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Abstract

We present a new method for proving rank lower bounds
for Cutting Planes (CP) and several procedures based on
lifting due to Lovász and Schrijver (LS), when viewed as
proof systems for unsatisfiability. We apply this method
to obtain the following new results: First, we prove
near-optimal rank bounds for Cutting Planes and Lovász-
Schrijver proofs for several prominent unsatisfiable CNF
examples, including random kCNF formulas and the Tseitin
graph formulas. It follows from these lower bounds that
a linear number of rounds of CP or LS procedures when
applied to relaxations of integer linear programs is not
sufficient for reducing the integrality gap. Secondly, we
give unsatisfiable examples that have constant rank CP and
LS proofs but that require linear rank Resolution proofs.
Thirdly, we give examples where the CP rank is O

�
logn �

but the LS rank is linear. Finally, we address the question of
size versus rank: we show that, for both proof systems, rank
does not accurately reflect proof size. Specifically, there are
examples with polynomial-size CP/LS proofs, but requiring
linear rank.

�
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1. Introduction

Integer linear programming is the problem of optimizing
a linear objective function over the integral points of a given
(bounded or unbounded) polyhedron. In his seminal paper,
Khachian [22] proposed the ellipsoid method for (nonin-
tegral) linear programming, showing that the optimization
problem over a polytope is polytime. The additional in-
tegrality constraints change the complexity of the problem
dramatically: it is well-known that general integer LP is NP-
hard. In both the unrestricted and the integral cases, one can
also look at feasibility problems instead of at optimization
problems. Here, the question is whether a polytope given
given by a set of linear inequalities is empty. The feasibility
problem is closely related to the linear optimization prob-
lem, and here too the nonintegral version (checking whether
the polytope contains any points at all) is easy while the in-
tegral one is NP-complete.

Cutting planes methods for integer linear programming
are instrumental in bridging the gap between the true, com-
putationally complex structures (the integral solutions to
the problem, or, rather, their convex hull) and their relaxed
counterpart, which are generally simple polytopes that con-
tain the convex hull of the integral solutions but also contain
other, extraneous nonintegral points. These are methods in
which the initial, relaxed polytope P is transformed through
a sequence of ever-decreasing (contained) polytopes to the
integral hull of P, ie the smallest polytope containing the in-
tegral points of P. In this sequence, a polytope is produced
from its predecessor by using the integrality constraint lo-
cally. A simple example of this kind of reasoning is that
if one knows that a certain coordinate is at least β, then a
stronger conclusion, that this coordinate is at least � β � , is
valid for the integral hull of P. For optimization problems
this sequence of polytopes produces a set of optimal values
that get closer and closer to the desired optimal integral so-
lution, and for feasibility problems, the sequence terminates



with the empty polytope if and only if the initial polytope
contained no integral points.

From the complexity standpoint, there are three impor-
tant desirable properties of the above sequence: (i) the local
operations transforming a polytope to its successor are effi-
cient (ii) the length of the sequence is small, and (iii) there is
an efficient algorithm producing the sequence. In the feasi-
bility integer programming problem, a proof can be associ-
ated with the above sequence of polytopes. The local steps
are applied by the underlying rules of the system. Properties
(i) and (ii) guarantee a small size proof, while (iii) guaran-
tees automatizability of the proof system.

In this paper, we study several prominent cutting planes
methods: Chvátal-Gomory cuts [6, 15], and a collection of
matrix cut operations defined by Lovász and Schrijver [24].
These branch-and-cut methods for integer programs are cur-
rently among the most important techniques for solving a
range of NP-hard 0/1 optimization problems. There are two
standard complexity measures of interest for these proce-
dures: rank and size. The size is the total number of cut
operations that must be applied and the rank is the total
number of rounds of cut operations that must be applied.
In the terminology of proofs, the rank is therefore the mini-
mum possible depth of a proof of unsatisfiability in the cor-
responding proof system.

Superpolynomial lower bounds on size for a cutting
planes method are important since they show that any algo-
rithm for satisfiability that produces a cutting planes proof
will not be polynomial-time. Superpolynomial size lower
bounds are known for the Chvátal-Gomory cutting planes
method [25]. There are three distinct types of matrix cuts
defined by Lovász and Schrijver, LS0, LS and LS � . Expo-
nential lower bounds have been proven for LS0 [9, 10]. For
LS and LS � , no nontrivial size bounds are known.

Rank is another natural measure that has been studied
and captures the amount of inherent sequentialism in a
proof. In some proof systems, there is a natural rank-based
procedure for generating a proof which is practical in cer-
tain cases. For example, a rank-based method for Resolu-
tion is the familiar Davis-Putnam procedure, and a rank-
based method for the Polynomial Calculus is a variation on
the Gröbner basis algorithm. In both of these cases, it is im-
portant that it can be determined if there is a d-round/rank
derivation in time at most nO � d � . It turns out that matrix
cut systems have a somewhat similar property and therefore
rank is a particularly interesting measure in this case. In
[24] it was shown that for any polytope P, if one could op-
timize over P efficiently, then there is an algorithm for opti-
mizing over P � efficiently, where P � is the polytope obtained
by applying one “round” of commutative (LS) or noncom-
mutative (LS0) matrix cuts. Using similar arguments it can
be shown that the same is true when considering the fea-
sibility question rather than optimization. It follows that

there is a deterministic algorithm that can ”search through”
all LS proofs of rank d in time nO � d � . While this holds for
other proof systems such as Resolution, it is less obvious
here because the number of faces in the rank-r polytope is
not easily bounded, even for small r.

Recently some limitations on the rank-based application
of the LS procedure to the problem of approximating vertex
cover [1] were shown. In this paper, we study limitations of
all the above-mentioned cutting planes methods both in the
case of unsatisfiable CNF formulas and optimization prob-
lems. We present a new method for proving rank lower
bounds that applies to both Chvátal-Gomory cutting planes
and matrix-cut proof systems. This method can be viewed
as a game which produces a tree of (nonintegral) points in
the polytope, whose depth is a lower bound on the rank of
the polytope in all of the above proof systems. This game al-
lows us to prove asymptotically tight rank bounds for many
classes of unsatisfiable boolean formulas, especially those
which contain some measure of expansion, like random kC-
NFs and the Tseitin principle on expander graphs. Prior
to our result, the only high-rank bounds for unsatisfiable
boolean examples were for the clique-coclique [25] formu-
las in Chvátal-Gomory cutting planes, and for the PHP in
LS [16]. We then supply a particular optimization problem
where cutting planes procedures are not helpful in the sense
that after linearly-many rounds, the large integrality gap of
the relaxation of the problem does not change at all. To the
best of our knowledge there are no results of this form (see
also [1, 12]) that give hardness for more than a logarithmic-
number of rounds. Next, we give examples separating LS-,
CP-, and Resolution-rank, and examples with polynomial-
size Resolution/CP/LS proofs, that require large rank.

The rest of the paper is organized as follows. In Sec-
tion 2 we define the Resolution/CP/LS proof systems, and
give some background. In Section 3 we provide a general
scheme for proving rank lower bounds. In Section 4 we
prove rank lower bounds when the constraints are expand-
ing. Section 5 deals with integrality gaps that are based
on our rank lower bounds. Section 6 gives various separa-
tion examples for LS-, CP-, and Resolution-rank. Section 7
gives an example where both the Resolution/CP/LS proof
size and rank are polynomial. In Section 8 we describe
an algorithm for showing the unsatisfiability of formulas of
LS-rank d in time nO � d � based on the results of [24].

2. Definitions and Background

Resolution: Resolution proofs work with clauses, viewed
as sets of literals. If C and D are sets of literals, then the
clause

�
C � D � is derivable from the clauses

�
x � C � and���

x � D � by the Resolution rule. A resolution refutation
of a CNF formula f is a sequence of clauses C1 �	�
�	�	� Cq such
that each clause is either a clause of f , or follows from two



previous clauses by the resolution rule, and the final clause,
Cq, is the empty clause. Let S be a resolution refutation of
a CNF formula f , represented as a directed acyclic graph
(with nodes corresponding to clauses). The size of S is the
number of clauses in S; the depth or rank of S is the depth of
the directed acyclic graph. The resolution size (or depth) of
f is the minimal size (depth) over all resolution refutations
of f . S is tree-like if the directed acyclic graph is a tree.

Proof systems based on linear programming: We de-
scribe several proof systems for systems of linear inequal-
ities where the values of the variables are restricted to be
boolean. In these proof systems, we begin with a poly-
tope P defined by linear inequalities associated with the
logical formulation of the problem. In the more com-
mon case of CNF-formulas we convert clauses to inequal-
ities in the obvious way, eg x1 � �

x2 � x3 is converted to
x1 �

�
1 � x2 � � x3 � 1 � 0. Notice that the 0 � 1 solutions to

these inequalities are exactly the satisfying boolean assign-
ments to the formula. Relaxing to 0 � xi � 1 makes the set
of solutions a polytope whose integral points are the solu-
tions to the original problem.

Two classes of cutting planes methods useful for either
general integer programs or specifically for 0 � 1 problems
are Gomory-Chvátal cutting planes [6, 14], and matrix cuts,
defined by Lovász and Schrijver [24]. We begin by describ-
ing Gomory-Chvátal cutting planes. This proof system is
referred to in the literature as simply Cutting Planes (CP).
Consider the following two rules: (1) (Linear combinations)
From f1 �
�	�
� � fk derive ∑k

i � 1 λi fi, where λi are positive ratio-
nal constants; (2) (Rounding) From f � λ derive f � � λ � ,
provided that the coefficients of f are integers. Without loss
of generality, we can assume that a rounding operation is al-
ways applied after every application of rule (1), and thus we
can merge (1) and (2) into a single rule, called a Chvátal-
Gomory cut.

Definition 1. A Cutting Planes (CP) refutation for f �
f1 �
�	�
� � fm is a sequence of linear inequalities, g1 �
�	�
� � gq

such that each gi is either an inequality from f , or an axiom
(x � 0 or 1 � x � 0), or follows from previous inequalities by
a Chvátal-Gomory cut, and the final inequality gq is 0 � 1.

There are several cutting planes proof systems defined
by Lovász and Schrijver, collectively referred to as matrix
cuts. These system allows one to “lift” the linear inequali-
ties to degree-two polynomials, and then project back using
the fact that x2 � x for x �	� 0 � 1 
 to linear inequalities. To
see that the definitions below are equivalent to the original
definitions of Lovász and Schrijver ([24]), see [9].

Definition 2. Given a polytope P �� 0 � 1 � n defined by aix �
bi for i � 1 � 2 �	�
�	�
� m:

(1) An inequality d ��� c � x ��� 0 is called an N-cut for P if

d ��� c � x ��� ∑
i � j

αi j
�
bi ��� ai � x � � x j

� ∑
i j

βi j
�
bi ��� ai � x � � �

1 � x j �

� ∑
j

λ j
�
x2

j � x j � �

where αi j � βi j � 0 and λ j � R for i � 1 �
�	�
�	� m, j �
1 �	�
�	�
� n.

(2) A weakening of N-cuts, called N0-cuts can be obtained
if, when simplifying to the linear term d ��� c � x � , we
view xix j as distinct from x jxi.

(3) An inequality d ��� c � x � is called an N � -cut if

d ��� c � x ��� ∑
i � j

αi j
�
bi ��� ai � x � � x j

� ∑
i j

βi j
�
bi ��� ai � x � � �

1 � x j �

� ∑
j

λ j
�
x2

j � x j � � ∑
k

�
gk � � hk � x � � 2 �

where again αi j � βi j � 0, λ j � R for i � 1 �
�	�
�	� m, j �
1 �	�
�	�
� n and gk � � hk � x � is a linear function for k �
1 �	�
�	�
� n � 1.

The operators N, N0 and N � are called the commutative,
non-commutative and semidefinite operators, respectively.
All three are collectively called matrix-cut operators.

Definition 3. A Lovász-Schrijver (LS) refutation for f is a
sequence of inequalities g1 �	�
�	�	� gq such that each gi is ei-
ther an inequality from f or follows from previous inequal-
ities by an N-cut as defined above, and such that the final
inequality is 0 � 1. Similarly, a LS0 refutation uses N0-cuts
and LS � uses N � -cuts.

Definition 4. Let P be one of the proof systems CP, LS, LS0

or LS � . Let f be an unsatisfiable set of boolean inequalities
and let S be a P -refutation of f , viewed as a directed acyclic
graph. The inequalities in S are represented with all coef-
ficients in binary notation. The size of S is the sum of the
sizes of all inequalities in S; the P -size of f is the minimal
size over all P refutations of f .

The complexity measure with which we are primarily
concerned is rank. It is defined not only for unsatisfiable
sets of boolean inequalities, but for sets of linear inequali-
ties in general.

Definition 5. For a set of linear inequalities L that define a

polytope in � n, let PL � P � 0 �
L be that polytope. Given P �

� CP � LS0 � LS � LS � 
 , let P � i �
L denote the polytope defined by



all inequalities that can be derived in depth i from the initial

inequalities in P . Clearly P � i � 1 �
L � P � i �

L . The rank of L (or

PL) is the minimal i such that P � i �
L is the convex hull of the

integral points in PL. The rank of a point x � � n with respect

to PL is the minimal i such that x �� P � i �
L .

That the rank of any bounded polytope in any of these
proof systems is finite is a well-known fact ([15, 6, 24]).
Note that, if P contains no integral points, then the rank of
the polytope is the maximum rank of its points.

The reader familiar with optimization might find these
definitions of rank for CP, LS0, LS and LS � nonstandard
in that they rely on the calculus of the proof systems rather
than on the geometry of the constraints. These definitions,
however, allow us to define rank in a uniform manner for all
four cutting planes procedures, and, in fact, coincide with
the original definitions.

Note that in our definition of these cutting planes sys-
tems, we can derive a new inequality from any number
of previous inequalities in one step, whereas for Resolu-
tion, we are restricted to fanin-two. However, in light of
Caratheodory’s theorem, we can assume wlog that the fanin
is at most n � 1 in CP and n2 � n � 1 in LS, and so the rank
and size would not increase significantly if instead our proof
systems were defined to have fanin 2.

Definition 6. A refutation system A p-simulates a refutation
system B (over the same language) if for every x � L, the
length of the shortest refutation of x in A is bounded by a
polynomial in the length of the shortest proof of x in B.

By definition LS p-simulates LS0 and LS � p-simulates
LS, and these simulations are rank preserving. Moreover
for unsatisfiable CNF formulas, CP, LS0, LS and LS �
can all p-simulate Resolution and this simulation is rank-
preserving [8]. It has also been shown that CP can p-
simulate small-weight LS0 [20]. In terms of negative re-
sults for simulations, the propositional pigeonhole princi-
ple (PHP) provides a family of unsatisfiable CNF exam-
ples requiring exponential-size Resolution proofs [19] but
with polynomial-size CP, LS0, LS and LS � proofs [8]. For
CP and LS0, exponential size lower bounds for one specific
family of boolean examples are known [25, 10]. For LS and
LS � , no superpolynomial lower bounds are known.

Now let us review what is known with respect to rank.
Any system of linear inequalities has a rank n LS proof.
For CP, the rank of any polytope in the unit cube is at
most O

�
n2 logn � , and moreover there are examples requir-

ing CP-rank more than n [11]. However for unsatisfiable
examples, the CP-rank is at most n [4]. For CP, linear rank
bounds for unsatisfiable CNF examples were first obtained
in [7]; however, these examples have exponentially-many
faces (inequalities) and thus the rank is still small in the
input size. Linear rank bounds for CP (as a function of the

input size) for unsatisfiable CNF examples were first proven
in [21], and also follow from the size bounds [25]. For LS,
linear rank lower bounds for PHP were proven in [16]. In
summary, the only known high-rank, unsatisfiable CNF ex-
amples were the clique-coclique formulas for CP and the
PHP for LS. In this paper, we prove rank bounds for all of
these proof systems for several sets of boolean inequalities
satisfying certain combinatorial conditions.

3. Proving Rank Lower Bounds

In what follows, we give methods for proving rank lower
bounds for many natural, polysize sets L of contradictory
linear inequalities. These lower bounds follow by charac-

terizing some of the points in P � i �
L that survive in P � i � 1 �

L . We
call these characterizations “protection lemmas,” because
they argue that certain points are protected from removal in
the next round provided certain points survived the current
round. These sorts of lemmas have been used in the past to
prove rank lower bounds for specific polytopes in specific
cutting planes procedures (see [7, 13], for example). We
develop a common protection lemma that works for many
examples in any of the proof systems we define. Moreover,
we define a simple, two-player game that uses this common
protection lemma to establish lower bounds.

Protection Lemmas: For x � � n, e � � 1 �	�
�	�
� n 
 , and a � � ,
we denote by x � e � a � the point that is the same as x except that
the e-th coordinate has value a. For x � � n, we denote by
E

�
x � the set of coordinates on which x is non-integral.
CP: Following [6], let

P � � � x � P : � a � x ��� � b � whenever a � � n � b � � �
and � a � y ��� b for all y � P 
 �

It is not hard to see that for any polytope, P � 1 � � P � , and
hence P � i � 1 � � �

P � i � � � for any i � 0.

Lemma 7 (CP Lemma). The following holds for CP: Let P
be a bounded polytope in � n. Let x � 1

2

� n, and let E � E
�
x �

be partitioned into sets E1 � E2 �
�	�	� Et . Suppose that for every
j � � 1 � 2 �
�
�	�
� t 
 we can represent x as an average of vectors
in P � k � that are 0-1 on E j and agree with x elsewhere. Then
x � P � k � 1 � .
Proof. Assume for contradiction that x �� P � k � 1 � . Then there
is a vector a � � n and a non integral scalar b, such that
� a � y ��� b for all y � P � k � and � a � x ��� � b � . Clearly x � P � k � ,
being an average of points in that polytope. So � a � x � � b
and it follows that � a � x � must be in 1

2 �
�

. Thus ∑e � E � x � ae

must be odd, and since ∑e � E � x � ae � ∑i ∑e � Ei
ae, there is a j

such that ∑e � E j
ae is odd. Consider the set of vectors V �

P � k � that average to x and that differ from x exactly on E j

where they take 0 � 1 values. Since ∑e � E j
ae is odd we can



see that � a � v � is integral for all v � V . But then � a � v � � � b � .
Since x is an average of the v � V , we also get � a � x � � � b � .
Contradiction.

LS0: Let

P � ��� n
i � 1conv

�
P � � xi � 0 
 � P � � xi � 1 
 � � (1)

where � xi � a 
 is an abbreviation for � x � � n : xi � a 
 . [24]
proves that for i � 0, P � i � 1 � � �

P � i � � � .
The following lemma is immediate from equation (1):

Lemma 8 (LS0 Lemma). The following holds for LS0: Let
P � � 0 � 1 � n be a polytope, and x be a point in P. Then, if
for any i � E

�
x � there is a set of points Si � P � k � with i-th

coordinate in � 0 � 1 
 such that x � conv
�
Si � , then x � P � k � 1 � .

LS and LS � : The following lemma is from [13]:

Lemma 9 (LS/LS � Lemma). The following holds for LS
and LS � : Let P � � 0 � 1 � n be a polytope, and x be a point in
P. If, for any i � E

�
x � , x � i � 0 � � x � i � 1 � � P � k � , then x � P � k � 1 � .

A Game: Lemmas 7, 8 and 9 all conclude the same
thing from different hypotheses. We now state a protec-
tion lemma that holds for all of the proof systems because
it uses a hypothesis that is stronger than any of those in the
previous protection lemmas:

Lemma 10 (Game Lemma). The following holds for CP,
LS0, LS and LS � : Let P � � 0 � 1 � n be a polytope, and x �
1
2
� n � P. If, for any i � E

�
x � , x � i � 0 � � x � i � 1 � � P � k � , then x �

P � k � 1 � .
This lemma gives us the following Prover-Adversary

game for showing a lower-bound on the rank of a point
w � 1

2

� n with respect to P. We think of the Prover as trying
to show that w has high rank, while the Adversary is trying
to foil that proof. The game proceeds in rounds. During
each round, there is a current point x � 1

2

� n, whose initial
value is w. At each round, the Prover chooses between the
two following types of moves:

1. Prover-move: The Prover generates a set of points Y
such that x is a convex combination of those points.
The Adversary selects one point y � Y to be the new x.

2. Adversary-move: The Adversary selects a coordinate e
such that xe is 1

2 and a value a �	� 0 � 1 
 . The new x is
x � e � a � .

The game ends when x is no longer in P. The Prover gets
one point for each Adversary-move.

Lemma 11. If the Prover has a strategy to earn m points
against any adversary, then the (CP, LS0, LS, or LS � )-rank
of w with respect to P is at least m.

Proof. By induction on r, the maximum number of rounds
in the strategy. If r � 0, then m � 0, but the rank of w
can never be less than 0. For arbitrary r � 0, the Prover
can start by making a Prover-move or an Adversary-move.
If it is a Prover-move, then the Prover presents Y and, no
matter which y � Y the Adversary chooses, the Prover has
a strategy to earn m points. By induction, each y � Y has
rank at least m. By convexity, the rank of w, which is a
convex combination of points in Y , is at least m. If it is an
Adversary-move, then, no matter which e and a the Adver-
sary chooses, the Prover has a strategy to earn m � 1 points.
By induction, w � e � a � has rank at least m � 1 for all possible�
e � a � , so by Lemma 10, w has rank at least m.

4. Expanding Constraints

In what follows, we deal with F, a set of mod-2 equations
over n variables. That is, each equation in F is of the form
∑i � S xi � a

�
mod 2 � � where S � � n � and a � � 0 � 1 
 . Notice

that each such equation can be represented by the conjunc-
tion of 2

�
S
� �

1 clauses, each of which can be represented as
a linear inequality. We denote by PF the polytope bounded
by these inequalities and by the inequalities 0 � xi � 1.

Let GF be the bipartite graph from the set F to the set
of variables where each equation is connected to the vari-
ables it contains. We prove a rank lower bound for PF as a
function of the expansion of GF .

Definition 12. Let G be a bipartite graph from V to U. The

boundary of a set X � V is ∂X
d� � u � U : � Γ �

u ��� X � � 1 
 .
G is an

�
r� ε � -boundary expander if for all subsets X � V

where �X � � r, we have � ∂X � � ε �X � . The boundary expan-
sion of a set X � V is the value � ∂X � ���X � .

The reason that we require GF to be a good expander is
that it allows us to satisfy subsets of F :

Lemma 13. Consider a set F of m mod-2 equations over
n variables. Assume that for any variable v and any value
a � � 0 � 1 
 , there is a solution to F where v assumes the
value a. Then all the 0-1 solutions to F average to the all- 1

2
assignment.

Proof. Let Sv� a be a solution to F in which variable v is set
to a. It is easy to see that the mapping S 	
 S � Sv� 1 � Sv� 0 is
a one-to-one mapping from solutions with v � 0 onto solu-
tions with v � 1. Therefore the average over all solutions to
F is 1

2 on v.

Lemma 14. Let F be a set of m mod-2 equations over n
variables. Assume GF is an

�
m � δ � -boundary expander for

any δ � 0. Then F has a 0-1 solution.

Proof. There exists some variable v1 in ∂
�
F � . Assume v1 is

connected to equation f1. For some 1 � i � m, assume we



have pairings
�
f1 � v1 � �	�
�	�	�

�
fi � vi � . Now, there must be some

vi � 1 �� � v1 �
�	�
� � vi 
 in ∂
�
F � � f1 �	�
�
� � fi 
 � . It is connected

to some equation fi � 1 in F � � f1 �
�	�
� � fi 
 . Add
�
fi � 1 � vi � 1 �

to the set of pairs. Eventually we have the set of pairs�
f1 � v1 � �
�
�	�	�

�
fm � vm � . To satisfy F , set all variables not in

� v1 �	�
�
� � vm 
 arbitrarily. Now, for i � m to 1, set vi so that
it satisfies equation fi (notice that in this order, vi is the last
unassigned variable of fi).

We now use the game to show a rank lower bound for
expanding sets of equations. For x � 1

2

� n, let GF
�
x � be the

subgraph of GF induced by the set of variables E
�
x � and the

set of equations connected to those variables.

Theorem 15. Let ε � 0 and let w � 1
2

� n. If GF
�
w � is

an
�
r� 2 � ε � -boundary expander, then w has (CP, LS0, LS,

LS � )-rank at least rε with respect to PF .

Proof. We start the game with x � w. Clearly x � PF since
each clause expressing F must contain at least two literals
set to 1

2 by the expansion requirement. Let Γx
�
X � be the

neighbor set of X � F in GF
�
x � . Let � initially be set to r.

The Prover’s strategy is as follows:

1. Let the Adversary move as long as all subsets X � F in
GF

�
x � of size at most � have boundary expansion � 2

in GF
�
x � . Note that after such a move we have x � PF

since all equations in GF
�
x � have degree at least 2.

2. Let B be a maximal subset of equations in GF
�
x � with

boundary expansion � 2 such that �B � ��� . Now the
Prover moves. Let Y be the sets of all assignments sat-
isfying B that are 0 � 1 on Γx

�
B � and that agree with

x elsewhere. To see that Y is nonempty and that it
does indeed average to x, consider an arbitrary vari-
able v in Γx

�
B � and an arbitrary value a � � 0 � 1 
 . By

Lemma 13 it is enough to show that there is a point in Y
in which v is set to a. Notice that B still has boundary-
expansion greater than 0 on the graph GF

�
x � minus v,

and so Lemma 14 implies that, regardless of the setting
of v, there exists a 0 � 1 assignment on Γx

�
B ����� v 
 sat-

isfying B. The Adversary selects one y � Y to be the
new x.

Set � to � � �B � . If � � 0, stop the game. Otherwise,
we argue that x � PF . Indeed, in that case �B � is strictly
smaller than � , and it is always the case that any equa-
tion f not in B has at least two neighbors in GF

�
x �

since otherwise b � � f 
 would also have boundary-
expansion at most 2 contradicting the maximality of
B.

3. Repeat until the game is over. See figure 1 in the ap-
pendix for a snapshot.

Now we will show that the Prover always earns at least rε
points. Assume the game ends after k rounds of the strategy.

For any round i � k, let Bi be the set of vertices designated
in step 2 and let S ��� k

j � 1 B j. The size of S is r, so S had
a boundary of size at least

�
2 � ε � r in GF . At the end of

the game, S has no boundary (in fact it has no neighbors) in
GF

�
x � . At most 2r of these boundary nodes were removed

by the Prover: at the beginning of step 2 of round i, Bi has at
most 2 �Bi � boundary nodes and every boundary node of S is
a boundary node for exactly one Bi. Hence at least εr of S’s
original boundary nodes were removed by the Adversary.
By Lemma 11, w has the required rank.

Equations

Variables

boundary
expander

Γ
�
B �

� � � �B � � � 2 � -

B

(1 � Boundary Expansion � 2)

GF
�
x �

Figure 1. A snapshot of the strategy for The-
orem 15.

It turns out that many common formulas are examples of
boundary-expanding mod-2 equations.

Definition 16. The Tseitin tautology for an odd-size graph
G � �

V � E � , denoted TS
�
G � , is the following: there exists

no 0-1 edge assignment φ : E 
 � 0 � 1 
 , such that for every
vertex v � V

∑
u � Γ � v �

φ
� �

v � u � � � 1
�
mod 2 � �

Definition 17. There are 2 � nk � linear, mod-2 equations over
n variables that contain exactly k different variables. Let
M k � n

m be the probability distribution induced by choosing m
of these equations uniformly and independently. There are
2k � nk � clauses over n variables that contain exactly k dif-

ferent variables. Let N k � n
m be the probability distribution

induced by choosing m of these clauses uniformly and inde-
pendently.



Theorem 15 enables us to prove the main result of this
paper:

Corollary 18. The following holds for CP, LS0, LS and
LS � :
(1) The Tseitin tautology on a graph H has rank at least�
c � 2 � n � 2, where c is the edge-expansion of H;

(2) Let k � 5. There exists a constant c such that, for all
∆ � c, F � M k � n

∆n requires rank Ω
�
n � with high probability;

(3) Let k � 5. There exists a constant c such that, for all
∆ � c, C � N k � n

∆n requires rank Ω
�
n � with high probability.

Proof. Throughout, let w be the all 1
2 point. (1) The edge-

expansion of a graph H � �
V � E � is the density of the spars-

est cut:

min
S
�

V � � S � � �V � � 2

e
�
S � V � S �
� S � �

It is easy to see that GT S � H �
�
w � is an

�
n � 2 � c � -boundary-

expander.
(2) It is well-known that GF

�
w � is an excellent expander:

for any constant ∆, ε,k, there exists a constant α � 0 such
that GF

�
w � is almost always an

�
αn � k � 1 � ε � -expander.

Every
�
r� δ � bipartite expander graph on

�
V � U � where V

has maximal degree d is an
�
r� 2δ � d � -boundary-expander.

Hence GF
�
w � is an

�
αn � k � 2 � 2ε � -boundary-expander. For

k � 5 and small ε, the boundary-expansion is more than 2,
so w has rank Ω

�
n � by Theorem 15. Lastly, we need to fix

c such that, whenever ∆ � c, F is unsatisfiable with high
probability (otherwise, F might not have high rank, despite
the fact that w does). The corollary follows.
(3) GC

�
w � , the bipartite graph associated with the clauses

of C, is the same as GF
�
w � for random F . Generate C � by

adding, for each e � C, the following clauses: if e has an
even (odd) number of positive literals, all clauses on the
same variables as e that have an even (odd) number of pos-
itive literals. Clearly w’s rank with respect to PC is at least
its rank with respect to PC � , but C � is equivalent to a set of
�C � mod-2 equations such that GC �

�
w � is an

�
αn � k � 2 � 2ε � -

boundary expander (with high probability, given ∆ � ε � k � α as
in (2)). Again, fix c so that, whenever ∆ � c, C is unsatisfi-
able with high probability.

5. Integrality Gaps from Rank Lower Bounds

The problem MAX-k-SAT (MAX-k-XOR-SAT) is the
following: given a set of k-clauses (mod-2 equations), deter-
mine the maximum number of clauses (equations) that can
be satisfied simultaneously. This problem is well-studied
in the theory of approximation algorithms and it is known
that it cannot be well-approximated in polynomial time if
P �� NP. Here we show inapproximation results (that are
unconditional) for a restricted class of approximation algo-
rithms that involve applying CP or LS procedures to a relax-
ation of the standard integer program. These algorithms are

not necessarily polytime. Similar results have been shown
for LS-relaxations of vertex cover ([1]) and maximum inde-
pendent set ([12]). The former shows that a large integrality
gap remains after Ω

���
logn � rounds of LS and the latter,

Ω
�
logn � rounds.
Given a set of k-mod-2 equations F � � f1 �	�
�
� � fm 
 over

variables x1 �
�	�
� � xn, add a new set of variables y1 �
�	�
� � ym.
For each fi: ∑ j � Ii x j � ai

�
mod 2 � , let f �i be the equation

yi � ∑ j � Ii x j � ai � 1
�
mod 2 � . Let F � be the set of f �i ’s.

If yi is 1, then f �i is satisfied if and only if fi is satisfied.
Hence we want to maximize the linear function ∑m

i � 1 yi over
the constraints F � within the boolean cube. Call this lin-
ear program LF . An r-round CP- (respectively, LS0-, LS-,
LS � -) relaxation of (the integer version of) LF (or any lin-
ear program) is a linear program with the same optimiza-
tion function but with any additional constraints that can be
generated in depth r from the original constraints using CP
(respectively, LS0, LS, LS � ).

Theorem 19. Let k � 5. For any constant ε � 0, there are
constants ∆ � β � 0 such that if F � M k � n

∆n then the integrality
gap of any βn-round CP- (resp., LS0-, LS-, LS � -) relaxation
of LF is at least 2 � ε with high probability.

Proof. Given ε, fix ∆ � �
8 � 4ε � ε2 � � ε2. It is not hard to

see, using a Chernoff bound and a union bound, that, with
high probability, no boolean assignment satisfies more than
a 1 � �

2 � ε � fraction of F’s equations. On the other hand,
consider an assignment w that sets the variables y1 �	�
�	�	� y∆n

to 1 and sets x1 �
�	�
� � xn to 1
2 . Clearly, w satisfies all of the

equations of F � . Furthermore, it is well-known that GF �
�
w �

is almost surely an
�
αn � 2 � δ � -boundary expander for some

α � δ � 0 that depend on ∆. Let β � αδ. Hence, by Theo-
rem 15, w remains a feasible solution for any βn-round CP-
(resp., LS0-, LS-, LS � -) relaxation of LF .

We can form a linear program LC for a set of k-clauses
C in an analogous manner. Similarly, for any k � 5 and any
ε � 0, there exists ∆ � β � 0 such that if C � N k � n

∆n , then the
integrality gap of any βn-round relaxation of LC is at least

2k

2k
�

1
� ε with high probability.

6. Separating CP, LS and Resolution Ranks

We consider the following generalization of PHPn, the
Pigeonhole Principle on n � 1 pigeons and n holes, first sug-
gested in [3]. Let G � �

U � V � E � be a bipartite graph, where
�U � � n � 1 and �V � � n. The tautology PHP

�
G � is the state-

ment that G doesn’t have a perfect matching. The formal
statement of this is (1) For each i � U , ∑ j � Γ � i � xi � j � 1; (2)
For all j � V , i � i � � Γ

�
j � , such that i �� i � , xi � j � xi � � j � 1.

The standard PHPn is just PHP
�
Kn � 1 � n � , where Kn � 1 � n is the

complete n � 1 � n bipartite graph.



In this section we show the following separations: (1)
PHPn has LS-rank n but CP-rank O

�
logn � ; (2) For an ex-

pander graph G with degrees at most d, the Resolution-
rank of PHP

�
G � is Ω

�
n � , while its LS-rank and CP-rank

are O
�
d � .

The Resolution-rank lower bound is proven in [3]. The
LS-, CP-rank upper bound follows from the following rea-
soning: As observed in [16], it is possible to derive in both
systems ∑i � Γ � j � xi � j � 1 for all j � V , in rank O

�
d � . The

point is that the polytope, defined by adding these new in-
equalities is the empty polytope, and therefore we can get
the desired contradiction in one LS or CP step.

For the separation result of the CP and LS ranks, we start
with the upper bound on the CP-rank of PHPn. This result
was proved independently by [2].

Theorem 20. The CP-rank of PHPn is O
�
logn � .

Proof. For a subset S � � 1 � 2 �	�
�
�	� n � 1 
 and 1 � j � n let
fS � j be the inequality ∑i � S xi j � 1. We claim that it is possi-
ble to deduce from fS � j for every S of size k any fT � j with T
of size � 2k in one Chvátal cut. In other words, if fS � j are
valid for PHP � r � for every S of size k and every j, then fT � j
is valid for PHP � r � 1 � for every T of size � 2k. This means
that for all j, ∑n � 1

i � 1 xi j � 1 is valid for PHP � O � logn � � . On the
other hand, no solution that satisfies these inequalities can
satisfy all the axioms ∑n

j � 1 xi j � 1 for every i. Therefore

PHP � O � logn � � � /0, and the Chvátal-rank of PHPn is O
�
logn � .

To see the claim, take any j and T of size l � 2k, and sum up
with coefficients 1 � � l � 1

k
�

1 � the inequalities fS � j over all sub-
sets S � T of size k. After rounding the deduced inequality
is

∑
i � T

xi � j �
� � lk �
� l � 1
k
�

1 ��� ��� l � k � � 1 � (2)

namely, fT � j . A good way to think of (2) is that when
using the symmetric sum, we only care about the aver-
age threshold for a single variable. In fS � j it is 1 ��� S � ,
and so basically all we do is take the threshold xi � 1 � � S �
and turn it into ∑i � T xi � � T � ��� S � , and if � T � 2 � S � we get
∑i � T � � � T � � � S � � � 1.

In fact, this bound is tight by [2]. In light of the fact
that LS � has constant-rank proofs of the PHP [17], LS � is
separated from CP with respect to rank.

A linear lower bound for the LS-rank of PHPn was given
by [16]. We will give a proof for the LS0-rank, which we
think is simpler and more illuminating.

Theorem 21. The LS0-rank of PHPn is n � 1.

Proof. The proof proceeds by induction on n. PHP2 con-
sists of a single point, and its LS0-rank is therefore 1. For
PHPn, we argue that the all 1 � n point has rank n � 1. Given
1 � i � n � 1 and 1 � � � n, let xi � � be the following point:

xi � �
i � � � 1; xi � �

i � � � � 0 for all � � ���� ; xi � �
i � � � � 0 for all i � �� i; xi � � is

1 � �
n � 1 � everywhere else. For any coordinate

�
i � j � , let Si j

be the set of xi � � for 1 ��� � n. Note that for every point
in Si j, the coordinate

�
i � j � has value in � 0 � 1 
 . Further-

more, the average of all points in Si j is the all 1 � n point.
By Lemma 8, the all 1 � n point has rank one more than the
minimum rank of the points in Si j. But each such point is
the all 1 � �

n � 1 � point for PHPn
�

1, so it must have rank
n � 2 by induction.

The PHP has polynomial-size (tree-like) LS0 proofs.
The fact that LS requires rank Ω

�
n � for the PHP shows that

for both LS and LS0 proofs, large rank is not a good indi-
cator of large size (even in the tree-like systems). Since CP
and LS � prove the PHP in small rank, and since Resolution
requires large proofs, the PHP does not resolve this ques-
tion for these proof systems. In the next section, we give a
different formula which shows that CP and Resolution can
have large rank and small size.

7. CP Proofs with Large Rank and Small Size

In theorem 6.1 of [7] and theorem 4 of [2], it is shown
that the size s of a CP proof of a tautology is O

�
nr � where n

is the number of variables and r is the CP-rank of the poly-
tope associated with the tautology. Here we show an exam-
ple where this bound is very far from being tight. Specif-
ically, we show an example of a tautology which has a
quadratic-size CP proof (in fact even a Resolution proof
with that size) and linear CP-rank. It turns out that such
a separation between size and rank can be witnessed by any
formula that has polysize CP refutations, but requires expo-
nential tree-like CP refutations ([2]).

The unsatisfiable formula we take is GTn which is the
negation of the property that every total ordering on n el-
ements has a maximal element (alternatively, that a di-
rected graph closed under transitivity and with no cycles
of size two has a source node). The formula was intro-
duced by [23] and is formulated using n

�
n � 1 � variables.

Stalmark and Bonet and Galesi ([26, 5]) show that GTn

(even when stated with small clauses) has a polynomial
refutation in the Resolution proof system, but requires width
Ω

�
n � . Since Resolution-width is at most Resolution-rank,

the Resolution-rank is also Ω
�
n � . Since CP polynomially

simulates resolution, there is a also a polynomial CP proof
of the formula. In fact, a little tweaking of this refutation
gives a rank O

�
n � CP refutation, whereas the Resolution

proof itself has rank Ω
�
n2 � . It remains to show

Theorem 22. The CP-rank and the LS0-rank of the poly-
tope associated with the GTn is Θ

�
n � .

We associate a partial ordering � on � n � with a vector
x � � � 0 � 1

2 � 1 
 n � n
�

1 � by the assignment xi j � 0 � 1 � 1
2 when i is

smaller than, bigger than or incomparable to j, respectively.



Definition 23. A (partial) order � is called s-scaled if there
is a partition of � n � into sets A1 � A2 �	�
�	�	� As, such that � is a
total ordering on any of the Ai’s and is not defined between
elements in different Ai’s. Notice that we may look at a
s-scaled order as a transitive graph that is the union of s
complete (directional) graphs.

Claim 24. If � is s-scaled, s � 2 then x � remains after s � 3
rounds of CP or LS0 cuts.

The claim immediately provides a lower bound of n � 2
for the rank of P since the vector associated with the empty
order (which is n-scaled) has that rank.

Proof. (of Claim 24) By induction on s. Suppose � is 3-
scaled. We need to show that x � � P � P � 0 � . Transitivity in-
equalities clearly hold for three elements in the same Ai. A
transitivity inequality that involves more than one Ai must
contain at least two variables with value 1

2 and therefore
must be satisfied. The “no maximal element” inequalities
also hold, because for every element there are at least two
others to which it is not comparable, and the associated two
halves alone satisfy the inequality. For a general s we let
x � x � . Notice that E

�
x � is a set of all edges connecting dif-

ferent components of the graph when we associate � with
a graph which is a union of s complete graphs. We parti-
tion the edges in E

�
x � to � s2 � sets by the components they

connect and argue that x and this partition satisfy the con-
ditions of Lemma 7 with k � s � 4. Indeed, for a choice of
components A and B we denote by � A the order which is
the same as � except all the elemens of A are bigger than
those of B. Similarly we define � B. It is easy to see that
x � �

x � A � x � B � � 2. Since � A � � B are
�
s � 1 � -scaled we in-

ductively have that rank
�
x � A � � rank

�
x � B � � s � 3, and by

Lemma 7 rank
�
x � � s � 2. Notice that since Lemma 7 is

valid for both CP and to LS0, ’rank’ here can be taken as
CP-rank as well as LS0-rank.

8. Automatizability of LS for Small-Rank CNF
Formulas

Following [18], a strong separation oracle for a polytope
P ��� n is a procedure, that given x � � n, either states that
x � P or supplies a hyperplane separating x from P.

We say that P � � n has facet-complexity ϕ if it can be
represented as a set of linear inequalities (with rational co-
efficients) such that each of the inequalities can be encoded
in length ϕ.

Assume we are given a strong separation oracle for a
polytope P � � 0 � 1 � n of facet-complexity ϕ. Then, we show
an algorithm for either LS or LS0 proof systems, that checks
if P � r � is empty with running time poly

�
n � ϕ � r. Note that for

a polytope arising from CNF formulas, ϕ � O
�
n � , and con-

sequently the running time is nO � r � . The claim follows for

LS from the following lemmas. For LS0, the argument is
very similar.

Lemma 25. A strong separation oracle for P � � 0 � 1 � n with
facet-complexity ϕ implies a strong separation oracle to
P � 1 � with a polynomial running time.

Lemma 26. If a polytope P � � 0 � 1 � n has facet-complexity
ϕ, then P � 1 � has facet-complexity bounded by O

�
n6 � ϕ � .

Lemma 25 implies a strong separation oracle for P � r �
with running time poly

�
n � ϕ � r. By Lemma 26 the facet-

complexity of P � r � is bounded by ϕ � nO � r � . Theorem 6.4.9
from [18] states that we can check whether a polytope is
empty by querying a strong separation oracle for that poly-
tope. The number of queries required is polynomial in the
facet-complexity and the dimension.

Proof. (of lemma 25)
Following the definition of [24], we move to the cone P

in � n � 1

P � � �
a � a � x1 �
�
�	�	� a � xn � : a � 0 and

�
x1 �
�	�
� � xn � � P 
 �

It is easy to see that a strong separation oracle for P implies
one for P, and that the facet-complexity of P and P are the
same. We define a cone M

�
P � in � � n � 1 � 2 as the collection of�

n � 1 � � �
n � 1 � matrices Y satisfying (i) Y is symmetric,

(ii) Y0 � diag
�
Y � , (iii) Yi � P, (iv) Y0 � Yi � P, where we

denote by Y0 �
�	�
� Yn the columns of Y , and by diag
�
Y � its

diagonal.

P � 1 � �
�

x � � n : Y � M
�
P � and Y0 ��� 1x ��� �

Let x � � n. Consider the following polytope Qx � P in

� � n � 1 � 2 .

Qx � P �
�

Y � M
�
P � �Y0 � � 1x ��� �

By definition x � P � 1 � if and only if Qx � P is not empty. We
first argue that Qx � P has a separation oracle. To see that,
observe that Qx � P is an intersection of O

�
n2 � halfspaces and

hyperplanes, and O
�
n � projection-preimages of P. Since

the facet-complexity of Qx � P is bounded by ϕ, we can ap-
ply [18] Theorem 6.4.9 to obtain an algorithm that checks
whether Qx � P is empty, and consequently whether x � P � 1 � .
Assume now that x �� P � 1 � . Along the above run of the al-
gorithm (ending with the conclusion Qx � P � /0 � , the separa-
tion oracle for P has been invoked a polynomial number of
times, resulting in a polynomial number of halfspaces con-
taining P. Let R be the intersection of those halfspaces. The
crucial point to note here is that Qx � R � /0. This is since Qx � R
and Qx � P are indistinguishable to this run of the algorithm.



Let
�
a j � � � � b j be the halfspaces defining R. By the dual-

ity theorem, there is a positive combination �α of the inequal-
ities

�
a j � Yi � � b j and

�
a j � Y0 � Yi � � b j plus a combination

of the inequalities of M
�
P � , such that (i) the coefficient vec-

tor of the Y variables is 0 and (ii) the constant term is of the
form ∑αixi � b � 0. On the other hand, if x � P � 1 � then Qx � R
is not empty and so the same combination cannot lead to a
contradiction and so ∑αixi � 0. This provides the desired
separation. The only thing left to is to find the combination
(the vector of coefficients α) that leads to the above con-
tradiction. Here we use the fact that R has a polynomial
number of faces, and so to find the combination satisfying
both (i) and (ii) above is nothing but solving a polynomial
linear program.

We say that a cone has vertex-complexity ν if it is the
span of a collection of rational vectors, each of which can
be encoded in length ν.

Proof. (of lemma 26) The facet-complexity of M
�
P � is at

most ϕ. Lemma 6.2.4 of [18] states that, for any polytope in
� d of facet-complexity ϕ and vertex-complexity ν, we have
ν � 4d2ϕ and ϕ � 3d2ν. Therefore, the vertex-complexity
of M

�
P � is at most O

�
n4ϕ � . This bound also applies to

the vertex-complexity of P
� 1 �

since it is just a projection

of M
�
P � . By the same lemma, the facet-complexity of P

� 1 �
is O

�
n2 � n4ϕ � , and our claim follows.
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