � D are clauses then there is aCC +WR derivation of' ^ C from' ^D of length4jD � Cj.
Proof. We prove this in the case thatD = C _ x. The
result follows by repeating this process to reduceD to C
one literal at a time. First apply Weakening to'^D to yield'^D^C. Then apply Restriction to yield('^D^C)jx =(' ^ C)jx sinceDjx is satisfied and eliminated from the
formula. We can also apply Restriction to' ^ D ^ C to
derive(' ^D ^ C)jx = (' ^ C)jx sinceDjx = C = Cjx
and restriction distributes over conjunctions. (Here we use
our view of CNF formulas as sets of clauses to eliminate
duplicates.) Applying Branching to('^C)jx and('^C)jx
yields' ^ C in a total of 4 steps as required.

Corollary 3.5. If F is an unsatisfiable CNF formula inn
variables thensCC+WR(F ) � 4n � sCC+WS(F ).
Theorem 3.6. For any unsatisfiable CNF formulaF ,sCC+R(F ) � n � sRes(F ).
Proof. Given a resolution derivation� = C1; : : : ; Cs from
a CNF formulaF we show how to produce a CC+R deriva-
tion �� of length at mostns that containsFC1 ; : : : ; FCs .
Observe that forC = �, F jC = F and this implies the
lemma since� is the final clause in a resolution refutation
of F .

We have two cases to consider for our induction depend-
ing on the rule used in� to derive the last clause.
(a): IfC is a clause ofF thenF jC contains the empty clause�. Therefore we can begin witha � and deriveF jC by one
step of Limited Weakening to add all the remaining clauses
of F jC .
(b): If C follows via resolving clausesA _ x andB _ x
(wherex does not appear inA or B andC = A _ B)



then by induction we have a CC+R refutation of length at
mostn(s � 1) that derivesG = F jA_x = F jAx andH =F jB_x = F jBx. We repeatedly apply Restriction using the
elements ofB�A to deriveGjB = F jA_B_x = (F jA_B)jx
similarly we apply repeated Restriction using the elements
of A � B to deriveH jA = F jA_B_x = (F jA_B)jx. Now
we can apply the Branching rule with' = F jC = F jA_B
to obtainF jC . SinceA _ B contains at mostn � 1 dis-
tinct variables there were at mostn � 1 Restriction steps
and one Branching step to yield total refutation size of at
mostns.

Given a CNF formulaF in variablesfx1; : : : ; xng and
an integerk, we can define a new formulaF (^k) in
variablesfzi;j : i 2 [n℄; j 2 [k℄g by replacing ev-
ery clauseC 2 F by a conjunction of clauses corre-
sponding toC with the substitutionxi  zi;1 ^ � � � ^zi;k and distributing the result to form clauses. That
is, if P and N are the indices of variables occurring
positively and negatively inC then C is replaced byV(j1;:::jjP j)2[k℄jP j �Wi2P zi;ji _Wi2N Wj2[k℄ zi;j�. Note

that ifC has sizeb then it is replaced by at mostkb clauses
each of size at mostbk.

Lemma 3.7. If U is any of the systems CC, CC+W,
CC+R, CC+WR then for any unsatisfiable CNF formulaF ,sU (F (^k)) � k � sU (F ).
Proof. Given a formula caching refutation� of F of lengths we show how to derive all clauses of�(^k) using at mostsk inference steps. Consider the rules used in the course of
the refutation�.
(1) Clearly�(^k) = �.
(2) If the inference rule in� is Weakening' a '^ and we
have already'(^k) then we get'(^k) a '(^k)^ (^k) also
by Weakening and the latter is(' ^  )(^k) by definition.
Further, if the Weakening inference in� is Limited then the
same will hold true in�(^k).
For the Restriction and Branching rules we will drop the
variable subscripti for notational convenience.
(3) If the inference rule in� is Restriction then we have two
cases depending on whether the restriction literal is positive
or negative. (i) If the rule applied is' a 'jx andx is
positive (i.e. the substitution isx = z1 ^ : : : ^ zk) then
given'(^k) we apply a sequence ofk restrictions:'(^k) a '(^k)jz1 a '(^k)jz1z2 a � � � a '(^k)jz1z2:::zk
and this is precisely('jx)(^k). (ii) If the rule applied is' a 'jx the substitution isx = z1 ^ : : : ^ zk then given'(^k) we apply the single restriction'(^k) a '(^k)jzj
(for anyj 2 [k℄) and claim that the latter is('jx)(^k). For
any clauseC of ' containingx, every clause ofC(^k) will
containzj and thus be eliminated. For any clauseC of '

containingx, the set of clauses ofC(^k) containingzj will
be of precisely the right form when shortened.
(4) Suppose that clause' 2 � follows from 'jx and'jx
using Branching and the substitution isx = z1^: : :^zk. Forj 2 [k℄, let Fj = '(^k)jz1:::zj andGj = '(^k)jz1:::zj�1zj .
As above,Fk = '(^k)jz1:::zk = ('jx)(^k). Furthermore, as
aboveG = ('jx)(^k) = '(^k)jzj for any j 2 [k℄. SinceG contains no occurences ofz1; : : : ; zk for j 2 [k℄ we can
also writeG = Gjz1:::zj�1 = '(^k)jzjz1:::zj�1 = Gj . We
wish to derive'(^k) fromFk andG = G1 = : : : = Gk. To
do this we apply the Branching rulek times, derivingFk�1
from Fk andGk using variablezk, Fk�2 from Fk�1 andFk�1 using variablexk�1, etc. until finally we obtain the
desired clause using the branching rule applied toF1 andG1.

We can state an even more general result that allows ar-
bitrary disjoint substitutions of variables. ForF a formula
in fx1; : : : ; xng and� = (�1; : : : ; �n) be a sequence of
Booleans functions with�i : f0; 1gki ! f0; 1g. We can de-
fine a new formulaF (�) in variablesfzij j i 2 [n℄; j 2 [ki℄g
in which each�i is represented optimally in CNF and DNF
(depending on whetherxi appears positively or negatively
in a clause ofF ) and the result expanded canonically into
clauses in some fashion. It is not hard to show that the num-
ber of lines in a proof ofF (�) is at most the number of lines
in the original proof multiplied the maximum over alli of
the optimal read-once branching program size of�i.

Note: We did not include Subsumption in Lemma 3.7
but it is also possible to simulate subsumption proofs with
a somewhat weaker bound. The issue is that for a single
clauseD, D(^k) may produce a large number of clauses
so the reduction of these clauses to the clauses ofC(^k)
for C � D may involve a large number of individual Sub-
sumption inferences. (In total, by the subformula property
the number of such clauses is bounded in terms of the size
of the target formula so if the original proof is polynomial
size the new proof will be as well.)

Corollary 3.8. Let fFg be a family of unsatisfiable CNF
formulas.� If fFg has polynomial-size DPLL proofs thenfF (^k)g

has polynomial-size CC proofs.� If fFg has polynomial-size regular resolution proofs
thenfF (^k)g has polynomial-size CC+W proofs.� If fFg has polynomial-size resolution proofs thenfF (^k)g has polynomial-size CC+R proofs.

We first use this corollary to show that CC can efficiently
prove the pebbling tautologies mentioned in the previous
section.



Lemma 3.9. Given a directed acyclic graphG of in-degree
2 with m edges and subsetsS and T of its vertices, ifPebG;S;T is unsatisfiable thensCC(PebG;S;T ) = O(m).
Proof. (Sketch) The contradictionPebG;S;T has two vari-
ables per vertexv, z0v andz1v and the statement thatv can
be pebbled is represented by the clause(z1v _ z1v). The tau-
tology represents the statement that (1) all nodes inS can
be pebbled (2) if both of a nodes’ predecessors can be peb-
bled then so can the node itself (3) no node inT can be
pebbled. We observe that this formula is derived by disjoint
substitutionxv = z0v _ z1v from a simpler formulaPG;S;T
where we represent the ability to pebble nodev by a sin-
gle variablexv . That isPebG;S;T = P (_2)G;S;T . The formulaPG;S;T can be proved unsatisfiable in a linear number of
steps by unit propagation following a topological sort fromS to T . Therefore it follows immediately in CC. By the
closure property of CC under disjoint substitution (this is_
instead of̂ but the same result follows either by negating
variables and using the result for(^k) or directly from the
read-once branching program generalization of Lemma 3.7)PebG;S;T also has a linear size proof in CC.

We now use Corollary 3.8 together with results of [15]
to separate the CC+R proof system fromRes(k) for any
constantk.

In order to separateRes(k+1) fromRes(k), Segerlind,
Buss, and Impagliazzo [15] define an unsatisfiable CNF
formula GOP (G) for any undirected graphG (describ-
ing for thegraph ordering principleonG) and prove that,
althoughGOP (G) always has polynomial-size resolution
refutations, there is an infinite family of graphsG such that
for any constantk, GOP (G)(^k+1) requires exponential-
sizeRes(k) refutations. More precisely, givenG = (V;E)
with jV j = n definen(n � 1) variablesxu;v for all u 6= v
which are intended to represent a transitive, irreflexive, anti-
symmetric relation on the vertices ofG. Thus we have
clauses(xu;v _ xv;u) for antisymmetry and(xu;v _ xv;w _xu;w) for transitivity for all distinctu; v; w 2 V . The graph
ordering principle forG states that any such relation must
have an element that is locally minimal inG. Thus to rep-
resent the negation of this principle for eachv 2 V we add
the clause

W(u;v)2E xu;v .

Theorem 3.10 ([15]). For any positive integerk, there are
constants
 > 0 and�k > 0, and an infinite family of graphsfGg such thatGOP (G) has resolution refutations of sizeO(n
) wheren = n(G), GOP (G)(^k) hasRes(k) refu-
tations of sizeO(n
), GOP (G)(^k+1) has sizeO(n
) but
requiresRes(k) refutations of size2
(n�k ).
Theorem 3.11. For any positive integerk, there are for-
mulas with polynomial-size CC+R refutations that require
exponential-sizeRes(k) refutations.

Proof. Consider the family of polynomial-size formulasGOP (G)(^k+1) given by Theorem 3.10. Since the for-
mulas GOP (G) have polynomial size resolution refu-
tations, by Theorem 3.6 and Lemma 3.7 the formu-
las GOP (G)(^k+1) have polynomial-size CC+R refuta-
tions. On the other hand by Theorem 3.10 they require
exponential-sizeRes(k) refutations.

We can observe that not only doesGOP (G) have
polynomial-size resolution refutations but these refutations
are in fact regular resolution refutations to derive the fol-
lowing:

Theorem 3.12. For any positive integerk, there are for-
mulas with polynomial-size CC+W refutations that require
exponential-sizeRes(k) refutations.

4 Formula caching search and contradiction
caching inference systems

Theorem 4.1. FC and CC are polynomially equivalent
refutation systems.

Proof. To show that CC can efficiently simulateFC, ob-
serve that in an execution ofFC, each recursive call adds
precisely one formula toL and each such formulaF is
derivable either because it contains the empty clause� and
therefore follows from the Axiom of CC via one step of
Limited Weakening, or as the result ofF jx andF jx being
in L and therefore follows via one Branching step.

For the reverse direction, letF be the goal formula for
CC (and input forFC). For simplicity we will take the result
of every Limited Weakening rule as an additional axiom in
the CC proof so we have a proof whose only inference rule
is Branching. By the sub-formula property of CC, w.l.o.g.
every formula in the CC proof is a sub-formula ofF and
thus every subformula is a restriction ofF by some partial
assignment� and each non-axiom node is associated with
a variable involved in the branching. Draw the DAG of in-
ferences in this simplified CC proof directed from the goal
formula back to the leaves. TheFC algorithm will follow
a depth-first traversal of this proof and choose its branch
variable according to the variables labeling the nodes in the
DAG it encounters. Whenever it traverses a forward edge or
a cross edge with respect to the DFS tree, by construction
the associated formula will already be in the cacheL. The
number of recursive calls is equal to the number of edges in
this proof DAG.

Corollary 4.2. For any in-degree 2 pebbling graphG and
setsS andT there is a polynomial-timeFC refutation ofPebG;S;T if this is contradictory.



However, this simulation does not extend to all of regular
resolution. In particular, consider the family ofGT formu-
las, defined in [6], which separate regular resolution from
tree resolution. These were the inspiration for theGOP
formulas defined above. In particular for anyn theGTn
formula includes all clauses ofGOP (Kn) whereKn is the
complete graph onV = f1; :::; ng together withtotality
clauses(xi;j_xj;i) for eachi 6= j. As shown in [6], like the
formulasPebG;S;T above, these formulas have polynomial-
size regular resolution refutations but require exponential-
size tree resolution refutations.

WriteG aWS H iff H follows fromG solely via Weak-
ening and Subsumption. We observe the following simple
properties ofaWS .

Proposition 4.3. (a) aWS is transitive, i.e. ifF aWS G
andG aWS H thenF aWS H .

(b) If F aWS H andG aWS H thenF ^G aWS H .

(c) For any literalx, if G aWS H thenGjx aWS H jx.

(d) For any literal x, if G aWS H jx thenG0 aWS H
whereG0 = VC2G(x _ C).

Proof. Parts (a) and (b) follow immediately from the defini-
tion. Suppose thatx is a literal andG aWS H . If C 2 Gjx
then neitherx norx appears inC and eitherC or (C _ x)
appears inG. If C 2 G then there is someD 2 H withD � C D 2 H jx. If (C_x) 2 G then there is someD 2 H
withD � (C_x) and thusDjx � C andDjx 2 H jx. Thus
(c) follows. For part (d), consider a clause(x _ C) in G0.
SinceC 2 G there is aD 2 H jx with D � C. ThenD � (x _ D) � (x _ C), and since eitherD 2 H or(x _ D) 2 H there is clause ofH contained in(x _ C).
ThusG0 aWS H .

Let unitprop(H) be the formula obtained fromH after
applying unit propagations toH .

Lemma 4.4. If G aWS H then there is a restriction� such
thatGj� aWS unitprop(H) andGj� has no unit clauses.

Proof. Assume that� =2 unitprop(H) for otherwise the
lemma follows immediately withGj� = unitprop(G).
Otherwise let� be the set of assignments that are made dur-
ing unit propagation onH . By the proposition above we
haveGj� aWS unitprop(H). If x is a unit clause inGj�
then, since� =2 unitprop(H), unitprop(H) must containx as a unit clause which is a contradiction.

We will be interested in formulasG = GTnj� andH =GTnj� such thatG aWS H . Using Lemma 4.4 we will only
need to study this whenG andH have no unit clauses andH does not contain the empty clause.

Observe that ifG = GTnj� has no unit clauses and does
not contain the empty clause then� must be transitively

closed and so we can identify� with a partial order<� onV .
Given a partial order<� onV define� �i = fj 2 V j i <� jg.� minimal(�) = fi j 6 9j 2 V; j <� ig,� tops(�) = fk j 8i 2 minimal(�); i <� kg, and� prune(�) to be<� restricted toV � tops(�).

Lemma 4.5. If G = GTnj� aWS H = GTnj� andG andH do not contain� or any unit clause thenprune(�) =prune(�).
Proof. For any pairj; k 2 V , if j andk are incompara-
ble in <� thenG contains the clause(xj;k Wxk;j) which
must also appear inH sinceH does not contain� or a unit
clause. Thereforej andk are incomparable in<� .

SinceG does not contain� or a unit clause,G contains
a non-minimality clauseCi = Wj2V��i xj;i of size at least
2 for eachi 2 minimal(�). ThereforeH must contain a
clauseDi � Ci with at least two positive literals whose last
coordinate isi. This can only be the non-minimality clauseDi = Wj2V�� i xj;i and thusi 2 minimal(�) and�i � � i.
Since anyj =2 �i is incomparable toi in <�, it must be in-
comparable toi in<� soj =2 � i. Thereforeminimal(�) =minimal(�) and each such minimal element has�i = � i.
Furthermore by definitiontops(�) = tops(�).

If j <� k andj; k 2 V � tops(�) then there is somei 2minimal(�) such thati 6<� k. Thereforei is incomparable
to bothj andk in<�. ThereforeG will contain two clauses
of size 2 that are the restrictions of the transitivity clauses
for the triple(i; j; k), namely(:xi;j _ xi;k) and(:xk;i _xj;i). These clauses must also appear inH and the only
possible sources for them are the same transitivity clauses
in GTn. Thereforej <� k.

Therefore for allj; k 2 V � tops(�) = V � tops(�),j <� k if and only if j <� k and thusprune(�) =prune(�).
Theorem 4.6. AnyFCWSR refutation ofGTn requires at
least2n�2 nodes.

Proof. We show that there are at least2n�2 distinct residual
formulas in any such refutation, with the property that no
two of them can be inferred using Weakening, Subsumption
and Restriction from the same residual subformula.

For any restriction� such thatGTnj� does not infer� via
unit propagation, the transitive closure,��, of the relation
defined by� forms a partial order<�� . Call a branch point
in an FCWSR executionnovel if (1) the residual formulaGTnj� at the branch point does not infer� by unit propa-
gation and (2) it branches on a variablexi;j such thati and



j are in different connected components of the Hasse dia-
gram associated with<�� . Observe that if onlyn� 2 novel
branch points have been made on a path thentops(��) = ;.
Furthermore, every consistent branch can be extended un-
til it contains at leastn � 2 novel branch points and the
restrictions� defining these branches are inconsistent with
each other. Therefore there are at least2n�2 of them at
the novelty leveln � 2 and their transitive closures� all
haveprune(�) =<� and disagree about the relative order
of some pair of elements.

Let H = GTnj� be the residual formula at a novel
branch point and assume thatG = GTnj� infers H us-
ing Weakening, Subsumption, and Restriction. ThereforeG0 aWS H for G0 = G or Gjx for some literalx. Ap-
plying Lemma 4.4 we obtain a formulaG00 = G0j�0 for the
restriction�0 such thatunitprop(H) = H j�0 , G00 aWSunitprop(H), andG00 does not have an empty or unit
clause. Let� be the restriction that is the combination of�, �0, andx and let� be the restriction that is the combi-
nation of� and�0. By construction� and� correspond to
partial orders onf1; : : : ; ng. By Lemma 4.5 we must have<�= prune(�) = prune(�) =<�.

Now if G is added toL beforeH in the execution ofFCWSR then eitherG is in the subtree belowH or there
is some variablexi;j on which� and � disagree. If the
latter were to occur, the corresponding extended restrictions� and � would retain this disagreement, and<� and<�
would disagree about the relative order ofi and j. This
would contradict the requirement that<�=<�. Therefore
any such clauseG would have to be in the subtree belowH . Since these subtees are disjoint for every pairH andH 0 of our set of clauses at novelty leveln� 2, the theorem
follows.

Corollary 4.7. CC does not polynomially simulate regular
resolution.

Thus even the strongest of the basic formula caching sys-
tems is not strong enough to efficiently simulate regular res-
olution. In fact, these systems cannot efficiently simulate
theorderedregular resolution method defined in the origi-
nal paper of Davis and Putnam [8] since, as shown in [6], the
formulasGTn are provable in ordered regular resolution.

However, when we augment formula caching by having
it return the reason for unsatisfiability as well as the mere
fact of unsatisfiability, we can efficiently simulate regular
resolution (and much more).

Theorem 4.8. FCWSreason linearly simulates regular resolu-
tion.

Proof. We follow the general pattern of the proof of Theo-
rem 3.2. See the proof of that lemma for the notation we use
here. The sequence of branches followed by theFCWSreason

algorithm will follow a depth-first search of the regular res-
olution d.a.g. refutingF . We prove by induction that if a
node in this d.a.g. labelled by clauseC is reached for the
first time thenFCWSreason(F j� ; L) returns a formulaJ whose
variables are inV 0(C) and such thatJ aWS F#C . (On
subsequent visits,J will suffice to prevent the algorithm
from descending below this node.)

The induction starts at the leaves. IfC labels a leaf in the
proof thenC 2 F , F#C = �, and the algorithm returns�.
If C = (A _ B) is the resolvent of(A _ x) and(B _ x)
which label its children then by the induction hypothesis
we have thatFCWSreason has returned a formulaH defined
on V 0(A _ x) such thatH aWS F#(A_x) andG defined
onV 0(B _ x) such thatG aWS F#(B_x).

By the argument in the proof of Lemma 3.2,F#(B_x) aWS (F jC)jx and thus by transitivityG aWS(F jC)jx. Similarly, F#(A_x) aWS (F jC)jx and thusH aWS (F jC)jx.
Applying Proposition 4.3(d), we have

VD2G(x _D) aWS F jC and
VE2H(x _ E) aWS F jC . Propo-

sition 4.3(b) then implies that the clauseJ returned byFCWSreason satisfiesJ = D̂2G(x _D) ^ Ê2H(x _ E) aWS F jC :
Now sinceV 0(A _ x) andV 0(B _ x) are subsets ofV 0(C)
andx 2 V 0(C), every variable inJ is a subset ofV 0(C).
The inferenceJ aWS F jC depends only on the clauses ofF jC that contain variables appearing inJ so we can remove
all clauses ofF jC that have variables outsideV 0(C) while
maintaining the inference. Thus we haveJ aWS F#C as
required. The theorem follows immediately.

Thus, in particular, for any graphG FCWSreason can effi-
ciently refuteGOP (G). By a similar idea to that used in
Lemma 3.7, given a refutation of a formulaF in FCWSreason,
we can obtain anFCWSreason refutation ofF (^k) of size at
mostO(k) times that ofF by replacing each branch on a
variablexi of F by a sequence of branches on the variableszi;j such thatxi is replaced by

Vkj=1 zi;j . Applying this to

theGOP (G)(^k+1) formulas defined in Theorem 3.10, we
obtain:

Theorem 4.9. For any positive integerk, there are formu-
las with polynomial-sizeFCWSreason refutations that require
exponential-sizeRes(k) refutations.

We conclude by showing the equivalences between the
more powerful nondeterministic formula caching systems
and the contradiction caching proof systems.

Theorem 4.10. The following pairs of refutation systems
are polynomially equivalent:� CC+W andFCWnondet



� CC+WS andFCWSnondet� CC+WSR andFCWSRnondet (which is polynomially equiv-
alent toFCWRnondet)

Proof. In each case one can observe that the CC proof rules
of Weakening, Subsumption and Restriction can reverse the
result of the corresponding nondeterministic tinkering with
the residual formulaF in theFC system. Thus it is easy to
see that the systems involving CC can efficiently simulate
the corresponding systems involvingFC.

The reverse simulation is a little trickier. As in the previ-
ous theorem we prune the proof DAG involving CC by tak-
ing the results of Limited Weakening as leaves. We again
follow a DFS of the proof DAG directed from the goal for-
mula to the leaves. Observe that in this DAG all nodes have
out-degree 1 except the Branching nodes. Whenever we
reach the result of a Branching inference we choose the as-
sociated variable and make the recursive call as we would
in plain CC. Otherwise we observe that we can follow the
path of out-degree 1 inferences back either to an axiom or to
a Branching inference. It is easy to check that the nondeter-
ministic tinkering withF allowed in theFC-based system
can simulate this path. That is, Weakening and Subsump-
tion and Restriction can be simulated since each of the ma-
nipulations ofF allowed in theFC extension permits one
to reverse the corresponding inference rule.
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