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Abstract

The matrix cuts of Lovász and Schrijver are methods
for tightening linear relaxations of zero-one programs
by the addition of new linear inequalities. We address
the question of how many new inequalities are necessary
to approximate certain combinatorial problems, and to
solve certain instances of Boolean satisfiability.

Our first result is a size/rank tradeoff for tree-like
Lovász-Schrijver refutations, showing that any refuta-
tion that has small size also has small rank. This allows
us to immediately derive exponential size lower bounds
for tree-like refutations of many unsatisfiable systems of
inequalities where prior to our work, only strong rank
bounds were known.

Unfortunately, we show that this tradeoff does not
hold more generally for derivations of arbitrary inequali-
ties. We give a very simple example showing that deriva-
tions can be very small but nonetheless require maximal
rank. This rules out a generic argument for obtaining a
size-based integrality gap from the corresponding rank-
based integrality gap. Our second contribution is to
show that a modified argument can often be used to
prove size-based integrality gaps from rank-based inte-
grality gaps. We apply this method to prove size-based
integrality gaps for several prominant examples where
prior to our work, only rank-based integrality gaps were
known.

Our third contribution is to prove new separation
results. Using our machinery for converting rank-based
lower bounds and integrality gaps into size-based lower
bounds, we show that tree-like LS+ cannot polynomially
simulate tree-like Cutting Planes, and that tree-like LS+

cannot polynomially simulate resolution.
We conclude by examining size/rank tradeoffs be-
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yond the LS systems. We show that for Shirali-Adams
and Lasserre systems, size/rank tradeoffs continue to
hold, even in the general (non-tree) case.

A full version of this paper is available at the Elec-
tronic Colloquium on Computational Complexity [23].

1 Introduction

The method of semidefinite relaxations has emerged as
a powerful tool for approximating NP -complete prob-
lems. Central among these techniques are the lift-and-
project methods of Lovász and Schrijver [22] (called LS
and LS+) for tightening a linear relaxation of a zero-one
programming problem. For several optimization prob-
lems, a small number of applications of the semidefinite
LS+ Lovász-Schrijver operator transforms a simple lin-
ear programming relaxation into a tighter linear pro-
gram that better approximates the zero-one program
and yields a state-of-the-art approximation algorithm.
For example, one round of LS+, starting from the natu-
ral linear program for the independent set problem gives
the Lovász Theta functions [21]; one round starting from
the natural linear program for the max cut problem
gives the famous Goemans-Williamson relaxation for
approximating the maximum cut in a graph [14]; and
three rounds gives the breakthrough Arora Rao Vazi-
rani relaxation for the sparsest cut problem [6]. More-
over, linear and semi-definite programming methods are
widely viewed as a catch-all approach for solving other
approximation problems. To back this up, very recent
work [7, 24] shows that for a general family of constraint
satisfaction problems, the optimal approximation factor
(which is actually unknown!) will be equal to the inte-
grality gap obtained after a small number of rounds of
matrix cut operators (under the unique games conjec-
ture.)

Due to the importance and seemingly ubiquitous
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nature of this family of algorithms, there has been a
growing body of research aimed at ruling out low-rank
LS+ approximation algorithms for prominent approx-
imation problems. These results prove that a very
large family of semidefinite programs (those obtained
by optimizing over a low-rank LS+ polytope) will fail
to achieve a good approximation by proving an inte-
grality gap. (That is, exhibiting a nonintegral point ly-
ing in the polytope, whose value is off from the inte-
gral optimal by a certain approximation factor.) Such
integrality gaps are important as they show that one
of the most promising family of algorithms for solving
these problems will not succeed in polynomial time. At
present there are rank-based integrality gaps for LS and
LS+ for many important problems, including max-k-
SAT, max-k-LIN, and vertex cover. (For example, see
[5, 13, 25, 26, 27, 8, 20, 2, 10].)

While these algorithms rule out a large collection of
SDP algorithms, they do not rule out all polynomial-
time SDP algorithms. For example, it is certainly
conceivable that there are inequalities that one might
add that are natural for the problem at hand, but that
are not derivable by low rank LS+ from the initial set
of inequalities. Such programs would not be ruled out
by rank-based integrality gaps. In this paper we study
the size of the LS+ derivation needed to yield good
approximations to optimization problems. Exponential
(or even superpolynomial) size-based integrality gaps
are the ultimate negative result as they show that
any polynomial-time procedure based on LS (or LS+)
will fail to efficiently find an approximate solution (via
standard rounding schemes.) In contrast, rank-based
lower bounds only rule out algorithms that generate
low-rank tightenings of the initial polytope.

We point out that lower bounds for LS+ are incom-
parable to PCP-based lower bounds since on the one
hand they are unconditional, but on the other hand,
they rule out a large class of important algorithms (as
opposed to all algorithms). As discussed above, there
is an abundance of rank-based lower bounds and inte-
grality gaps; however, with respect to the stronger size
measure, very little is known. In fact the only uncon-
ditional size bound known is due to Kojevnikov and
Itsykon [19]. Building on results from [15, 17, 16, 18])
they prove exponential size lower bounds for tree-like
LS+ derivations of certain unsatisfiable formulas (the
Tseitin formulas). For integrality gaps, there were no
size bounds at all. Our paper is largely inspired by the
results of [19]. Can we prove size bounds for other un-
satisfiable formula? What about size-based integrality
gaps? Finally, what is the connection between size and
rank?

1.1 Summary of results Our first result is a
size/rank tradeoff for tree-like LS0, LS, LS+ refuta-
tions, showing that tree-like refutations can be con-
verted into somewhat balanced refutations. More pre-
cisely, we prove the following. Suppose that I is a sys-
tem of inequalities with a tree-like LS+ (or LS, LS0)
refutation of size S. Then there is a refutation of I
of rank at most O(

√
n lnS). In particular, if I has a

polynomial-size refutation, then it has a refutation of
rank O(

√
n log n). This tradeoff allows us to immedi-

ately derive exponential size lower bounds for tree-like
refutations for several unsatisfiable systems of inequal-
ities where prior to our work, only rank bounds were
known (random 3CNF formulas and random systems of
mod 2 equations). In other words, our lower bounds
show that a large class of algorithms (those based on
constructing tree-like LS+ proofs) cannot solve SAT ex-
actly in subexponential time. We note that this result
is unconditional and rules out a broader class of algo-
rithms than those ruled out by rank bounds.

The main idea behind our size/rank tradeoff is to
define a new measure of complexity for a tree-like proof
called the variable rank. We view a proof derivation as
a tree where we label nodes with inequalities and edges
with variables that are lifted on in this step. The rank of
a proof is thus the longest path in the proof, whereas the
variable rank is the largest number of distinct variable
labels over all paths. Our key insight is to show that for
any refutation, the variable rank equals the rank. This
allows us to apply well-known methods for balancing
the proof by iteratively applying restrictions to kill off
long paths. We show that our tradeoff is optimal by
exhibiting a family of formulas where our size/rank
tradeoff is tight.

Next we try to attack the more interesting prob-
lem of proving superpolynomial size bounds for any LS+

algorithm for approximating an optimization problem.
This class of algorithms, say for max-k-SAT, is defined
as follows. Begin with the natural polytope correspond-
ing to an instance of max-k-SAT. Apply any sequence
of LS+ cuts to the initial polytope to obtain a new re-
fined polytope. The size of the refined polytope is the
number of cuts used to derive it from the initial poly-
tope. The tree-size is the number of cuts used where we
require that the underlying derivation is a tree. For a
maximization problem, the refined polytope has an in-
tegrality gap of k if there is a solution with value at least
k times OPT; for a minimization problem, the integral-
ity gap is k if there is a solution with value OPT/k. For
example, for vertex cover, we would like to show that
any subexponential-size tree LS+ algorithm has an in-
tegrality gap of 2. The most natural way to show this
is to prove a stronger size/rank tradeoff for LS+ that

356 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



holds for deriations of arbitrary inequalities (instead of
just for refutations, which are derivations of 0 ≥ 1.)

Unfortunately, we prove that this tradeoff does not
hold more generally for derivations of arbitrary inequal-
ities. We present a very simple example showing that
derivations can be very small, but nonetheless require
maximal rank. This rules out a generic argument for ob-
taining size-based integrality gaps from the correspond-
ing rank-based integrality gaps. Despite our lack of a
general tree-size/rank trade-off for derivations of arbi-
trary linear inequalities, our second main contribution is
to show that a modified argument can often be used to
prove size-based integrality gaps from rank-based inte-
grality gaps. We illustrate this method by proving size-
based integrality gaps for several optimization problems:
We show that for max-k-SAT, every polytope that is ob-
tained by applying an LS+ tightening of sub-exponential
tree-size has integrality gap 1+ 1

2k−1
. Similarly we prove

a size-based integrality gap of 2− ε for max-k-LIN, and
7/6 for vertex cover.

Our third main contribution is to prove new sepa-
ration results in proof complexity. Using our new ma-
chinery for converting rank-based lower bounds and in-
tegrality gaps into size-based lower bounds (combined
with several new ideas), we show that tree-like LS+ can-
not polynomially simulate tree-like Cutting Planes, and
that tree-like LS cannot polynomially simulate resolu-
tion. This shows in particular that low rank LS+ can-
not polynomially simulate Resolution. We conclude by
examining size/rank tradeoffs beyond the LS systems.
We show that for Shirali-Adams and Lasserre systems,
size/rank tradeoffs continue to hold, even in the general
(non-tree) case.

2 Matrix-cut proof systems

There are several cutting planes proof systems defined
by Lovász and Schrijver, collectively referred to as
matrix cuts [22]. In these proof systems, we begin with
a system of linear inequalities over the variables X.
We will present dual definitions for these systems: In
the “proof-theoretic” one, we start with a system of
linear inequalities and describe precise “cut” rules for
obtaining new inequalities from previous ones. In the
second “model-theoretic” definition, we will begin with
a polytope defined as the set of solutions to the initial
system of linear inequalities, and at each round, we will
describe a new tightened polytope defined as the set of
vectors in the original polytope that have a “protection
matrix” associated with them.

2.1 Proof-theoretic View

Definition 2.1. Given a system of inequalities over

[0, 1]n defined by aT
i X ≥ bi for i = 1, 2, . . . ,m: j =

1, . . . , n. An inequality cT X − d is called an N+-cut if

cT X − d =
m∑

i=1

n∑
j=1

αi,j(aT
i X − bi)Xj

+
m∑

i=1

n∑
j=1

βij(aT
i X − bi)(1−Xj)

+
n∑

j=1

λj(X2
j −Xj) +

∑
k

(gk + hT
k X)2

where αi,j , βi,j ≥ 0, λj ∈ R for i = 1, . . . ,m, j =
1, . . . , n and for each k, gk ∈ R, hk ∈ Rn. An N -cut is
a N+-cut if k = 0. (That is, we cannot use squares of
arbitrary linear inequalities.) An N0-cut is an N -cut if
the equality holds when we view XiXj as distinct from
XjXi, 1 ≤ i < j ≤ n. For each of the above cuts, we say
that the inequality aT

i ≥ bi is a hypothesis of a lifting
on the literal Xj (or 1−Xj) if αij > 0 (or βij > 0.)

Definition 2.2. A Lovász-Schrijver (LS) derivation of
aT X ≥ b from a set of linear inequalities I is a sequence
of inequalities g1, . . . , gq such that each gi is either an
inequality from I, or follows from previous inequalities
by an N -cut as defined above, and such that the final
inequality is aT X ≥ b. Similarly, a LS0 derivation
uses N0-cuts and LS+ uses N+-cuts. An elimination
of a point x ∈ Rn from I is a derivation from I of an
inequality cT X ≥ d such that cT x < d. A refutation of
I is a derivation of 0 ≥ 1 from I.

Definition 2.3. Let P be one of the proof systems LS,
LS0 or LS+. Let Γ be an P-derivation from I, viewed
as a directed acyclic graph. The derivation Γ is tree-
like if each inequality in the derivation, other than the
initial inequalities, is used at most once. The size of Γ
is the total bit size of representing all inequalities, with
all coefficients in binary notation. The rank of Γ is the
depth of the underlying directed acyclic graph. For a
set of boolean inequalities I, the P-size (P-tree-size, P-
rank) of I is the minimal size (tree-size, rank) over all
P refutations of I. Define LSr

0(I) (LSr(I), LSr
+(I)) to

be the set of all linear inequalities with LS0 (LS, LS+)
derivations from I of rank at most r.

Lemma 2.1. (Closure under restrictions) Let Γ be an
LS0 (LS, LS+) derivation of cT X ≥ d from hypotheses
I. Let ρ be a restriction to the variables of X. Then
Γ �ρ is an LS0 (LS, LS+) derivation of

(
cT X ≥ d

)
�ρ

from the hypotheses I �ρ.

2.2 Model-theoretic view

Definition 2.4. Let I = {aT
i X ≥ bi | i = 1, . . . ,m} be

a system of linear equalities in the variables X1, . . . Xn.
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Define the polytope of I as PI = {x ∈ Rn | ∀i ∈
[m], aT

i x ≥ bi}.

Following the usual conventions, we will change the
setting slightly by working with a convex cone rather
than a convex set. Our object of interest is the convex
set PI ⊆ [0, 1]n. We first convert it into the homogenized
cone KI ⊆ Rn+1, defined as KI = {x ∈ Rn+1 | ∀i ∈
[m], aT

i x− bix0 ≥ 0}. We will now define the various LS
operators, N , N+ and N0 such that if K is a cone, then
N+(K), N(K) and N0(K) are also cones.

Definition 2.5. Let y ∈ Rn+1 be given, and let K ⊆
Rn+1 be a cone. An LS0 protection matrix for y with
respect to K is a matrix Y ∈ R(n+1)×(n+1) such that:
(1) Y e0 = diag(Y ) = Y T e0 = y. (The top row,
leftmost column, and diagonal of Y are y.); (2) For all
i = 0, . . . n, Y ei ∈ K and Y (e0 − ei) ∈ K. (The ith

column and (y minus the ith column) are in K.); (3) If
yi = 0 then Y ei = 0, and if yi = y0 then Y ei = y. If Y
is also symmetric, then Y is said to be an LS protection
matrix. If Y is also positive semidefinite, then Y is said
to be an LS+ protection matrix.

Definition 2.6. Let K ⊆ Rn+1 be a cone. Define
N0(K) to be set of y ∈ Rn+1 such that there exists
an LS0 protection matrix for y with respect to K. We
define N(K) and N+(K) analogously. The sets N0(K),
N(K) and N+(K) are easily seen to be cones, and
therefore the construction can be iterated. Inductively
define N0

0 (K) = K and Nr+1
0 (K) = N0(Nr

0 (K)).
Define Nr(K) and Nr

+(K) similarly. After applying
the N operator iteratively to tighten the cone we will
then want to project back to X0 = 1 in order to
get to the “tightened” polytope: let K �X0=1= {x ∈
Rn | (1, x1, . . . , xn) ∈ K}.

2.3 Equivalence between the two views
The connection between the N0, N and N+ oper-

ators, which work on cones in Rn+1, and the syntactic
definition of the LS0, LS and LS+ deduction systems
is summarized in the following fundamental theorem of
Lovász and Schrijver, stating that the polytope obtained
after r rounds of the cut rule is equal to the polytope
obtained after r iterations of the corresponding N op-
erators, projected onto X0 = 1.

Theorem 2.1. [22] Let I be a set of inequalities in
{X1, . . . Xn} that includes the inequalities 0 ≤ Xi ≤ 1
for all i ∈ [n], and let KI ⊆ Rn+1 be the polyhe-
dral cone given by the homogenization of I. Then
PLSr

0 (I) = Nr
0 (KI) �X0=1, PLSr(I) = Nr(KI) �X0=1,

and PLSr
+(I) = Nr

+(KI) �X0=1.

Corollary 2.1. Let I be a set of inequalities in
{X1, . . . Xn} that includes the inequalities 0 ≤ Xi ≤ 1
for all i ∈ [n], and let KI ⊆ Rn+1 be the polyhedral
cone given by the homogenization of I. The following
statements are equivalent: (1) There exists a rank ≤ r
LS refutation of I; (2) Every point of Nr(KI) satisfies
0 ≥ X0; (3) Nr(KI) �X0=1 is empty. Also, there exists
a LS elimination of x ∈ Rn from I of rank at most r if
and only if

(
1
x

)
6∈ Nr(KI). Analogous statements relate

LS0 with N0, and LS+ with N+.

Definition 2.7. Let x ∈ [0, 1]n. Supp(x) are those
coordinates i such that xi is equal to 0 or 1. E(x) are the
other coordinates j such that xj is not integral. Clearly
[n] = Supp(x) ∪ E(x).

Definition 2.8. Let x ∈ Rn be given, and let Y be an
LS0 protection matrix for

(
1
x

)
. For each i = 0, . . . n,

let yi be the bottom n entries of the n + 1 dimensional
column vector Y ei, so that Y ei =

(
xi

yi

)
. For i ∈ E(x),

let PVi,1(Y ) denote the vector yi/xi and let PVi,0(Y )
denote the vector (x − yi)/(1 − xi). For i ∈ Supp(x),
let PVi,0(Y ) = PVi,1(Y ) = x. These 2n vectors are
collectively known as the protection vectors for x from
Y .

The following lemma shows that if some x ∈ K fails
to make it into the next round of LS+ tightening, then
any candidate protection matrix Y for x will fail in the
sense that one of the 2n alleged protection vectors will
fail to be in K.

Lemma 2.2. (proof in full version) Let I = {aT
1 X ≥

b1, . . . a
T
mX ≥ bm} be a system of inequalities. Let

cT X ≥ d be an inequality obtained by one round of LS+

lift-and-project from I. Let x ∈ Rn be given such that
cT x < d. Let Y be a matrix for

(
1
x

)
in the sense that

it satisfies the definition of a protection matrix with the
possible exception of property (2). Then there exists an
i ∈ [m] and a j ∈ [n] so that either: (i) aT

i X ≥ bi is used
as the hypothesis for a lifting inference on Xj, xj 6= 0,
and aT

i PVj,1(Y ) < bi, or (ii) aT
i X ≥ bi is used as the

hypothesis for a lifting inference on 1−Xj, xj 6= 1, and
aT

i PVj,0(Y ) < bi.

We will use the following form of Theorem 2.1,
stating that if x is in N(K), then there is a protection
matrix Y for x such that all integral bits of x are
preserved in all 2n protection vectors, and furthermore,
the protection vector PV (Y )i,ε that corresponds to
lifting on xε

i also has its ith bit set to ε.

Lemma 2.3. (Proof in the full version) Let x ∈ Rn.
and let K ⊆ Rn+1 be a cone that satisfies 0 ≤ Xi ≤ X0
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for all i ∈ [n]. Let
(

1
x

)
∈ N0(K) (N(K), N+(K)).

Then there exists a LS0 (LS, LS+) protection matrix
Y for

(
1
x

)
with respect to KI such that for each i ∈ [n],

ε ∈ {0, 1}, Supp(x) ∪ {i} ⊆ Supp(PVi,ε(Y )).

Finally, we will use Farkas lemma which is kind of
“completeness theorem” for linear programming:

Lemma 2.4. Let I = {aT
i X ≥ bi | i = 1, . . . ,m} be a

system of inequalities so that for all x satisfying each
inequality in I, cT x ≥ d. Then there exists α1, . . . , αm,
each αi ≥ 0 such that cT X − d =

∑m
i=1 αi(aT

i X − bi).

3 Tree-size versus rank

The high-level strategy for the our size/rank tradeoff is
very similar to that used by Clegg, Edmonds and Im-
pagliazzo, showing a relationship between degree and
size for the polynomial calculus [11]. We first outline
this general approach, and then explain the obstacles in
using this approach and how we overcome them. As an
example, we will outline how to transform a polynomial-
size tree refutation into a low rank refutation. Consider
the skeleton of the proof tree where nodes are labelled
with inequalities and edges are labelled with the literal
that is being lifted upon (multiplied by). If we can hit
the proof with a restriction such that each long path
contains at least one literal set to false, then this will
result in a low rank proof, under the restriction. How-
ever the low-rank refutation will only be a refutation
under the restriction and thus we must continue recur-
sively and argue that there is also a low rank restriction
under all other settings to the restricted variables. This
will be possible since the size of the restriction will be
small. Finally, we will combine all of the low rank refu-
tations (one for each assignment to the restricted vari-
ables) in order to obtain a low rank refutation of the
entire formula.

In our actual argument, we will select the restric-
tion and recursive somewhat differently than described
above, but the intuition is similar. Rather than select-
ing the whole restriction at once to kill all long paths
simultaneously, we will select one variable setting at a
time. We will always choose the next variable setting
greedily, by picking the variable assignment that kills off
the largest number of long paths. We argue that when
the variable is set this way (the first case), the number
of long paths drops by a large fraction, and when the
variable is set the other way (the second case), the total
number of variables is reduced by 1. In the first case,
we will argue inductively that we can obtain a low rank
r − 1 refutation, and in the second case, a rank r refu-
tation, and finally argue that they can be combined to
obtain a rank r refutation.

When applying this argument we run into trouble
because a path can be long without mentioning a lot
of distinct literals on the edges of the path. A proof is
called regular if for every path in the proof, a variable
occurs in at most one edge labelling along the path.
If the proof is regular, then we can apply the above
argument. Unfortunately, the proof might be highly
irregular, potentially making it impossible to apply the
restriction argument. An extreme example would be
a refutation tree containing two very long paths, one
that mentions a literal xi repeatedly, and another that
mentions ¬xi repeatedly, thereby making it impossible
to kill off both long paths simultaneously.

We get around this problem by arguing that in any
refutation, if there is a long path, then there must exist
another long regular path. More precisely, the rank of
a tree refutation is the length of the longest path, and
we define the variable rank of the tree refutation to be
the maximum number of variables that are mentioned
on a single path. (If the proof is regular, then these two
notions of rank are equal.) Theorem 3.1 shows that rank
and variable rank are equal. Note that we do not show
that for any refutation tree, we can convert it into a
regular refutation tree of the same rank. Nonetheless
by controlling the irregularities in the proof, we can
make the argument outlined above go through. We show
that rank and variable rank are equal in Subsection 3.1,
and we use this to prove the tree-size/rank trade-off in
Subsection 3.2.

3.1 Variable rank measures how many distinct vari-
ables must be lifted upon along some path in a deriva-
tion. More precisely: Let I be a set of linear inequalities
over the variables X1, . . . , Xn, and let Γ be a tree-like
LS+ derivation from I. Label the edges of the tree by
the literal that is being lifted on in that inference. Let
π be a path from an axiom to the final inequality. The
variable rank of π is the number of distinct variables
that appear as lift-variables in the edges of π. The vari-
able rank of Γ is the maximum variable rank of any path
from an axiom to the final inequality in Γ. For any in-
equality cT X ≥ d, the variable rank of cT X ≥ d with
respect to I, vrankI(cT X ≥ d), is defined to be the mini-
mal variable rank of any derivation of cT X ≥ d. If there
is no such derivation, then the variable rank is defined to
be ∞. The variable rank of I, vrank(I), is defined to be
vrank(0 ≥ 1). The variable rank of a vector x ∈ [0, 1]n

with respect to I, vrankI(x), is the minimum variable
rank with respect to I of an inequality cT X ≥ d such
that cT x < d.

Theorem 3.1. Let I be a set of inequalities, then for
LS0, LS and LS+, for any x, vrankI(x) = rankI(x).
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Proof. Let x ∈ [0, 1]n. Clearly vrankI(x) ≤ rankI(x).
We will prove the other direction by induction on
rankI(x). We will show that for any x, if x has rank
r, then any elimination of x must have a path that lifts
on at least r distinct variables from E(x). (Recall that
E(x) are those indices/coordinates of x that take on
nonintegral values.) For r = 0 the proof is trivial.

For the inductive step, let x be a vector such that
rankI(x) ≥ r + 1. Let Γ be a minimum variable rank
elimination of x that is frugal in the sense that x satisfies
every inequality of Γ except for the final inequality. Let
the final inference of Γ derive the inequality cT X − d.
By Lemma 2.3, there is a protection matrix Y for

(
1
x

)
with respect to Nr

+(PI) satisfying the properties of the
lemma. By Lemma 2.2, there exists i ∈ [m] and j ∈ [n]
so that either aT

i X ≥ bi is the hypothesis of an Xj lifting
and aT

i PV1,j(Y ) < bi, or aT
i X ≥ bi is the hypothesis of

an 1−Xj lifting and aT
i PV0,j(Y ) < bi.

Suppose that the lifting is on Xj (the case of 1−Xj

is exactly the same). We now want to argue that j is not
in Supp(x). Suppose j ∈ Supp(x). Then PV0,j(Y ) =
PV1,j(Y ) = x. But this implies that aT

i x < bi so Γ is
not frugal, as we could have removed this last inference.
Thus, we can assume that j is not in Supp(x). Now
let y = PVj,1(Y ). Because Y is a protection matrix for(

1
x

)
with respect to Nr

+(KI), y = PVj,1(Y ) ∈ Nr
+(KI).

Therefore y has rank r and by the induction hypothesis,
this implies that this derivation of aT

i X ≥ bi must have
some long path that lifts on at least r variables from
E(y). Consider this long path plus the edge labelled Xj

from aT
i X ≥ bi to cT X ≥ d. We want to show that this

path lifts on r + 1 distinct variables from E(x). First,
let S be the set of r distinct variables from E(y) that
label the long path in the derivation of aT

i X ≥ bi. By
Lemma 2.3, these r variables are also in E(x). Now
consider the extra variable Xj labelling the edge from
aT

i X ≥ bi to cT X ≥ d. We have argued above that j
is in E(x) but not in E(y) and therefore Xj is distinct
from S. Thus altogether we have r+1 distinct variables
from E(x) that are mentioned along this long path,
completing the inductive step.

3.2 A tight trade-off for rank and tree-size

Theorem 3.2. For any set of inequalities I with no
0/1 solution, in each of the systems LS0, LS, and LS+,
rank(I) ≤ 2

√
2n lnST (I).

We will need the following two preliminary lemmas.

Lemma 3.1. (Proof in full version) Let I be a system of
inequalities over variables Xi, i ∈ [n]. For every i ∈ [n],
if there is a refutation of I �Xi=0 of rank r, then there is
ε > 0 and a derivation of Xi ≥ ε from I of rank at most

r. Similarly, if there is a refutation of I �Xi=1 of rank
r, then there is ε > 0 and a derivation of (1 −Xi) ≥ ε
from I of rank at most r.

Lemma 3.2. (Proof in full version) For all systems of
inequalities I, all positive integers r, and all ε, δ > 0,
if there is a rank ≤ r − 1 derivation from I of Xi ≥ ε
and a rank ≤ r derivation from I of 1 − Xi ≥ δ, then
there is a rank ≤ r refutation of I. If there is a rank
≤ r− 1 derivation from I of 1−Xi ≥ ε and a rank ≤ r
deriation from I of Xi ≥ δ, then there is a rank ≤ r
refutation of I.

Proof. (of Theorem 3.2) Let S ∈ N be given. Let d =√
2n lnS, and let a = (1−d/2n)−1 = (1−

√
lnS/2n)−1.

Let I be a set of inequalities in n variables, and let
Γ be a refutation of I. Let F be the set of long paths in
Γ of variable rank at least d. We prove by induction on
n and b that if I is a system of inequalities in at most
n variables that has a refutation with at most ab long
paths, then rank(I) ≤ d + b.

The claim trivially holds for all b when d ≥ n,
because every refutation that uses at most n variables
has rank at most n. In the base case, b = 0 and there
are no paths in Γ of variable rank more than d, and thus
by Theorem 3.1, rank(I) ≤ d. For the induction step,
suppose that |F | < ab. Because there are 2n literals
making at least d|F | appearances in the |F | many long
paths, there is a literal X (here X is Xi or 1 − Xi for
some i ∈ [n]) that appears in at least d

2n |F | of the long
paths. Setting X = 0, Γ �X=0 is a refutation of I �X=0

with at most
(
1− d

2n

)
|F | < ab−1 many long paths. By

the induction hypothesis, rank(I �X=0) ≤ d + b− 1. By
Lemma 3.1, there is ε ≥ 0 and a derivation of 1−X ≥ ε
from I of rank at most d + b − 1. On the other hand,
Γ �X=1 is a refutation with at most |F | < ab many
long paths, and in n − 1 many variables. By induction
on the number of variables, rank(I �X=1) ≤ d + b. By
Lemma 3.1, there is δ ≥ 0 and a derivation of X ≥ δ
from I of rank at most d + b. Therefore by Lemma 3.2,
rank(I) ≤ d + b. This concludes the proof that if
|F | < ab, then rank(I) ≤ d + b.

Because |F | < |Γ| = aloga(S), we set b = loga S
which can be seen to be equal to

√
2n lnS. Thus

rank(I) ≤ 2
√

2n lnS as desired.

Corollary 3.1. For the LS0, LS and LS+ systems,
for any set of inequalities I in n variables with no 0/1
solution, ST (I) ≥ e(rank(I))2/9n.

It is interesting to note that we actually prove a
stronger lower bound where size is measured to be the
number of inequalities in the proof, and not just the bit
size.
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Up to logarithmic factors, the trade-off for rank
and tree-size is asymptotically tight for LS0 and LS
refutations. This follows from well-known bounds for
the propositional pigeonhole principle: On the one
hand, it is shown in [16] that LS refutations of PHPn+1

n

require LS rank Ω(n), but on the other hand, there are
tree-like LS0 refutations of PHPn+1

n of size nO(1) (this
seems to be a folklore result).

Theorem 3.3. For each n ∈ N, there is is a CNF F
on N = Θ(n2) many variables such that rank(F ) =
Ω

(√
(N/ log N) · lnST (F )

)
.

The propositional pigeonhole principle has a LS+

refutation of rank one [16], so that example does not
show the trade-off to be asymptotically tight for LS+.
Determining whether or not the trade-off is asymptoti-
cally tight for LS+ is an interesting open question.

3.3 No trade-off for arbitrary derivations in LS0

and LS Theorem 3.2 shows that for LS or LS+ refuta-
tions, strong enough rank lower bounds automatically
imply tree-size lower bounds. But what about deriva-
tions of arbitrary inequalities? Somewhat counter-
intuitively, a similar trade-off does not apply for LS
or LS0 derivations of arbitrary inequalities, nor for the
elimination of points from a polytope. It is an inter-
esting open problem to determine whether or not such
a tree-size/rank tradeoff for arbitrary derivations holds
for LS+.

Theorem 3.4. For sufficiently large n, there exists a
system of inequalities I over the variables {X1, . . . Xn}
and an inequality aT X ≤ b such that: (1) Any LS
derivation of aT X ≤ b from I requires rank Ω(n), and
(2) There is a tree-like LS0 derivation of aT X ≤ b from
I of polynomial size.

Proof. Let I be the following system of inequalities: For
each 1 ≤ i < j ≤ n, there is Xi + Xj ≤ 1. Let aT X ≤ b
be the inequality

∑n
i=1 Xi ≤ 1. We show that deriving

aT X ≤ b from I requires rank Ω(n). This is just a
reduction from the well-known rank lower bound for LS
refutations of PHPn

n−1 [16]. Let r be the minimum rank
derivation of

∑n
i=1 Xi ≤ 1 from I. In the n to n − 1

pigeonhole principle, there are clauses Xi,j + Xi′,j ≤ 1
(for all i, i′ ∈ [n] with i 6= i′, and all j ∈ [n − 1]), and∑n−1

j=1 Xi,j ≥ 1 (for all i ∈ [n]). In rank r we can derive∑n
i=1 Xi,j ≤ 1 for each j ∈ [n − 1]. Summing up over

all j gives
∑n−1

j=1

∑n
i=1 Xi,j ≤ n−1. On the other hand,

there is a rank zero derivation of
∑n

i=1

∑n−1
j=1 Xi,j ≥ n

from the inequalities of PHPn
n−1. Thus we have a rank r

refutation of PHPn
n−1. Because the LS rank of PHPn

n−1

is Ω(n), it follows that r = Ω(n). Lastly, it is not hard
to show by induction on k that there is a polynomial
tree-size LS0 derivation of

∑k
i=1 Xi ≤ 1 from I.

It is interesting to note that for any ε, the system
I ∪ {

∑n
i=1 Xi ≥ 1 + ε} has a rank one LS0 refutation.

Finally, known bounds for the pigeonhole principle show
that for LS0 and LS, there is no tree-size/rank trade-off
for eliminations of points.

Theorem 3.5. For sufficiently large n ∈ N, there exists
a set of inequalities In over X1, . . . , Xn and a point
x ∈ [0, 1]n such that there is a polynomial size tree-like
LS0 derivation of x from In, but any LS elimination of
x requires rank Ω(n).

Proof. As in the proof of Theorem 3.4, let I be the
following system of inequalities: For each 1 ≤ i < j ≤ n,
there is xi + xj ≤ 1. By the argument of the proof
of Theorem 3.4, all derivations of

∑n
i=1 xi ≤ 1 from

I require rank r0 = Ω(n). Therefore, by the affine
Farkas Lemma, Lemma 2.4, for all r < r0 there exists
z ∈ Nr(PI) such that

∑n
i=1 zi > 1. Let x be such a

point belonging to N (r0−1)(PI). On the other hand,
there is a tree-like LS0 derivation of

∑n
i=1 xi ≤ 1 from

I of size nO(1). Upon deriving
∑n

i=1 xi ≤ 1, the point x
is eliminated.

4 Tree-size Lower Bounds and Integrality Gaps

The tree-size/rank trade-off of Theorem 3.2 allows us to
quickly deduce tree-size bounds from previously known
rank bounds for LS+ refutations of prominent “sparse
and expanding” unsatisfiable formulas. Specifically, we
derive exponential tree size lower bounds for the Tseitin
principles, random 3CNF formulas, and random mod 2
linear equations.

Definition 4.1. There are 2
(
n
k

)
linear, mod-2 equa-

tions over n variables that contain exactly k different
variables; let Mk,n

m be the probability distribution in-
duced by choosing m of these equations uniformly and
independently. There are 2k

(
n
k

)
clauses over n vari-

ables that contain exactly k different variables; let N k,n
m

be the probability distribution induced by choosing m
of these clauses uniformly and independently. Finally,
the Tseitin formula on an odd-sized graph G = (V,E),
PTS(G), has variables xe for all edges e ∈ E. For each
v ∈ V there is one corresponding equation:

∑
e,v∈e xe =

1 mod 2.

Our tree-size tradeoff together with the rank lower
bounds from [8] immediately give the following theorem.

Theorem 4.1. 1. For all odd n sufficiently large,
there exists a G on n nodes and degree ∆ such
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that any LS+ refutation of PTS(G) require tree-size
2Ω(n/∆).

2. Let k ≥ 5. There exists c such that for all constants
∆ > c, for F ∼Mk,n

∆n, with probability 1− o(1), all
LS+ refutations of PF require tree-size 2Ω(n).

3. Let k ≥ 5. There exists c such that for all constants
∆ > c, for C ∼ N k,n

∆n , with probability 1− o(1), all
LS+ refutations of PC require tree-size 2Ω(n).

The above proofs rely on the fact that for k ≥ 5, the
boundary expansion is greater than 2. In a subsequent
paper, Alekhnovich, Arora and Tourlakis prove linear
rank for random 3-CNFs [2]. This immediately yields
the corresponding exponential tree-size lower bounds for
random 3CNF formulas.

As discussed in Subsection 3.3, we cannot appeal to
Theorem 3.2 to obtain tree-size based integrality gaps
because this theorem holds for refutations but not for
more general derivations. Nonetheless, we can obtain
integrality gaps for sub-exponential tree-size LS and
LS+ relaxations by using similar ideas.

For max-k-SAT and max-k-LIN, we will actually
manage to use Theorem 3.2 directly to prove integrality
gaps. For vertex cover, we will demonstrate how to use
the ideas behind the proof of 3.2 to obtain size-based
integrality gaps based on rank-based integrality gaps
using a more hand-tailored approach. This is completely
analogous to using a hand-tailored random restriction
argument to prove Resolution lower bounds, in cases
where the general size-width tradeoff for Resolution
cannot be applied.

Recall that the high level idea of the proof of
Theorem 3.2 is to hit an alleged small proof with a
restriction to kill off all high rank paths, and then figure
out how to patch together the low-rank derivations (one
where xi = 1 and one where xi = 0.) in a low-rank way.
For derivations it is no longer possible to argue that
we can patch together the low rank derivations, but we
can bypass this step as follows: Begin with an alleged
small-size derivation of some inequality g from I. Find
a “nice” restriction ρ such that: (i) ρ kills off all high
rank paths, and (ii) ρ has the property that g �ρ still
requires high rank.

Max-k-SAT and Max-k-LIN. The problem MAX-
k-SAT (MAX-k-LIN) is the following: Given a set of
k-clauses (mod-2 equations), determine the maximum
number of clauses (equations) that can be satisfied
simultaneously. Given a set of k-mod-2 equations F =
{f1, . . . , fm} over variables X1, . . . , Xn, add a new set
of variables Y1, . . . , Ym. For each fi:

∑
j∈Ii

Xj ≡ a
(mod 2), let f ′i be the equation Yi +

∑
j∈Ii

Xj ≡ a + 1
(mod 2). Let F ′ be the set of f ′i ’s. If Yi is 1, then f ′i

is satisfied if and only if fi is satisfied. Hence we want
to optimize the linear function

∑m
i=1 Yi subject to the

constraints F ′. Call this linear program LF . In the
same way, we can obtain a maximization problem, LC ,
corresponding to a set of k clauses C.

Theorem 4.2. Let k ≥ 5. For any constant ε > 0,
there are constants ∆, β > 0 such that if F ∼ Mk,n

∆n

then the integrality gap of any size s ≤ 2βn tree-like LS+

relaxation of LF is at least 2 − ε with high probability.
Similarly, for any k ≥ 5 and any ε > 0, there exists
∆, β > 0 such that if C ∼ N k,n

∆n , then the integrality gap
of any size s ≤ 2βn-round relaxation of LC is at least

2k

2k−1
with high probability.

LS+ Integrality Gap for Vertex Cover. Given
a 3XOR instance F over {X1, . . . Xn} with m = ∆n
equations, we define the FGLSS graph GF as follows.
GF has N = 4m vertices, one for each equation
of F and for each assignment to the three variables
that satisfies the equation. to three variables. Two
vertices u and v are connected if and only if the partial
assignments corresponding to u and v are inconsistent.
The optimal integral solution for F is equal to the
largest independent set in GF . Note that N/4 is the
largest possible independent set in GF , where we choose
one node from each 4-clique. The vertex cover and
independent set problems on GF is encoded in the usual
way, with a variable YC,η for each node (C, η) of GF ,
where C corresponds to a 3XOR equation in F , and
η is a satisfying assignment for C. Its polytope is
denoted V C(GF ). Our final result in this subsection
is a generalization of the rank bound of [25] to a tree-
size bound.

Theorem 4.3. For all ε > 0, there exists ∆, c > 0 such
that for sufficiently large n, there exists F , a system of
at most ∆n many 3XOR equations over {X1, . . . Xn}
such that any tree-like LS+ tightening of V C(GF ) with
integrality gap at most 7/6− ε has size at least 2cn.

5 Separations between proof systems

In this section, we show that tree-like LS+ refutations
can require an exponential-size increase to simulate sev-
eral other proof systems. Our first theorem shows
that tree-like LS+ cannot efficiently simulate Gomory-
Chvatal (GC) cutting planes, and our second theorem
below shows in particular that small rank LS+ cannot
simulate resolution. The proofs of the following theo-
rems (in the full version) first prove new rank bounds,
and then use the machinery developed in Sections 3 and
4 to obtain size bounds from rank bounds.

Theorem 5.1. Tree-like LS+ does not polynomially
simulate GC cutting planes.
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Theorem 5.2. Tree-like LS+ refutations cannot p-
simulate either DAG-like resolution, or DAG-like LS+.

6 Tradeoffs beyond LS

We note that rank-size tradeoffs for Lassere and Shirali
Adams proof systems are easier to obtain and moreover
they are stronger. We will prove that for these systems,
linear rank bounds imply exponential size bounds (and
not just tree-size bounds as was the case for the LS
systems.) For this section, let R be either Lassere or
Shirali Adams.

Theorem 6.1. (Proof in full version) Let I be a system
of inequalities with n underlying variables, and suppose
that I has an R refutation of size S. Then I has a rank
O
√

n log S R refutation.

The idea behind the above theorem is very similar
to Theorem 3.2. The first step is to show that any
R proof can be multilinearized without increasing the
rank. That is, if I is an system of inequalities with an
R refutation, then the refutation can be converted into
one where all inequalities are multilinear. This can be
accomplished straightforwardly by adding appropriate
quantities of (x2

i − xi). The second step is to reprove
Lemmas 3.1 and 3.2 for R. These lemmas allow us to
combine a rank r − 1 refutation of Ix=0 with a rank
r refutation of Ix=1 in order to obtain a rank r R-
refutation of I. Finally, with these lemmas at hand,
Theorem 6.1 can be proven analogously to the proof of
Theorem 3.2.
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