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Abstract

The complexity of the Black-White Pebbling Game
has remained open for 30 years. It was devised to cap-
ture the power of non-deterministic space bounded com-
putation. Since then it has been applied to problemsin
diverse areas of computer science including VLS de-
sign and more recently propositional proof complexity.
In this paper we show that the Black-White Pebbling
Game is PSPACE-complete. We then use similar ideas
in a more complicated reduction to prove the PSPACE-
completeness of Resolution space. The reduction also
yields a surprising exponential time/space speedup for
Resolution in which an increase of 3 units of space re-
sultsin an exponential decreasein proof-size.

1 Introduction

The Black-White Pebbling Game was introduced by
Cook and Sethi in 1976 [3] in the context of determin-
ing lower bounds for space bounded Turing Machines.
The problem recevied considerable attention throughout
the next decade due to its numerous applications includ-
ing VLSI design, compilers, and algebraic complexity.
In 1983 determining its complexity was rated as “An
Open Problem of the Month” in David Johnsom&-
Completeness Column [9]. An excellent survey of peb-
bling results from this period can be found in Pippenger
[14]. Recently, there has been a resurgence of interes
in pebbling games due to their links with propositional
proof complexity [2, 5, 12]. In this paper we prove that
the Black-White Pebbling Game is PSPACE-complete.

The Black-White Pebbling Game was preceded by

*Funded in part by NSERC

Toniann Pitass$i
Department of Computer Science
University of Toronto
Toronto, ON CANADA
toni @s. toronto. edu

the Black Pebbling Game, which has also been widely
studied [14]. Letg = (V,E) be a DAG with one dis-
tinguished output nodes, In the Black Pebbling Game,

a player tries to place a pebble smwhile minimizing

the number of pebbles placed simultaneouslyoihe
game is split up into distinct steps, each of which takes
the player from one pebbling configuration to the next.
Initially, the graph contains no pebbles and each subse-
guent configuration follows from the previous by one of
the following rules:1) At any point a black pebble can
be placed on any source node2) At any point a black
pebble can be removed from any nad@&) For any node

v, if all of v's predecessors have pebbles on them, then a
black pebble can be placed gnor a black pebble can

be slid from a predecessoto v.

The Black Pebbling Game models deterministic
space-bounded computation. Each node models a result
and the placement of a black pebble on a node represents
the deterministic computation of the result from previ-
ously computed results. A sequence of moves made by
the player is called gebbling strategy. If a strategy
manages to pebbkusing no more thak pebbles, then
that strategy is called lapebbling strategy.

The Black-White Pebbling Game is a more powerful
extension of the Black Pebbling Game in which white
pebbles, which behave in a dual manner to the original
black pebbles, can also be used. As before, the player
attempts to place a black pebble while minimizing
the number of pebbles placed simultaneouslygat

ny time. The Black-White Pebbling Game extends the
lack Pebbling Game with the addition of the following
rules: 4) At any point a white pebble can be placed on
any nodev. 5) At any point a white pebble can be re-
moved from any source node 6) For any noder with
a white pebble on it, the pebble can be slid to an empty
predecessarif all of v's other predecessors are pebbled,



or the white pebble can be removed if all\i$ prede- problems. SAT procedures are now a standard tool for
cessors are pebbled) The game ends whescontains solving problems in hardware verification, circuit di-
a black pebble and every other node is empty. agnosis, experimental design, planning and diagnosis
As before, the placement of each black pebble is Problems. Surprisingly, the best algorithms are highly
meant to model the derivation of a deterministically- Ooptimized variants of DPLL which is nothing more than
computed result, while the placement of each white peb- @ backtrack search for a tree-like Resolution refutation.
ble is meant to model a non-deterministic guess, whoseThe most successful variardause learning, employs
verification requires all of its antecedents to be derived. & very clever type of caching scheme. It underlies all
In 1978, Lingas showed that a generalization of the state-of-the art complete algorithms for solving SAT.
Black Pebbling Game, played on monotone circuits in-  The basic idea behind clause learning is very simple:
stead of DAGs, is PSPACE-complete [11]. This was a While performing the backtrack search, store intermedi-
surprising result since the PSPACE-complete games ofate clauses that are learned along the way, in order to
the time involved two players and it was clear how the potentially prune the remaining search space. The main
alternation between them led to each game’s high com-issue stems from the fact that in reality there is only a
plexity. In 1980, Gilbert, Lengauer, and Tarjan elab- finite amount of space available. Therefore, all clauses
orated on the basic structure of Lingas’s construction simply cannot be stored, and the difficulty is in obtain-
to prove that the Black Pebbling Game on DAGs is ing a highly selective and efficient, yet effective caching
PSPACE-complete [6]. scheme. This has inspired a great deal of research into
While the above results resolve the complexity of methods and heuristics for caching schemes, resulting in
black pebbling, determining the complexity of black State-of-the art algorithms for SAT.
white pebbling has resisted numerous attempts. In con- Underlying most of this empirical work is an assump-
trast to black pebbling, white pebbles allow a much tionthatthere is amooth, nearly linear tradeoff between
richer choice of strategies since they can be placed anytime and space. For exampégyspace algorithms have
where on the graph regardless of previous pebble place-been developed for SAT and #SAT where a given imple-
ments, thereby breaking up the straight inductive pat- mentation can use as much space as is currently avail-
tern obvious in all pure black strategies. Although the able [4]. They used empirical results on certain distribu-
black pebbling number of a graph is never more than a tions of inputs to suggest that for most ranges of param-
square of the black-white pebbling number [7], the ad- eters, the tradeoff between runtime and space is nearly
dition of white pebbles lowers the pebbling number of linear. In this paper we present theoretical results that
many graphs [15], [10]. Unfortunately, the constructions run strongly counter to this belief.
used for the previous PSPACE-completeness results are  While time/space issues for Resolution-based satis-
both examples of such graphs. As a result, neither canfiability algorithms have been of central importance for
be used to differentiate between true and false QBFs inmany years, it was only in the late nineties when the for-
the presence of white pebbles. mal study of space as a complexity measure for propo-
In Section 2, we finally resolve Johnson’s open prob- sitional proof systems was initiated. In 1999, Esteban
lem by building on the construction of [6] to prove and Toran [5] proposed a definition of space complexity
the PSPACE-completeness of the Black-White Pebbling for Resolution, calledtlause space, that measures the
Game. Our reduction also provides an infinite family number of clauses that need to be kept simultaneously
of graphs which require exponential time to minimally in memory in order to verify the Resolution refutation.

black-white pebble, but can be pebbled in linear time if  Alekhnovich et al. [1] address the question of how to
we use jUSt one pebble more than the minimum. This re- measure the memory content for more genera| proposi_
sultsin atime/space tradeoff result similar to that proved tional proof Systems_ While the most obvious choice is
in [6] for pure black pebbling. “pit space,” [1] introduces the related notionvafriable

In Section 3, we use similar ideas in a more compli- space, which counts the number of variable occurrences
cated reduction to prove the PSPACE-completeness ofthat must simultaneously be kept in memory. They ar-
Resolution space as well as an exponential time/spacegue that variable space and bit space are within a loga-
tradeoff for Resolution. These results are motivated by rithmic factor of one another, but variable space makes
recentinterestin the space required by Resolution proofsthe model substantially cleaner. Thus we view variable
and its connection to practical algorithms for solving space as the right space measure to study: it applies to
SAT. The satisfiability problem (SAT) has become a a variety of proof systems, and captures in a natural and
viable and widespread approach for solving real-world clean way the space utilization of a broad range of com-



plete algorithms for SAT. Then by Savitch’s theorem, this implies that black-white
In 2001, Ben-Sasson [2] was the first to study formal pebbling is in (deterministic) PSPACE.

time/space tradeoffs for ResolutichHe asked if there The rest of this section is devoted to showing that the
are formulas that have optimal proofs with respect to any gjack-white Pebbling Game is PSPACE-hard. To prove
one of the parameters, but where optimizing one param-thjs, we will reduce from QSAT. Given a QBF, we will
eter must cost an increase in the other parameter. Hegreate a graply with the property that is in QSAT if

proved that this is the case for tree-like Resolution. That gnq onlyifg has a 4+ 3 black-white pebbling strategy.
is, he showed that there are formulas that have tree-like

Resolution proofs with linear size and also have (other)
tree-like Resolution proofs with constant clause space.
But on the other hand, he showed that these formulas
have no single tree-like Resolution proof with both lin-

ear size and constant clause space. . .
ble remains ow until a necessary placement occurs on a

However, for general Resolution the problem re- : . .
: . . . successor of (this can occur concurrently if we are slid-
mained open. The main result of Section 3 is an answer:;

. . . . ... ing a black pebble up fromto the successor). We call a
to this question, showing that in a very strong sense it is ; : .
not possible to optimize both size and space simultane-pebbllng strategy which conFams no unnecessary place-
ously. We exhibit formulas that require exponential size mzzg:‘:’gﬂ ' d(cfleeak:g}nrelzt?gizg a]lclolrjr;nercae;;e:reyssll{asce—
to refute if restricted to a minimal variable space Reso- in a frugalk- elgblin s?rate ?g Wegcan therefore
lution implementation, but with just three more units of gaik-p 9 gy 1o

space, the proof size drops to linear! In light of our ear- limit ourselves to considering just frugal pebblings.

Following the conventions of [13] and [6], we clas-
sify pebble placements agecessary or unnecessary.
The first placement of a black pebble on the target ver-
tex is necessary. A placement of a black or white pebble
on any other node is necessary if and only if the peb-

lier discussion, this result is surprising, as it runs ceunt Our construction is similar at a high-level to [6],
to the belief is that there is a smooth,almost linear trade- Where they create a graph from a QBF with the property
off between space and time. that the formula is in QSAT if and only if the graph has

We also prove a related theorem. Given a CNF for- @ small pure black pebbling strategy. The general idea
the minimal-space Resolution prooffef We prove that ~ réspond to the exponential-time procedure that verifies
the Resolution space problem is PSPACE-complete, af-thaty is in QSAT. The graph is composed of two main

firming that memory management for Resolution-based Parts: a linear chain of clause widgets followed by a lin-
SAT algorithms is a complex issue. ear chain of quantifier widgets. In all strategies which

achieve the graph’s minimum pebbling number, pebbles
must be placed on certain special hodes in a way which

2 Black-White Pebbling corresponds to the lexicographically first truth assign-
ment in the QSAT model fof). Since this assignment
2.1 Definitions and Proof Overview satisfiea)’'s 3CNF the player is able to successfully peb-

ble through the clause widgets without exceeding the
Formally, the Black-White Pebbling Game takes as minimum pebbling number. The player can then begin
input a DAG G with a special target nodeand an inte-  to make progress through the quantifier widgets up to

gerk and asks whether there iskaebbling strategy for  the first universal widget, say widgetin order to peb-
sin G. We prove the following theorem. ble through this widget without exceeding the pebbling

number, the player must leave a pebble on a “progress
Theorem 1: The Black-White Pebbling Game is node” in widgeti and then repebble the special nodes
PSPACE-complete. for the innermost variables, thereby placing pebbles in

a way which corresponds to the lexicographically sec-

It is not hard to see that black-white pebbling is in ond truth assignment in the QSAT model. The player

PSPACE. Giver{g k), we can easily guess a sequence can then pebble up through the clause widgets again, and
of configurations that pebbles with at mostk pebbles.  this time use the pebble which was previously placed on
the progress node to pebble through widgetnly to
1in the algorithms literature, this tradeoff is viewed asweispace have his/her progress arrested at the next universal wid-

tradeoff, whereas from a proof complexity point of view, tredeoff : p P,
would be more accurately called a size/space tradeoff. Sidetime get, at which point the process must repeat. Mlmma"y

are equated because the runtime of a Resolution-based §avtiain blf"‘Ck pepbling the gr?-Ph cqrresponding toa tru? QBF
is tightly connected to the size of the underlying Resotufiooof. with k universal quantifier widgets therefore requirés 2




time. explicit OR gate to allow for either of these two types

- - _ of pebblings. Our proof of Theorem 10 in Section 3,
Unfortunately, the graphs used in all earlier construc which uses OR gates as a building block in order to

tions are easy to pebble once white pebbles are allowed,

o rove an exponential time/space speedup theorem for
regardless of whether or not the QBF is in QSAT. Thus P X . o=
the main obstacle in proving hardness of black-white Resolution, does this and actually implies the PSPACE-

pebbling is to determine how to modify the construction completeness of this problem. However, when OR gates

so that white pebbles will be rendered useless. We ex-2€ not allowed, we have to simulate_ this _imp!icit OR
ploit an important observation to do this. In 1979, Meyer usmg_on_ly AND gates_. Any way of plomg this .W'." nec-
auf der Heide [7] proved a strong duality between black essarily involve two different _pebb_lmgs,_ and_ itis qgr_[e
and white pebbles. Namely, he proved that on any graphfsumle _to see how to accomplish this while still prohibit-
G, for any pure black-pebbling strategy there is a pure ing white pebbles.

white k-pebbling strategy and vice versa. In order to
prove this, he made a modification to the rules of the
game. Pure black strategies still begin with an empty , ) i
graph and end with a single black pebble on the tar- 10 Show that the Black-White Pebbling Game is
get node, but pure white pebbling strategies now begin PSPACE-hard, we reduce from QSAT. In our presenta-
with a single pebble on the target node, and end with a io™ @ QBFY = QnxnQn-1X-1---QuaF, whereF is a
completely empty graph. His proof amounts to showing 3CNF containingn clausgs over tha quantme_d vari-
that running a pure bladk-pebbling strategy backward ablgsxn, SERSE We have mverted th.e numbering of the
yields a pure whité-pebbling strategy, and vice versa. variables simply as a convenience in the proof. Given a
This has some implications for the original Black-White QBF W, we produce a grapi whose target nodgcan
Pebbling Game, in which every strategy must end with °€ black-white pebbled using at most 4 3 pebbles if

a single black pebble on the target node. Namely, if you @nd only if is in QSAT. Our construction is designed
try to use as close to a pure white strategy as you cant© penah_ze any use of white pebbles, so that the optimal
to black pebble the target node of some D&Gand if ~ Strategy is all black. _

the maximum pebbling numbeiis reached in any pure The graph which we construct is composednof
black strategy of; at some time when there is no black M Widgets, one for each quantified variable and one for
pebble on the target node, then the black-white strategy®2ch clause ifk. - As in [6], the quantifier widget for
will necessarily usé -+ 1 pebbles, one black pebble on Qix; contains four vertlce/s v_vh|_<r:h represent the variable
the target node ankiwhite pebbles which are simulat- %, We call these nodes, x;, xi, X|. The location of peb-

ing some optimal black pebbling in reverse. By similar bles_, on these four nodes correspond_s to the trut_h vglue
reasoning, if one can build a graph which requires the 2sSigned toq by the current truth assignment which is
player to use the maximum number of pebbles in ev- P€iNg tested by the pebbling. If pebbles arexpand

- i
ery configuration of every optimal pure black strategy, % then the variables is set :[0 trueT. If pebbles are on
then using a white pebble in support of a black pebbling % @ndxi or if pebbles are ox; andx, then the variable

of any intermediate node should also exceed the maxi- is set to false. Our construction will never allow an

mum. Our construction is designed to enforce this while 2SSignment to place pebbles on brthndx;. _
maintaining the original properties found in [6]. The construction of the quantifier widgets relies on
a subwidget we call anslide. Ani-slide is designed

~ However, we run into troubles in the case of existen- g severely restrict the player's pebbling strategies. An

tially quantified variables. The problem stems from the example of a 4-slide is shown in Figure 1. Once the

fact that for an existential quantifier widget, we want to  pottom nodes of ainslide are black-pebbled, theslide

be able to pebble up to that widget in either of two dif-  strateqgy, where the bottom pebbles are slid up to the top
ferent ways—one corresponding to the variable being sethgdes in the appropriate order, is the only way to black-

to true, and the other way corresponding to the variable pepple the top nodes without exceedirmebbles.
being setto false. Thus, there is an implicit OR in this ar-

gument. This difficulty was also overcome in [6], in the Definition 2.1: An i-slide is a pair of set§V,U) to-
more limited context of black pebbling. If we were con- gether with a set of edges that satisfy the following prop-
structing monotone circuits rather than graphs (which erties.V is a set of nodes/!, V2, --- V' andU is a set of
are special cases of monotone circuits with only AND i nodesu®,u?,- -, u' such that: (1)/ is the predecessor
gates), then things become much easier, even when alof all nodes/ such thak > j; (2) ul is the predecessor
lowing the use of white pebbles, since we can use anof all nodesuX such thak > j; (3) ul is the predecessor

2.2 The Reduction
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Figure 1. A clause widget for clause zj = (Ijl\/ljz\/lf) (left). The connection of z, to Go (center).

And a 4-slide ({V},v?,v3 v*}, {ul,u?,ud,u*}) (right).

of all nodesX such thak < j; (4)ul has atleast— j+1
predecessors from outside\dfor U.

Globally the construction is very much like that in

subgraph({g?,...,g"1},Gi_1) forms an 4— 1 slide.
The noddy; is a successor of every node@®)_;, and the
nodeg; is a successor of every node@, U{bj}. Fi-
nally, X is a predecessor of every nodg[of, ..., g% }, %

[6]. There are a number of nodes used to encode ais a predecessor bf, d; is a predecessor of both nodes in
truth assignment, which are predecessors to nodes in{b;,a;}, X is also a predecessor of both node$tin a; },
both clause widgets and quantifier widgets. The clausey; is a predecessor of every node{gﬂ, ... ,gi4'+1}, g is

widgets are connected linearly and can only be pebbleda predecessor of every nodeﬁgl, o ,gi4i+2}, andy; is

within the space bound ofd+ 3 if the truth assignment

encoded by the current pebbling configuration satisfies
4 . P g 'gurat o h The existential widget is depicted in Figure 4. For

F. The quantifier widgets are also connected to eac
other linearly and follow the last clause widget. They
slow the advance of the pebbling towaxdIn order to

a predecessor of every node{g{ . ’gi4i+3}_

everyi, 1 <i <n, if widgeti is an existential widget, it
is composed of 4 groups of nodefs, X, di, X, X,y },
G

. — 1 4i—1  _ 1 4i4+-1 -
advance through them, it will be necessary to repebble ~i-1 — Gy g5 h Re= A UH =

. . 1
the clause widgets numerous times, once for each truth{hi---

assignment required to show thatis in QSAT. Only

U {a}, andGi = {gt....,g" "3}, X has
4i 4 3 source nodegy, throughp{ ™3 as predecessors,

once the final quantifier widget is pebbled is it possible ¥i has 4+ 2 source nodte;igl,i through Df/iprz as prede-

to pebble the target node We now describe the indi-

cessorgl; has 4+ 1 source nodeg}; through pa‘:“ as

vidual widgets and how they are connected. These de-predecessors, antihas 4 source nodep)% throughp%i
scriptions are somewhat terse and are meant to be reags predecessors¢ also hasy; andx as predecessors.

in accompaniment to Figures 1, 2, 3, and 4.

The universal widget is depicted in Figure 3.
For everyi, 1 <i < n, if widget i is a univer-
sal widget, it is composed of 4 groups of nodes,
{)?iv)zi’vdivxivxi/vyi}' Gi1 = {gilflv""gimfill}! {aivbi}-
andG; = {g},...,g"*3}. These are connected as fol-
lows. y; has 4-+ 3 source nodeg}, throughpj! +3 as pre-
decessorsy has 4+ 2 source nodep. throughpy 2
as predecessorg, has 4+ 1 source node;aéi through
pi " as predecessors, anfihas 4 source nodep;
through pQ—ii as predecessors. The sole predecessgr of
is X and the sole predecessormfs_xi’.l For every pair of
nodesg! andgf of G, if j < ktheng/ is a predecessor
of gk. Similarly, for every pair of nodeg! ; andg* ;

of Gy, if j < kthengijf1 is a predecessor of ;. The

The sole predecessor xfis X and the only two prede-
cessors ok arex andy;. For every pair of node@J and

gk of G, if j < ktheng! is a predecessor of. The same
is true for every pair of nodes iHj, R, andGj_;. Ev-
erynodeg’ € {g},...,g¥*1} has 4+ 1— j source nodes
as predecessors. Alsa,is a predecessor of every node
in {g},...,g" "}, X is a predecessor of every node in
{gt,... ,gi“”z}, andyx; is a predecessor of every node in
{gt,... ,gi‘“+3}. Also, g is the successor of every node in
Hi, di is a predecessor of every nodefiny, ..., hf 1},

X is a predecessor of every node fhl,....h#"} and
({ht,....,h" "1} R) forms a 4 — 1 slide. Finally,y; is

a predecessor of every nodeRpand(R;,Gi_1) forms a

4i — 1 slide.

For alli, 1 <i < n, Gj is part of both widgei and



widgeti+ 1. Gp is special in that it connects the string of

guantifier widgets to the string of clause widgets and is

described belowG, is special because every nodeé3p
is a predecessor of the target naéNe now describe
them clause widgets.

For each claus€;, there is a corresponding node

This node always has four predecessors, one of which is A

the previous clause nodge 1. The other thred}, 12, and
Ii3, correspond to the literals which ocdtir. For exam-
ple, if the first literal in theé'" clause is(j, then the node
xj from quantifier widgetj is one of the predecessors
of z. 7z has a special source nodgas a predecessor,

since it has no previous clause. Finally, we add edges

from zy, to all three nodes o65g. There are also three
source nodeasg, bp, andcg which are connected 1Go.
ap andbp are predecessors gg andcp is a predeces-

sor ofg3. Figure 1 shows both an example of a clause

widget as well the connection betwegpandGg. This
completes the construction.

Theorem 2: The QBF Y = QnXQn-1%n—1...Q1x1F
is in QSAT if and only if the target nods of ¢ can
be pebbled with A+ 3 pebbles.

Definition 2.2: Let the set of all truth assignments over

variablesx; 1,...,%, be denoted by;. Thus eachy; in
A is a partial assignment that sets the outernmost
variables 0fQnX,. .. Qix1F. We use the notatiofvy, v»)
to denotev; or vo. For any assignment im;, defineBy,
to be the pebbling configuration gf consisting of black

pebbles on the following nodes: For each universally

quantified variable; of , j > i+1, if aj(x;) = 0, then

Yj € By, Xj € By;, dj € By;, and(Xj, X]) € Bq;. Other-
wise, ifaj(xj) = 1, theny; € By,, ij € By;, aj € Bg; and
(xj,Xj) € By;. For each existentially quantified variable
xj of Y, j >i+1,if aj(x;) =0, theny; € By, x’j € By;,

dj € Bq;, and(x;,Xj) € Bq;. Otherwise, ifai(xj) = 1,
theny;j € Bq;, Xj € Bq;, dj € Bg; and(x;,Xj) € Bq;.

Definition 2.3 (Black clampinginterval) Letty <tj <
tx <teng- FOr any noder, we sayv € [ta,tp] if vis black
pebbled during every configuration from tirgehrough
timety,. More generally, for any pair of nodés, v), we
say that(u,v) € [ta,tp] if either u or v is black pebbled
during every configuration from tintg to timet,. LetS
be a set of pairs of nodes. We say tB4t [ta, tp) if for
all (u,v) € S, (u,v) € [ta,tp]. Note thatu andv may be
the same nodes.

Lemma 3: If Yisin QSAT, then the target nodef g
can be pebbled withr+ 3 pebbles.

Subwidget Legend

Pt

j source nodes

The nodey; hasj source nodes as predecessors.
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(Bi,Aj)

There is aj-slide fromA; up toB;.

Figure 2. Legend explaining the compo-
nents of Figures 3 and 4.

Lemma 11 follows from the following more general
lemma by setting = n.

Lemma 4: For alli, a; € A, suppose the grapf is

initially in configurationBg,. If g is in QSAT, then we
can black pebblé; at some time > 1 using 4+ 3

pebbles, while keepinBy, clamped (i.e.By, € [1,t].)

Proof: The proof is by induction omfrom O ton.
The base case is whée= 0. Letag be any assignment
in Ag. Suppose thanXn - - - QuX1F [, iS in QSAT. Then
some literal in every clause must be set to true. This
implies that for eaclzj, 1< j < m, at least one olfjl, IJ-Z,
or I are black pebbled iBg,. We can therefore black
pebbleGy as follows. Start by putting a black pebble



slide the black pebble fronq to x; and black pebble
again. Now apply the induction hypothesis to simulta-
neously black pebbl&;_; again. Next, use theslide
strategy to slide all 06;_1's pebbles to{g?, ...,g¥ .
Then slidex™s black pebble tay®, and thenx’s black
pebble tog¥*1. Next slide the black pebble from to
g2 Finally, slide the black pebble from to g +2.

Case 2: Q; is an existential quantifier. In this case,
eitherP[guix) Or Wguixy 1S in QSAT. As in the uni-
versal case, we begin iBy; with 4i + 3 free pebbles.
Black pebbleq, followed byy;, d;, and thens”.

If W[gupx) is in QSAT, move the black pebble from
X to x.. Then apply the induction hypothesis to black

A\ pebbleG;_1. Then use théslide strategy to move all of
= ' the pebbles fron®;_; to R. Then slide the black pebble
oy Oe—es o fromy; tox. Then use théslide strategy to move all of
" the pebbles fronR to {h!,... ,h" "1}, After that, slide
the pebble fromx to h and then slide the pebble from
di to hi*1. Then slide the pebble fromf* to a. At
a A+l dis2 this point remove all the pebbles off of the widget so
nodes  nodes  nodes that onlyx/, %, anda; remain. Use thei4free pebbles
to pebble the source node predecessorgaind then

slide one tog? itself. Use the pebbles left over on the
source nodes to subsequently pebble egamtil g is
pebbled. At this point slide the pebble franto g¥*2,
slide the pebble fronx To g¥*2, and finish by sliding
onzo. Then since at most two a@f’s other predecessors  the pebble fronx; to g 2.

are unpebbled, we have enough free pebbles to black If W[quix) is in QSAT, move the black pebble from
pebble the rest of;’s predecessors. We know we can X to xi. Then apply the induction hypothesis to black

black pebble them because if sotliés unpebbled, then ~ pebbleGi_1. Then use théeslide strategy to move all of

X" must be black pebbled By;. We can therefore black ~ the pebblesfron®_, toR;. Then use theslide stz_atlegy
pebble all ofz)'s predecessors. We can then slide the 1© move all of the pebbles from to {hf,....h""*}.
pebble froney to z; and lift the other (at most 2) pebbles  After that, slide the ptz_blile from to h* and then slide
which we just put down. Once, is black pebbled, we the pebble frond; to k| "1, Then slide the pebble from
can then black pebbie the same way, all the way . h** to a. At this point remove all the pebbles off of
Oncezn is black pebbled we can use the remaining two the widget so that only;, x, anda remain. Use the
black pebbles to black pebbig andbo, and then slide 4 pebbles that are free to repeblyeand then pick the
the pebble fronem, to co. We can then slide the black Pebble up fromy; and pick up the #—1 pebbles that
pebble fromag to g3, from by to g3, and fromcg to 98- remain on the source node predecessors.dblide the
Note that this strategy uses only black pebbles. For thepebble fromx to x;. At this pointx, x, anda; are all
inductive step there are two cases depending on whethepebbled and we can finish by black pebbliGgas we
Qi is a universal or an existential quantifier. did in the positive case. O

Case 1:Q; is a universal quantifier. In this case, both 1. ... 5. | ot ¥ be a QBF, and let; be the corre-
Ylojupxy andw[euexy are in QSAT. We begin in con-  ¢ning graph. 16 has a 4+ 3 black-white pebbling
figuration By, with 4i 4 3 free pebbles. Black pebble strategy ing , theny is in QSAT, and any A+ 3 black-

i, followed bxx{, thend;, and thens’. Then move the \hite pebbling strategy requir€X2¥) steps, wheré is
pebble fromx;” to x;. At this point we have 4— 1 peb- the number of universal quantifiersin

bles free and can apply the induction hypothesis to black

pebbleG;_;. Then slide the black pebble frorto by, We first note thas has 4+ 3 predecessor§,. Each
then the black pebble fromh to a;. Remove all pebbles of these nodes has indegree-43. So no node 06,
from widgeti except for the ones oa, X/, andy;. Then could ever contain a white pebble whigecontains a

- . \
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Wis (R A K

Figure 3. A universal widget.
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Figure 4. An existential widget.

black pebble, because there would not be enough free

pebbles to discharge it. Therefore, in order to pelsble
Gp must first be simultaneously black pebbled. Lemma
5 therefore follows from the more general Lemma 6.

Lemma 6: For all a; € A, if there exists times/, t”
such thaBy; C [t',t"], then black pebbling; att” from
Bg; using no more thanH- 3 pebbles, requires thetis
in QSAT and require€(2X) units of time betweetf and
t”, wherek is the number of universal quantifiers among

thei inner most quantifiers.

The following lemma will be used repeatedly. In par-
ticular, it implies that for any-slide (V,U), in order to
pebbleV using no more thanpebbleslU must first be
black pebbled at some earlier time.

Lemma 7: Let ¢ be a DAG which is to bé& pebbled.
Letvbe a node of; which has predecessons, . . ., pc.
Let U be a set ofk — ¢ pairs of nodes such thatl)
U C [t/,t"], 2) for each(xq,%2) € U, neitherx; nor x;
in {v,p1,...,Pc}, 3) for each(xy, x2) € U wherex; # Xy,
neitherx; norx; is a descendant of Finally, suppose
v is not white pebbled &t’. Then betweet’ andt”, v

Proof: Suppose is white pebbled at some time be-
tweent’ andt”. Then, by frugality, its white pebble can
only be discharged once it has contributed toward plac-
ing a black pebble on some descendasftv. Sinceg is
acyclic,zcannot be a predecessonofAlso, since all of
the nodes iU either have their black pebbles fixed be-
tweent’ andt” or are not descendantswfzcannot be in
U. So there ar& — c black pebbles itJ, 1 black pebble
onz and 1 white pebble om This means that at most
c— 2 pebbles can be placed @ predecessors without
exceeding the limit ok. Therefore, it is impossible to
dischargerss white pebble until aftet”. But sincev is
not white pebbled at’, v cannot be white pebbled in the
first place. A similar argument forbids a second black
pebbling. O

Proof: [of Lemma 6] The proofis by induction on
from O ton. The base case is whée= 0. Letag be any
assignment imdy and suppose there exist timgsand
t” such thatBy, C [t’,t"”]. We will show that simulta-
neously black pebblinGg att” without ever exceeding
4n + 3 pebbles requires thatis in QSAT.

In order to black pebblg; or discharge a white peb-
ble from z; we must either black pebbig_; or dis-
charge a white pebble from_;. In order to black peb-
ble any node inGg, we must pebbley,. Inductively,
this means that at some point for every singleit was
necessary to either black pebble it or discharge a white
pebble from it. But every; (exceptz) has 4 predeces-
sors,It, 12,19, zj_1. Therefore, in order to pebbig at
least onelﬁf must be black pebbled iBy,. But in this
caseo must satisfy clausg of F. Since every; must
either be black pebbled or discharged, must satisfy
every clause oF . ThereforeF [, is in QSAT.

Induction Step: We now prove the induction step in
which we will show that if we can simultaneously black
pebbleG; = {g}---g" "3} using no more thani4-3 peb-
bles without moving any pebbles By, theny (g, is in
QSAT and the pebbling must take ting¥2%), wherek
is the number of universally quantified variables among
the inner most variables of.

Case 1: Q is a universal quantifier. We will show
that in order to black pebbl&; we must necessarily pass
through a number of all-black configurations, including
black pebblingG;_; twice, once with black pebbles on
X, di, and eithen; or X (the false configuration), and
once with black pebbles o, a;, and eithex; or X (the
true configuration).

We appeal to Lemma 7 to conclude that sigchas
4i + 3 source nodes as predecessors, our first action

can be black pebbled at most once and cannot be whitewithin widgeti must be to black pebblg and it must

pebbled.

stay in place until its last successg?f”’ is pebbled for



the final time atys, soy; € [t1,t15—1]. among the inner most- 1 variables of).

Now thaty; is clamped, we can appeal to Lemma 7  We now proceed with the second phase of the argu-
to conclude that no node i@ U {&,b;,x} can be white  ment. We know that each node @ cannot be white
pebbled and each can only be black pebbled once bepebbled and can only be black pebbled once. So when
tweent; andt;s 1. Sincex has 4+ 2 source nodes as  we black pebblg" " at timetys, all the rest ofG; must
predecessors, our second action within widgaust be  already be black pebbled. Consic@?f*z. In order to
to black pebbleq and it must stay in place until its suc-  black pebble it at timé; 4 beforet;s, we must first black
cessok; is pebbled for the last time. Then a pebble must pebblegi‘”Jrl at timet;3 beforety4. In order to black
remain onx; until all of its successors are pebbled for pebblegi‘““ at timet;3 we must first black pebblgi‘“
the last time, because we can never repebble/dischargat timet;, and in order to pebble that, we must peb-
X oncex; is empty. Let be the time tha is pebbled  ple gt,...,g" ! at timet;;. But we must also pebble
and lett;, be the timeg? is pebbled. Thew € [tz,t7 — 1] X. Note thatd_must be empty at sincey; is clamped
and(x;,X) € [tz,t12—1]. anda; has 4+ 2 other predecessors, none of whick/is ~

Our argument now divides into two sections. In order Also, X must be empty again btys —1, sincegi4I+1 has
to simultaneously black pebbf® we must black peb-  4i + 3 predecessors, none of whichxs We can there-
ble gi‘“+3, which requires that both; and {gil, . ,gi‘"} fore apply Lemma 7 to conclude that betwegandt; s,
be pebbled. In the first part of the argument we prove X cannot be white pebbled and can only be black peb-

that in order to black pebbl, Y[, 5 mustbe QSAT  bled once in that interval. We must therefore repebple —
and thaQ(2) units of time must pass betwegrandty, at some timeg aftert; whena; and(x;,x/) are clamped
wherek is the number of universally quantified variables andx € [ts,ti2— 1]. Sincex is a predecessor of ev-
among the inner most- 1 variables ofp. In the second ~ ery node ing?,...., g, these nodes can only be black
part of the argument, we argue thgt. ..o mustalso ~ Ppebbled at some timig,, with g being pebbled first at
be simultaneously black pebbled in order to black peb- tio, afterts. Every node ofG; is a predecessor of.

ble g¥"*2 and that pebbling them without exceeding our Since the three nod(, a;, (xi, X)) } are clamped during
bound necessitates thdify,(x, is in QSAT and that  the intervallt7,ti1] we can apply Lemma 7 to conclude
Q(Zk) units of time pass between timesandtyg — 1. thatG;_1 must be black pebbled atbetweertg andt;.

This will allow us to conclude that black pebbliggre-  Since{X,ai, (x,x)} is the true assignment for variable
quires that|q; is in QSAT and require§2(2”) time, X we can apply our induction hypothesis to .conclude
wherek = k-+ 1 is the number of universally quantified thatW/aupxy must be QSAT and black pebblirg
variables among the inner mastariables of. from Bit7] requires timeQ(2¢), wherek is the number

Sincea; can only be black pebbled once and is needed pf universally quantified variables among the inner most
to pebble each node @, a; € [t7,tis—1]. Inorderto ' —1 variables ofp.
black pebbley; at timet; we must pebblé; at some time Thus we have shown that any 4 3 pebbling must
ts, beforet;. Again, we know thab; can only be black  black pebbleGi_; twice betweertp andtys, once imply-
pebbled once ity to t4, sOb; € [tg,t7 — 1]. Also, d; is ing thatW[q,ugz) is in QSAT, and once implying that
a predecessor of bot andb; and must be pebbled at  W[quix} iS in QSAT. Each time require®(2) time,
timests — 1 andt; — 1. Sincex is in [tz,t7], by Lemma  wherekis the number of universally quantified variables
7 we can conclude thak cannot be white pebbled and among the inner most— 1 variables ofp. Therefore,
can only be black pebbled once in this interval. Also, black pebblingG; requires timeQ(2+1), and implies
since it has in-degred 4di must be black pebbled &, thaty[; is in QSAT.

immediately aftety as in Lemma 11, sd; € [t3,t7 — 1]. Case 2:Q; is an existential quantifier. We will show
The same argument can be made to argue(thaf) € that in order to black pebbl&;, we must necessarily
[ta,ts — 1], wheret, is afterts. In order to black pebbla; pass through a number of all-black partial configura-
or bj, we must first pebbl&;_1 at some timés beforets. tions, including simultaneously black pebbliGg 1, ei-
This whole time the nodes, d;, and(x;, X)) are clamped.  ther with black pebbles ox, di, and either; or X/ (the
We can therefore apply Lemma 7 to conclude @at; false configuration), or with black pebbles xjnd;, and
must be black pebbled at some titgbdetween, andts . eitherx; or X/ (the true configuration).

We can now apply the induction hypothesis to conclude By Lemma 7, no node i5; U {x} can be white peb-
that black pebblings;_; requiresp[q, () to be QSAT  pled betweery andt;s, and each can be black pebbled
and black pebbling;_1 from BJt4] requires timeQ(Zk), at most once. Based on which node$pfre predeces-
wherek is the number of universally quantified variables sors to others, we can conclude tgﬁﬁ3 must be black



pebbled last, at timgs, gi4i+2 must be black pebbled be-  already know that{ andy; are black clamped during this

fore that at timety4 andg¥+2 € [t14,t15], andg¥*? must interval.) Because has indegreei4t 1, by Lemma 7,
be pebbled before that at tirhg andgi‘”*l € [t13,t15], gil again we know thadi must be black pebbled at tintg
must be pebbled before that at titagandg? € [t12,t15)]. and can only be black pebbled once. Thdisis black
Also, (x,X) € [t1,t15— 1]. and clamped during the intervigd, tio— 1].

Now considery;. It has degreei4+ 2, and it must Now again we can apply Lemma 7 ®. Since 3 of

be black pebbled at time, and can never be repebbled the widget's nodes are clamped during this interval, and
again. Thus it must remain black pebbled until it is used since all nodes iR have degreei4it follows that they

for the last time. can only be pebbled once betwdgmndt;o— 1 and are
Clearly, bothx € Blti» — 1] anda; € Bltio— 1]. Let black. Lettg be the timeil is pebbledts < t7.
t11 be the last timey is pebbled. At this timeg; must be Finally, we want to show thatx,X) € [tz + 1,tg —

pebbled black. We can see this becagf’éél cannotget 1] and furthermore the pebbled node is black. Fixst,
its black pebble frong! through tog? since these can  must be pebbled at tinte— 1 because it is a predecessor
only be pebbled once. All of these must be in place when of h. Furthermore we will argue that it must be black
g¥*1 gets its black pebble, so it cannot get a black peb- pebbled. At timet; — 1, X must be unpebbled because
ble from eitherx or X since both of these are needed to in order to pebblehil at timety, there must bei4+ 3
supportgi4I+2 and could not be repebbled with so many pebbles already on thi¥' widget, not including< (the
black pebbles clamped @;. g *"s 4i + 3" predeces-  4i+1 predecessors of plus the clamped nodegand
sor isa;, so it must receive its black pebble via a slide i) Similarly, X’ must unpebbled ab. Now if i were
move froma;. Soa; must be black during the interval pebbled white rather than blacktat- 1, it would have
[tr1,ti2— 1]. to be discharged big; but this cannot happen since it

At this point our proof splits into two cases, either a Would have to be discharged through the unpeblled
black pebble is on¢ att;; or not. One of these cases which would exceed our allowable space. Thus we have

will imply that Y[q,,x) is in QSAT and the other one argued thax; must be pebbled black t— 1, and further
will imply that §[q,,x) is in QSAT. remains black untily — 1 since it is a predecessor of each

Suppose there is no black pebblerafty;. Then ~ Nnode in{ht,....h"}.
there are two subcases to consider. Subcase (i): there Now to black pebble; by t7 — 1, X must be pebbled
is no pebble at all o or subcase (ii) there is a white ~€arlier, say at timéy, t3 <t4 <t7 —1. Itis left to argue
pebble onx atty;. First we consider subcase (i): there thatts =tz + 1. When we black pebbie at timets, we
is no pebble at all ox!.” Then we must repebbbé at have already argued that there are three nodes already
some timet* betweent;; andt;z 5. We will first ar-  clamped,x, yi andd;. Becauseq has indegreeid it
gue that two nodes{ andy; must be clamped during follows that it must be black pebbled next, and can only
the interval[to,t11]. First, because( is black pebbled ~ be pebbled once. Thusi,x) € [tz +1,to — 1].
atty, and is a predecessor gf and can never be peb- Now in order to black pebblg! atts, every node of
bled again (because its indegreeiig-8), it follows that Gi_1 must be pebbled & — 1. Again we can apply
X € [t1,t* —1]. Secondly, sincg; is a predecessor of Lemma 7. Since there are 4 nodes clamped, and the de-
X (and by the above reasoning gets black pebbled onlygree of each node iG; is 4i — 1, it follows by our lemma
once at), it follows thaty; € [to,t* — 1]. Thus bothx that every node i; can only be pebbled once between
andy; are clamped during the intervig, t11]. t4 andtg and must be black pebbled. Now finally we can
Now we will argue that each node Bf mustbe black ~ apply the induction hypothesis to conclude that since ev-
pebbled, and can only be pebbled once. tigbe the  ery node in{(x,X),x,d;,yi} is clamped whileG; is be-
time wherh? *1 is pebbled; letg be the time wheh® is  ing black pebbledy[q,x; is in QSAT.

pebbled; letg be the time whelhi‘“*1 is pebbled, and let The other subcase (ii) is an analogous argument to
t; be the time whem! is pebbled, wherg < tg < tg < subcase (i) but for the dual case of a white pebble being
t10. By Lemma 7 and becauggandy; are clamped, and  discharged fronx (rather than it being black pebbled.)

all nodes inH; have indegreei4t 1, it follows that each Suppose, on the other hand, that there is a black peb-

can only be pebbled once and must be pebbled blackble onx at t;;. We will now show that onlyBy, U
Thus,h"*3 € [tig,t11 — 1], W2 € [to,t1r— 1], "t € (X d;,yi} can be pebbled when we pebléor the last
[t,t11 — 1], andh! € [tz,t11 — 1]. time beforet;1 at some time,. Suppose for the sake of
Next we will argue that during the intervigd, t10— 1, contradiction that there is a pebble on some other node
the three noded;, X andy; are all black clamped. (We zatts. Sincey; is a predecessor of and can only be

10



pebbled aty, yi € [t2,ta — 1]. Sod; must be empty at
ta— 1 because] has 4+ 2 predecessors which must be
on the graph, along with, att, — 1, which fills up the
space bound.

In order to pebbley; by t11 we must therefore pebble
di at some time betwedn andt;1. Suppose; is white
pebbled. This pebble must be dischargedjhy- 1 be-
causeg; has 4+ 1 predecessors and batkj,x) andx
are clamped untit;;, sod;’s pebble is needed. By fru-
gality there must be a pebble k) at the timed; is dis-

Corollary 8: There exists an infinite family of graphs
such that any minimal space black-white pebbling of
these graphs requires exponential-time, but they can be
refuted in linear time with the use of 1 additional pebble.

Proof: Let g be the DAG corresponding to the for-
mulay = VxpVXn_1... VX1 (X1 VX1 VX2) A (X2 VX2 V X3) A
...\ (Xn VX VX1). This formula is clearly QSAT, since
its 3CNF part is a tautology. Also, singg hasn uni-
versally quantified variables, by Lemma 5, the minimal

charged. So at this time there must be pebbles on a nodein + 3 pebbling strategy fog requires time 2 to exe-

of H;, one of(x;,x{), andx; and we must exceed the space
bound. Suppose on the other hand tthat black peb-
bled between, andti;. This takes #+ 1 pebbles and
there must be pebbles dr;,X), X and by frugalityZ,
whereZ is betweerz anda;. So we can never pebble
di betweert, andt;;. We therefore know that whexf —
is pebbled for the last time befotg, there can be no
pebble ore.

By the argument which we just finished, any node of
Gi_1 can only be pebbled afté. We now show that
Gi_1 must be simultaneously black pebbled in order to
black pebble;.

We know that both¢ € [ta,t11] and (X, %) € [ta, t11].
Therefore by Lemma 7, any node i can only be
pebbled once irjts,t11] and must be black. Call the
time h'™ is pebbledt;o, the timeh? is pebbledty,
the timeh" ! is pebbleds, and the timen} is pebbled
t7. Sox must pebbled at some tintg beforet; and
Xi € [tg,t7— 1]. Suppose itis white pebbled. Then it must
be discharged befotgy because its pebble is needed to
pebblen 1. Note thaty; must be empty at — 1 since
our space bound is reachedltys predecessors and the
clamping of (x;,x) andxX. So whenx is discharged,
there can be no pebble gn Therefore, to discharge,
y; must be pebbled again afterand before;1, which

is impossible due to its high indegree. Suppose, on the

other hand thax; is black pebbled dt. This means that

cute. We can pebblg in linear time using exactly one
extra pebble by following the upperbound’s strategy ex-
cept that in each universal widget, we keep a pebble on
X as we pebble;, which then allows us to pebble up the
otherside without any repebblingd

3 Exponential Speedup for Resolution

In this section we discuss two main results, the
PSPACE-completeness of Resolution space, as well as
a surprising exponential speedup for Resolution. Due to
space limitations, we omit the technical details of the re-
ductions, as well as most of the proofs here but note that
they can be found in [8].

Definition 3.1: [1] A configuration ¢ is a set of
clauses. Iff is a CNF formula, then the sequence of con-
figurationstt= ¢[0],c[1], ..., c|K] is aRES proof of C
fromF if ¢[0]=0,C € c[K], and for each < k, c[i + 1]

is obtained fromc [i] by one of the following rules: (1)
deleting one or more clauses from the current configu-
ration; (2) add the resolvent of two clausesddf]; (3)
download an axiom (clause) df If 0 € C[k], thenTtis

a proof of f.

Definition 3.2: [2] The variable space of a proofrtis

¥i € [t2,ts — 1]. So there are at least 3 pebbles clamped the maximum size of any configurati@in 1. Thevari-

fromt, until t7 — 1. Butd; must be pebbled befote— 1.
Sod; must be pebbled befotg, at some timds aftert,
andd; € [t3,t10— 1].

Thus {(x,X),X.di, (i, %)} C [tatz — 1], so by
Lemma 7 any node d® can only be pebbled black and
pebbled once during this interval. Ligtbe the timer!
is pebbled. The node3;_1 U{(xi,X),X,d;,yi} mustall
be pebbled ats — 1. So{(x;,x),X,di,yi} € [ta,ts — 1].

So Gj_; must only be pebbled black and once during

this interval, so we can apply the induction hypothesis

to conclude thaty[, 1} is in QSAT. O
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able space of an unsatisfiable CNF formulais the min-
imum space over all proofs df. Unless specified oth-
erwise, space in this paper will refer to variable space.
Given a CNF formuld and a numbek, the Resolution
space problem asks whether there is a spaResolu-
tion proof of f.

Our first theorem settles the complexity of the Resolu-
tion space problem.

Theorem 9: The Resolution space problem is
PSPACE-complete.



Our second theorem, which is quite surprising, shows Intuitively, since white pebbles do not help to peb-
that allowing (or disallowing) even 3 extra units of stor- ble g, by special property (1) of our reduction, the con-
age can have drastic consequences for Resolution-basederse relationship should hold for our special graphs,
SAT algorithms. even with the addition of white pebbles.
This is the high-level idea behind the argument.
Theorem 10: There exist CNF formulas such thatany However, significant technical difficulties arise when
minimal space proof of these formulas requires expo- carrying out the proof. In order to mimic a step of the
nential size, but that can be refuted in linear size, with 3 plack pebbling strategy, one Béb(g )'s axioms must be
more units of space. downloaded, and this forces the Resolution simulation
to use more space than was needed in the pebbling step.
There is a clear connection between the nature OfWhen an axiom is downloaded, the Resolution space ex-
these two results and those of Theorem 1 and CorOIIaryceeds the graphs’s pebb“ng number by the axiom’s size.
8. As before, a reduction from the QSAT problem is The problem with this “slack space” is that some ax-
central to their prOOfS. The reduction used here is glOb' ioms OfPeb(g) are |arger than others because their cor-
ally quite similar to that of Section 2, but its Wldgets are responding nodes have h|gher indegreg inWe there-
very different. Most notably, our constructianis now  fore exceed the pebbling number by different amounts
a monotone circuit instead of a DAG. Byt still pos-  at different points in the proof. During periods in the
sesses the following two crucial properties. proof when only smaller axioms are being downloaded,
(1) First, the black-white pebbling number gfis  we are able to use this space difference to deviate from
equal to the black pebbling number gf. That is,  the pure black pebbling strategy. To solve this prob-
our monotone circuit; has the important property that  |em, we further modify; to obtaingres which has even
white pebbles do not help at all, sds optimal pebbling  more structure which serves to “fill up” the slack space
strategy is pure black. in Peb(Gres). The simplest way to do this is to allow
(2) Secondly, ifip is in QSAT, then any optimal strat-  ourselves the use of OR-nodes, which we use to solve
egy will require exponential time in the number of uni-  the slack space problem. We also use the OR-nodes to
versal quantifiers. But if we let the strategy use a small construct efficient quantifier widgets, which reduce the
constant number of pebbles more, tienan be pebbled  pebbling number of the resulting circuit. Even with this

in linear time, whether or nap isin QSAT. _ modification, our argument is substantially more com-
Now from g, we define an associated “pebbling for- plicated than before. As in Section 2, we argue that the
mula”, Peb(g ), defined below. only way for the Resolution proof to proceed at each

step is to follow the all-black pebbling strategy—however
Definition 3.3: [2] Let ¢ be a monotone circuit. now we need to use a global graph-theoretic argument,
Peb(g) is a set of clauses, with one variable for whereas before we essentially argued locally.
each vertex ing, and containing the following (Horn) We show that the QBF formuld is in QSAT if and
clauses: (1) For each source vertexwe have the only if Peb(Gres) has a spacerst 3 Resolution deriva-
clause(v); (2) For each AND vertex with predecessors  tion. Moreover, the above two special properties con-
U,..., U, we have the clausgsiuy V —up V... VU Vv); tinue to hold in this context. In particular, our reduction
(3) Finally for each OR vertex and each predecessm)r satisfies (2'): If is in QSAT, then any space&-3 Res-
of v, we have the clausg-uVv). By a Resolution proof  gution proof of Peb(Gres) requires exponential size.
of Peb(g ), we mean a Resolution derivation of the unit However, with 61+ 6 space, for any, the associated
clause(s) from Peb(g ). formulaPeb(GRres) has a linear-space proof.

Our main results follow from Lemmas 11, 12, & 13
and Theorem 14. Lemma 11 provides the optimal peb-
bling strategy forg, while Lemma 12 provides the sub-
optimal yet linear time strategy. Lemma 13 shows that
the there are Resolution proofs whose size and space are
proportional to those pebbling strategies.

As mentioned earlier, [2] showed that one can extract
a black-white pebbling strategy fgr from a Resolution
proof of Peb(g ), where the strategy’s pebbling number
is related to proof’s Resolution space. If the converse re-
lationship held, then Theorem 9 & 10 would follow eas-
ily from Theorem 1 and Corollary 8. Unfortunately, the
converse does not hold and more work is needed. It is
not hard to see that frompre black pebbling strategy
for g, we do obtain a corresponding space-preserving
Resolution proof oPeb(g ).

Lemma 11: If Y is in QSAT, then the target nodeof
G can be pebbled withr8+ 1 pebbles.
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Lemma 12: There is a black pebbling strategy fgr
which pebblesin time O(|g|) and uses 8+ 4 pebbles,
regardless of whethejy is in QSAT.

Lemma 13: The k-pebble, t-time black pebbling
strategies of Lemmas 11 & 12 for the target nsaé ¢

imply the existence of spa&er-d Resolution derivations

of Peb(Gres) which take time polynomial i, whered
is the maximum size of any axiom 8Eb(Ggres).

Theorem 14 is the hardest part of the argument. It proves [

that the Resolution proof obtained from the pebbli

ng

strategy from Lemma 11 truly is optimal, and that any

space-optimal proof has exponential size.

Theorem 14: Let Y be a QBF, and let;res be the
associated monotone circuit. TherP#b(gres) can be
derived using at mostr6+ 3 space, ther is in QSAT,
and any &+ 3 space proof require®(2¥) steps, where
k is the number of universally quantified variableglin

We are now able to prove our two main results.

Theorem 9: The Resolution space problem is PSPAC
complete.

Proof:

E-

Every unsatisfiable formula has a space
Resolution proof, and thus there is an NPSPACE algo-

rithm guessing a spaaeproof. By Savitch’s theorem,

this implies a PSPACE algorithm. To show PSPAC

E-

hardness, from a QBF formulp, we construct the as-

sociated CNF formuld@eb(Gres). By Lemmas 11 &

13, if Y is in QSAT, then there is a Resolution deriva-
tion of Peb(Gres) which uses i+ 3 space. Conversely,

by Theorem 14, if there is a Resolution derivation
Peb(gres) using G+ 3 space, therp is in QSAT. O

Theorem 10: There exist CNF formulas which hav

linear size Resolution proofs that can be verified in space
k+ 3, but whose smallest Resolution proofs that can be [11]

verified in spacé have exponential size.

Proof: Let Y = VxpVXn—1...VX1F be any totally

of

e

universally quantified QBF which is in QSAT, and let

Gres be the graph obtained frogn Sincey is in QSAT,

by Lemmas 11 & 13 and Theorem 14, there exist space

6n+ 3 Resolution proofs oPeb(gres), and all of them
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