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Abstract

A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries,
from the use of sophisticated validation techniques, to deep statistical methods for controlling the
false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect
between the theoretical results and the practice of data analysis: the theory of statistical inference
assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected
non-adaptively before the data are gathered, whereas in practice data is shared and reused with
hypotheses and new analyses being generated on the basis of data exploration and the outcomes
of previous analyses.

While being able to explore the data and adapt the analysis to it is often advantageous, it
is also known to easily lead to false discovery and overfitting [SNS11, GL13]. In this work we
initiate the study of techniques to preserve the validity of statistical inference in adaptive data
analysis. As an instance of this problem we propose the question of estimating the expectations
on the underlying data distribution of m adaptively chosen functions given a dataset sampled
i.i.d. from the distribution.

We observe that the number of samples necessary might grow linearly in m when standard
empirical estimates are used to evaluate the expectations. However we show that remarkably,
there is a way to estimate the expectations that allows an analyst – who is free to choose the
functions on the basis of the estimates she has already obtained – to obtain an estimate of the
expectation for each of the exponentially many functions with high probability. This technique
counter-intuitively involves actively perturbing and coordinating the answers given to the queries
of the analyst, using techniques developed for privacy preservation.

Finally, we show a computationally efficient method that given n samples, can answer
exponentially many such queries so long as the number of rounds of adaptivity is o(n2). This
matches computational lower bounds recently proved for our question [HU14, SU14].

∗Microsoft Research
†IBM Almaden Research Center
‡IBM Almaden Research Center
§University of Toronto
¶omer.reingold@gmail.com
‖Department of Computer and Information Science, University of Pennsylvania, aaroth@cis.upenn.edu



1 Introduction

Throughout the scientific community there is a growing recognition that claims of statistical
significance in published research are frequently invalid [Ioa05b, Ioa05a, PSA11, BE12]. The past
few decades have seen a great deal of effort to understand and propose mitigations for this problem.
These efforts range from the use of sophisticated validation techniques and deep statistical methods
for controlling the false discovery rate in multiple hypothesis testing to proposals for preregistration,
that is, defining the entire data-collection and data-analysis protocol ahead of time. The statistical
inference theory surrounding this body of work assumes a fixed procedure to be performed, selected
before the data are gathered. In contrast, the practice of data analysis in scientific research is by its
nature an adaptive process, in which new hypotheses are generated and new analyses are performed
on the basis of data exploration and observed outcomes on the same data. This disconnect is
only exacerbated in an era of increased amounts of open access data, in which multiple, mutually
dependent, studies are based on the same datasets.

It is now well recognized that adapting the analysis to data e.g., choosing what variables to
follow, which comparisons to make, which tests to report, and which statistical methods to use, is
an implicit multiple comparisons problem that is not captured in the reported significance levels
of standard statistical procedures. This problem, in some contexts referred to as “p-hacking” or
“researcher degrees of freedom”, is one of the primary explanations of why research findings are
frequently false [Ioa05b, SNS11, GL13].

The “textbook” advice for avoiding problems of this type is to collect fresh samples from the
same data distribution whenever one ends up with a procedure that depends on the existing data.
Getting fresh data is usually costly and often impractical so this requires partitioning the available
dataset randomly into two or more disjoint sets of data (such as training and testing set) prior to
the analysis. Following this approach conservatively with m adaptively chosen procedures would
significantly (on average by a factor of m) reduce the amount of data available for each procedure.
This would be prohibitive in many applications and as a result in practice even data allocated for
the sole purpose of testing is frequently reused (for example to tune parameters).

[Vitaly’s Note: This example could be omitted from this version but seems potentially useful in

making the issue a bit more concrete ] Clear evidence that such reuse leads to overfitting can be seen
in the data analysis competitions organized by Kaggle Inc. In these competitions, the participants
are given training data and can submit (multiple) predictive models in the course of competition.
Each submitted model is evaluated on a (fixed) test set that is available only to the organizers. The
score of each solution is provided back to each participant, who can then submit a new model. In
addition the scores are published on a public leaderboard. At the conclusion of the competition the
best entries of each participant are evaluated on an additional, hitherto unused, test set. The scores
from these final evaluations are published. The comparison of the scores on the adaptively reused
test set and one-time use test set frequently reveals significant overfitting to the reused test set
(e.g. [Win, Kaga]), a well-recognized issue frequently discussed on Kaggle’s blog and user forums
[Kagb, Kagc].

Despite the basic nature that adaptivity plays in data analysis we are not aware of previous
general efforts to address its effects on the statistical validity of the results (see Section 1.3 for
an overview of existing approaches to the problem). We show that, surprisingly, the challenges of
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adaptivity can be addressed using insights from differential privacy, a definition of privacy tailored to
privacy-preserving data analysis. Roughly speaking, differential privacy ensures that the probability
of observing any outcome from an analysis is “essentially unchanged” by modifying any single
dataset element (the probability distribution is over randomness introduced by the algorithm).
Differentially private algorithms permit a data analyst to learn about the dataset as a whole (and,
by extension, the distribution from which the data were drawn), while simultaneously protecting the
privacy of the individual data elements. Strong composition properties show this holds even when
the analysis proceeds as a sequence of adaptively chosen, individually differentially private, steps.

1.1 Our Results

We consider the standard setting in statistics and statistical learning theory: an analyst is given
samples drawn randomly and independently from some unknown distribution P over a discrete
universe X of possible data points. While our approach can be applied to any output of data
analysis, we focus on real-valued functions defined on X . Specifically, for a function ψ : X → [0, 1]
produced by the analyst we consider the task of estimating the expectation P[ψ] = Ex∼P [ψ(x)] up
to some tolerance τ that is correct with high probability (or, equivalently, a confidence interval with
high confidence level).

We make this choice for three reasons. First, a variety of quantities of interest in data analysis
can be expressed in this form for some function ψ. For example, true means and moments of
individual attributes, correlations between attributes and the generalization error of a predictive
model or classifier. Next, a request for such an estimate is referred to as a statistical query in the
context of the well-studied statistical query model [Kea98], and it is known that using statistical
queries in place of direct access to data it is possible to implement most standard analyses used
on i.i.d. data (see [Kea98, BDMN05b, CKL+06] for examples). Finally, the problem of providing
accurate answers to a large number of queries for the average value of a hypothesis on the dataset
has been the subject of intense investigation in the differential privacy literature1.

We address the following basic question: how many adaptively chosen statistical queries can be
correctly answered using n samples drawn i.i.d. from P? The conservative approach of using fresh
samples for each adaptively chosen query would lead to sample complexity that scales linearly with
the number of queries m. We observe that such bad dependence is inherent in the standard approach
of estimating expectations by (exact) empirical average on the samples. This is directly implied by
the techniques from [DN03b] who show how to make linearly many non-adaptive counting queries
to a dataset, and reconstruct nearly all of it. Once the dataset is nearly reconstructed it is easy to
make a query for which the empirical average on the dataset is far from the true expectation. Note
that this requires only a single round of adaptivity! A simpler and more natural example of the same
phenomenon is known as “Freedman’s paradox” [Fre83] and we give an additional simple example

in Appendix ??. This situation is in stark contrast to the non-adaptive case in which n = O
(
logm
τ2

)
samples suffice to answer m queries with tolerance τ using empirical averages. Below we refer to
using empirical averages to evaluate the expectations of query functions as the näıve method.

Our main result is that, remarkably, it is possible to evaluate exponentially many adaptively

1The average value of a hypothesis ψ on a set of random samples is a natural estimator of P[ψ]. In the differential
privacy literature such queries are referred to as (fractional) counting queries.
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chosen statistical queries (in the size of the data set n). Equivalently, this reduces the sample
complexity of answering m queries from linear in the number of queries to logarithmic, nearly
matching the dependence that is necessary for non-adaptively chosen queries.

Theorem 1 (Informal, some parameters left out). There exists an algorithm that given a dataset
of size at least n ≥ n0, can answer any m adaptively chosen statistical queries so that with high
probability, each answer is correct up to tolerance τ , where

n0 = O

(
logm

√
log |X |

τ7/2

)
.

Note that this is larger than the sample complexity needed to answer non-adaptively chosen

queries by only a factor of O
(√

log |X |/τ3/2
)

. Here log |X | should be viewed as roughly the

dimension of the space. For example, if the underlying domain is X = {0, 1}d, the set of all possible
vectors of d-boolean attributes, then

√
log |X | =

√
d.

The above mechanism is not computationally efficient (it has running time linear in the size of
the data universe |X |, which is exponential in the dimension of the data). A natural question raised
by our result is whether there is an efficient algorithm for the task. This question was addressed in
[HU14, SU14] who show that under standard cryptographic assumptions any algorithm that can
answer more than ≈ n2 adaptively chosen statistical queries must have running time exponential in
|X |.

At the same time, our techniques can be used to give an efficient algorithm that can answer
an exponential number of statistical queries as long as the total number of rounds of adaptivity is
n2−ω(1). Importantly, this can be achieved even without the analyst explicitly specifying when each
of the rounds starts. This gives an almost quadratic improvement over the näıve method which, in
addition, would require knowing the boundaries of rounds.

[Vitaly’s Note: I’ve changed the description to the stronger, round-based result but the theorem

is old and needs to be updated.]

Theorem 2 (Informal, some parameters left out). There exists a computationally efficient algorithm
for evaluating m adaptively chosen hypotheses, such that with high probability, the answers to every
hypothesis are valid up to tolerance τ , given a data set of size at least n ≥ n0 for:

n0 = O

(√
m

τ5/2

)

1.2 Overview of Techniques

Our results follow from a basic connection we make between differential privacy and generalization,
which might have applications beyond those that we explore in this paper. At a high level, we prove
that if A is a differentially private algorithm then the empirical average of a function that it outputs
on a random dataset will be close to the true expectation of the function with high probability (over
the choice of the dataset and the randomness of A). More formally, for a dataset S = (x1, . . . , xn)
and a function ψ : X → [0, 1], let ES [ψ] = 1

n

∑n
i=1 ψ(xi) denote the empirical average of ψ. We
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denote a random dataset chosen from Pn by S. For any fixed function ψ, the expected value ES [ψ]
is exactly equal to its expectation P [ψ]. However, this statement is no longer true if ψ is allowed to
depend on S (which is what happens if we choose functions adaptively, using previous estimates on
S). However for a hypothesis output by a differentially private A on S (denoted by φ = A(S)), we
show that ES [φ] is close to P[φ] with high probability.

High probability bounds are necessary to ensure that valid answers can be given to an expo-
nentially large number of queries. To prove these bounds we show that differential privacy roughly
preserves moments of ES[φ] even when conditioned on φ = ψ for any fixed ψ. Now using strong
concentration of the k-th moment of ES [ψ] around P [ψ]k, we can obtain that ES [φ] is concentrated
around P[φ]. Such argument works only for (ε, 0)-differential privacy due to conditioning on the
event φ = ψ which might have arbitrarily low probability. We use a more delicate conditioning to
obtain the extension to the more general (ε, δ)-differential privacy. We note that (ε, δ)-differential
privacy is necessary to obtain the stronger bounds that we use for Theorems 1 and 2.

We give an alternative, simpler proof for (ε, 0)-differential privacy that, in addition, extends
this connection beyond expectations of functions. We consider differentially private algorithms A
that map a database S ∼ Pn to elements from some arbitrary range Z. We prove says that if
we have a collection of events R(y) defined over databases, one for each element y ∈ Z, and each
event is individually unlikely in the sense that for all y, the probability that S ∈ R(y) is small,
then the probability remains small that S ∈ R(Y ), where Y = A(S). Note that this statement
involves a re-ordering of quantifiers. The hypothesis of the theorem says that the probability of
event R(y) is small for each y, where the randomness is taken over the choice of database S ∼ Pn,
which is independent of y. The conclusion says that the probability of R(Y ) remains small, even
though Y is chosen as a function of S, and so is no longer independent. The upshot of this result
is that adaptive analyses, if the adaptivity is performed via a differentially private algorithm, can
be thought of (almost) as if they were non-adaptive, with the data being drawn after all of the
decisions in the analysis are fixed.

[Vitaly’s Note: Need to add something about the proof here.]

Note the seeming disconnect between these theorems and our applications: the theorems hold for
a function generated by a differentially private algorithm. On the other hand, we want to estimate
expectation of queries generated by an analyst whom we do not assume to be restricted in any way.
The connection comes from the post-processing guarantee of differential privacy: any algorithm
that can be described as the (possibly randomized) post-processing of the output of a differentially
private algorithm is itself differentially private. Hence, although we do not know how an arbitrary
analyst is adaptively generating her queries, we do know that if the only access she has to S is
through a differentially private algorithm, then her method of producing query functions must be
differentially private in S. Therefore it is sufficient to ensure that the algorithm that answers the
queries is differentially private and apply our theorems.

1.3 Related Work

Numerous techniques have been developed by statisticians to address common special cases of
adaptive data analysis. Most of them address a single round of adaptivity such as variable selection
followed by regression on selected variables or model selection followed by testing and are optimized
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for specific inference procedures (the literature is too vast to adequately cover here, see Ch. 7 in
[HTF09] for examples and references). In contrast, our framework addresses multiple stages of
adaptive decisions, possible lack of predetermined analysis protocol and is not restricted to any
specific procedures.

The traditional perspective on why adaptivity in data analysis invalidates the significance levels
of statistical procedures given for the non-adaptive case is that one ends up disregarding all the
other possible procedures or tests that would have been performed had the data been different (see
e.g. [SNS11]). It is well-known that when performing multiple tests on the same data one cannot use
significance levels of individual tests and instead it is necessary to control family-wise measures of
error such as the false discovery rate [BH95]. This view makes it necessary to explicitly account for
all the possible ways to perform the analysis in order to provide validity guarantees for the adaptive
analysis. While this approach might be possible in simpler studies, it is technically challenging and
often impractical in more complicated analyses [GL13].

False discovery controlling procedures have been developed for a sequential setting in which
tests arrive one-by-one [FS08, ANR11, AR14]. However the analysis of such tests crucially depends
on tests maintaining their statistical properties despite conditioning on previous outcomes. It is
therefore unsuitable for the problem we consider here, in which we place no restrictions on the
analyst.

The classical approach in theoretical machine learning to ensure that empirical estimates
generalize to the underlying distribution is based on the various notions of complexity of the set of
functions output by the algorithm, most notably the VC dimension (see e.g. [KV94] for a textbook
introduction). If one has a sample of data large enough to guarantee generalization for all functions
in some class of bounded complexity, then it does not matter whether the data analyst chooses
functions in this class adaptively or non-adaptively. Our goal, in contrast, is to prove generalization
bounds without making any assumptions about the class from which the analyst can choose query
functions. In this case the adaptive setting is very different than the non-adaptive setting.

An important line of work [BE02, MNPR06, PRMN04, SSSSS10] establishes connections between
the stability of a learning algorithm and its ability to generalize. Stability is a measure (of which
there are several variants) of how much the output of a learning algorithm is perturbed by changes
to its input. It is known that certain stability notions are necessary and sufficient for generalization.
Unfortunately, the stability notions considered in these prior works do not compose in the sense that
running multiple stable algorithms sequentially and adaptively may result in a procedure that is
not stable. Differential privacy is stronger than these previously studied notions of stability, and in
particular enjoys strong composition guarantees. This in particular provides a calculus for building
up complex algorithms that satisfy stability guarantees sufficient to give generalization. Past work
has considered the generalization properties of one-shot learning procedures. Our work can in part
be interpreted as showing that differential privacy implies generalization in the adaptive setting,
and beyond the framework of classification.

Differential privacy emerged from a line of work [DN03b, DN04, BDMN05a], culminating in
the definition given by [DMNS06]. It defines a stability property of an algorithm developed in
the context of data privacy. There is a very large body of work designing differentially private
algorithms for various data analysis tasks, some of which we leverage in our applications. Most
crucially, it is known how to accurately answer exponentially many adaptively chosen hypotheses on
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a fixed dataset while preserving differential privacy [RR10, HR10], which is what yields the main
application in our paper, when combined with out main theorem. See [Dwo11] for a short survey
and [DR14] for a textbook introduction to differential privacy. It has been known as folklore that a
hypothesis output by a differentially private learning algorithm generalizes in expectation 2. Our
technique can be seen as a substantial strengthening and generalization of these observations: from
expectation to high probability bounds (that is crucial for answering many queries) and beyond the
expected error of a hypothesis.

Finally, inspired by this work [HU14] and [SU14] have proven complementary computational
lower bounds for the problem formulated in this paper. In short, the work of [HU14, SU14] shows
that the exponential running time of the algorithm instantiating our main result is unavoidable, and
that the sample complexity of our efficient algorithm is nearly optimal, among all computationally
efficient mechanisms for evaluating hypotheses.

2 Preliminaries

Let P be a distribution over a discrete universe X of possible data points. For a function ψ : X → [0, 1]
let P [ψ] = Ex∼P [ψ(x)]. Given a dataset S = (x1, . . . , xn), a natural estimator of P [ψ] is the empirical
average 1

n

∑n
i=1 ψ(xi). We let ES denote the empirical distribution that assigns weight 1/n to each

of the data points in S and thus ES [ψ] is equal to the empirical average of ψ on S.

Definition 3. A statistical query is defined by a function ψ : X → [0, 1] and tolerance τ . For
distribution P over X a valid response to such a query is any value v such that |v − P(ψ)| ≤ τ .

The standard Hoeffding bound implies that for a fixed query function (chosen independently of
the data) the probability over the choice of the dataset that ES [ψ] has error greater than τ is at
most 2 · exp(−2τ2n). This implies that an exponential in n number of statistical queries can be
evaluated within τ as long as the hypotheses do not depend on the data.

We now formally define differential privacy. We say that datasets S, S′ are adjacent if they differ
in a single element.

Definition 4. [DMNS06, DKM+06] A randomized algorithm A with domain X n is (ε, δ)-differentially
private if for all O ⊆ Range(A) and for all pairs of adjacent datasets S, S′ ∈ X n:

P[A(S) ∈ O] ≤ exp(ε)P[A(S′) ∈ O] + δ,

where the probability space is over the coin flips of the algorithm A. The case when δ = 0 is
sometimes referred to as pure differential privacy, and in this case we may say simply that A is
ε-differentially private.

Appendix B contains additional background that we will need later on.

2We are aware of these folklore results via conversations with Kunal Talwar and Frank McSh-
erry, who originally discussed these ideas. Frank McSherry also has a blog post on related ideas:
http://windowsontheory.org/2014/02/04/differential-privacy-for-measure-concentration/
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3 Differential Privacy and Preservation of Moments

We now prove that if a hypothesis φ is output by an (ε, δ)-differentially private algorithm A on input
of a random dataset S drawn from Pn, then the average of φ on S, that is, ES [φ], is concentrated
around its true expectation P[φ].

The statement we wish to prove is nontrivial due to the apparent dependency between the
function φ and the dataset S that arises because φ = A(S). If instead φ was evaluated on a fresh
dataset T drawn independently of φ, then indeed we would have E ET [φ] = P[φ]. At a high level,
our goal is therefore to resolve the dependency between φ and S by relating the random variable
ES[φ] to the random variable ET [φ]. To argue that these random variables are close with high
probability we relate the moments of ES[φ] to the moments of ET [φ]. The moments of ET [φ] are
relatively easy to bound using standard techniques.

Our proof is easier to execute when δ = 0 and we start with this case for the sake of exposition.

3.1 Simpler case where δ = 0

Our main technical tool relates the moments of the random variables that we are interested in.

Lemma 5. Assume that A is an (ε, 0)-differentially private algorithm ranging over functions from
X to [0, 1]. Let S,T be independent random variables distributed according to Pn. For any function
ψ : X → [0, 1] in the support of A(S),

E
[
ES [φ]k

∣∣∣ φ = ψ
]
≤ ekε · E

[
ET [ψ]k

]
. (1)

Proof. We use I to denote a k-tuple of indices (i1, . . . , ik) ∈ [n]k and use I to denote a k-tuple
chosen randomly and uniformly from [n]k. For a data set T = (y1, . . . , yn) we denote by ΠI

T (ψ) =∏
j∈[k] ψ(yij ). We first observe that for any ψ,

ET [ψ]k = E[ΠI
T (ψ)]. (2)

For two datasets S, T ∈ X n, let SI←T denote the data set in which for every j ∈ [k], element ij
in S is replaced with the corresponding element from T . We fix I. Note that the random variable
SI←T is distributed according to Pn and therefore

E
[
ΠI

S(φ) | φ = ψ
]

= E
[
ΠI

SI←T
(A(SI←T )) | A(SI←T ) = ψ

]
= E

[
ΠI

T (A(SI←T )) | A(SI←T ) = ψ
]

=

∫ 1

0

P
[
ΠI

T (A(SI←T )) ≥ t and A(SI←T ) = ψ
]

P [A(SI←T ) = ψ]
dt

=

∫ 1

0

P
[
ΠI

T (A(SI←T )) ≥ t and A(SI←T ) = ψ
]

P [φ = ψ]
dt (3)

Now for any fixed t, S and T consider the event ΠI
T (A(S)) ≥ t and A(S) = ψ (defined on the

range of A). Data sets S and SI←T differ in at most k elements. Therefore, by the ε-differential
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privacy of A and Lemma 19, the distribution A(S) and the distribution A(SI←T ):

P
[
ΠI
T (A(SI←T )) ≥ t and A(SI←T ) = ψ

]
≤ ekε · P

[
ΠI
T (A(S)) ≥ t and A(S) = ψ

]
.

Taking the probability over S and T we get:

P
[
ΠI

T (A(SI←T )) ≥ t and A(SI←T ) = ψ
]
≤ ekε · P

[
ΠI
T (φ) ≥ t and φ = ψ

]
.

Substituting this into eq. (3) we get

E
[
ΠI

S(φ) | φ = ψ
]
≤ ekε

∫ 1

0

P
[
ΠI

T (φ) ≥ t and φ = ψ
]

P [φ = ψ]
dt

= ekε E
[
ΠI

T (φ) | φ = ψ
]

= ekε E
[
ΠI

T (ψ) | φ = ψ
]

= ekε E
[
ΠI

T (ψ)
]

Taking the expectation over I and using eq. (2) we obtain that

E
[
ES [φ]k

∣∣∣ φ = ψ
]
≤ ekε E

[
ET [ψ]k

]
,

completing the proof of the lemma.

We now turn our moment inequality into a theorem showing that ES [φ] is concentrated around
the true expectation P[φ].

Theorem 6. Let A be an ε-differentially private algorithm that given a dataset S outputs a function
from X to [0, 1]. For any distribution P over X and random variable S distributed according to
Pn we let φ = A(S). Then for any β > 0, τ > 0 and n ≥ 12 ln(4/β)/τ2, setting ε ≤ τ/2 ensures
P [|P[φ]− ES [φ]| > τ ] ≤ β, where the probability is over the randomness of A and S.

Proof. Consider an execution of A with ε = τ/2 on a data set S of size n ≥ 12 ln(4/β)/τ2. By
Lemmas 24 and 25 we obtain that RHS of our bound in Lemma 1 is at most eεkMk[B(n,P[ψ])].
We use Lemma 26 with ε = τ/2 and k = 4 ln(4/β)/τ (noting that the assumption n ≥ 12 ln(4/β)/τ2

ensures the necessary bound on n) to obtain that

P [ES [φ] ≥ P[ψ] + τ | φ = ψ] ≤ β/2.

This holds for every ψ in the range of A and therefore,

P [ES [φ] ≥ P[φ] + τ ] ≤ β/2.

We can apply the same argument to the function 1− φ to obtain that

P [ES [φ] ≤ P[φ]− τ ] ≤ β/2.

A union bound over the above inequalities implies the claim.
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3.2 Extension to δ > 0

We now extend our proof to the case when A satisfies (ε, δ)-differential privacy for sufficiently
small but nonzero δ > 0. The main difficulty in extending the previous proof is that the condition
{φ = φ} appearing in Lemma 5 may have arbitrarily small probability. A simple extension of the
previous proof would lead to an error of δ/P[φ = φ]. We avoid this issue by using a more carefully
chosen condition. Specifically, instead of restricting φ to be equal to a particular function φ, we
only constrain P[φ] to be in a certain interval of length τ. This conditioning still gives us enough
information about φ in order to control ET [φ], while allowing us to ignore events of exceedingly
small probability.

Theorem 7. Let A be an (ε, δ)-differentially private algorithm that given a dataset S outputs
a function from X to [0, 1]. For any distribution P over X and random variable S distributed
according to Pn we let φ = A(S). Then for any β > 0, τ > 0 and n ≥ 48 ln(4/β)/τ2, setting ε ≤ τ/4
and δ = exp(−4 · ln(8/β)/τ) ensures P [|P[φ]− ES [φ]| > τ ] ≤ β, where the probability is over the
randomness of A and S.

Proof. We use the notation from the proof of Theorem 6 and consider an execution of A with ε and
δ satisfying the conditions of the theorem.

Let L = d1/τe. For a value ` ∈ [L] we use B` to denote the interval set [(`− 1)τ, `τ ].

We say that ` ∈ [L] is heavy if P [P[φ] ∈ B`] ≥ β/(4L) and we say that ` is light otherwise. The
key claim that we prove is an upper bound on the k-th moment of ES [φ] for heavy `’s:

E
[
ES [φ]k

∣∣∣ P[φ] ∈ B`
]
≤ ekε · Mk[B(n, τ`)] + δe(k−1)ε · 4L/β. (4)

We use the same decomposition of the k-th moment as before:

E
[
ES [φ]k

∣∣∣ P[φ] ∈ B`
]

= E
[
ΠI

S(φ)
∣∣ P[φ] ∈ B`

]
.

Now for a fixed I ∈ [n]k, exactly as in eq. (3), we obtain

E
[
ΠI

S(φ) | P[φ] ∈ B`
]

=

∫ 1

0

P
[
ΠI

T (A(SI←T )) ≥ t and P[A(SI←T )] ∈ B`
]

P [P[φ] ∈ B`]
dt (5)

Now for fixed values of t, S and T we consider the event ΠI
T (A(S)) ≥ t and P [A(S)] ∈ B` defined on

the range of A. Datasets S and SI←T differ in at most k elements. Therefore, by the (ε, δ)-differential
privacy of A and Lemma 19, the distribution over the output of A on input S and the distribution
over the output of A on input SI←T satisfy:

P
[
ΠI
T (A(SI←T )) ≥ t and P[A(SI←T )] ∈ B`

]
≤ ekε · P

[
ΠI
T (A(S)) ≥ t and P[A(S)] ∈ B`

]
+ e(k−1)εδ.
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Taking the probability over S and T and substituting this into eq. (5) we get

E
[
ΠI

S(φ) | P[φ] ∈ B`
]
≤ ekε

∫ 1

0

P
[
ΠI

T (φ) ≥ t and P[φ] ∈ B`
]

P [P[φ] ∈ B`]
dt+

e(k−1)εδ

P [P[φ] ∈ B`]

= ekε E
[
ΠI

T (φ) | P[φ] ∈ B`
]

+
e(k−1)εδ

P [P[φ] ∈ B`]

Taking the expectation over I and using eq. (2) we obtain:

E
[
ES [φ]k

∣∣∣ P[φ] ∈ B`
]
≤ ekε E

[
ET [φ]k

∣∣∣ P[φ] ∈ B`
]

+
e(k−1)εδ

P [P[φ] ∈ B`]
. (6)

Conditioned on P[φ] ∈ B`, P[φ] ≤ τ` and therefore by Lemma 24,

E
[
ET [φ]k

∣∣∣ P[φ] ∈ B`
]
≤Mk[B(n, τ`)].

In addition, by our assumption, ` is heavy, that is P [P[φ] ∈ B`] ≥ β/(4L). Substituting these values
into eq. (6) we obtain the claim in eq. (4).

As before, we use Lemma 26 with ε = τ/2 and k = 4(τ`) ln(4/β)/τ = 4` ln(4/β) (noting that
condition n ≥ 12 ln(4/β)/τ2 ensures the necessary bound on n) to obtain that

P [ES [φ] ≥ τ`+ τ | P[φ] ∈ B`] ≤ β/2 +
δe(k−1)ε · 4L
β(τ`+ τ)k

, (7)

Using condition δ = exp(−2 · ln(4/β)/τ) and inequality ln(x) ≤ x/e we obtain

δe(k−1)ε · 4L
β((`+ 1)τ)k

≤ δ · e2 ln(4/β) · 4/τ
βe4 ln((`+1)τ)·` ln(4/β)

≤ δ · e4 ln(4/β)

τ · e4 ln((`+1)τ)·` ln(4/β) ·
β

4

≤ δ · exp (4 ln(1/((`+ 1)τ)) · ` ln(4/β) + 4 ln(4/β) + ln(1/τ)) · β
4

≤ δ · exp

(
4

e
· 1

(`+ 1)τ
· ` ln(4/β) + 4 ln(4/β) + ln(1/τ)

)
· β

4

≤ δ · exp

(
4

e
· ln(4/β)/τ + 4 ln(4/β) + ln(1/τ)

)
· β

4

≤ δ · exp (2 · ln(4/β)/τ) · β
4
≤ β/4.

Substituting this into eq. (7) we get

P [ES [φ] ≥ τ`+ τ | P[φ] ∈ B`] ≤ 3β/4.

Note that, conditioned on P[φ] ∈ B`, P[φ] ≥ τ(`− 1), and therefore

P [ES [φ] ≥ P[φ] + 2τ | P[φ] ∈ B`] ≤ 3β/4.
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This holds for every heavy ` ∈ [L] and therefore,

P [ES [φ] ≥ P[φ] + 2τ ] ≤ 3β/4 +
∑

`∈[L] is light

P [P[φ] ∈ B`]

≤ 3β/4 + Lβ/(4L) = β.

Apply the same argument to 1−φ and use a union bound we obtain the claim after rescaling τ and
β by a factor 2.

4 Beyond the empirical average

Our previous results dealt with the empirical average of a hypotheses φ : X → [0, 1]. A different
way of looking at our result is to define for each hypothesis φ a set R(φ) containing all datasets S
such that φ is far from the correct value P [φ] on S. Formally, R(φ) = {S : |ES [φ]− P[φ]| > τ}. Our
result showed that if φ = A(S) is the output of a differentially private algorithm A on a random
dataset S, then P[S ∈ R(φ)] is small.

Here we prove broad generalization that allows the differentially private algorithm to have an
arbitrary output space Z. The same conclusion holds for any collection of sets R(y) where y ∈ Z
provided that P[S ∈ R(y)] is small for all y ∈ Z.

Theorem 8. Let A be an (ε, 0)-differentially private algorithm with range Z. For a distribution P
over X , let S be a random variable drawn from Pn. Let Y = A(S) be the random variable output
by A on input S. For each element y ∈ Z let R(y) ⊆ X n be some subset of datasets and assume

that maxy P[S ∈ R(y)] ≤ β. Then, for ε ≤
√

ln(1/β)
2n we have P[S ∈ R(Y )] ≤ 3

√
β.

Proof. Fix y ∈ Z. We first observe that by Jensen’s inequality,

E
S∼Pn

[ln(P[Y = y | S = S])] ≤ ln

(
E

S∼Pn
[P[Y = y | S = S]]

)
= ln(P[Y = y]).

Further, by definition of differential privacy, for two databases S, S′ that differ in a single element,

P[Y = y | S = S] ≤ eε · P[Y = y | S = S′].

Now consider the function g(S) = ln
(
P[Y =y | S=S]

P[Y =y]

)
. By the properties above we have that

E[g(S)] ≤ ln(P[Y = y])− ln(P[Y = y]) = 0 and |g(S)− g(S′)| ≤ ε. This, by McDiarmid’s inequality
(Lemma 23), implies that for any t > 0,

P[g(S) ≥ εt] ≤ e−2t2/n. (8)

For an integer i ≥ 1 let

Bi
.
=

{
S

∣∣∣∣ ε√n ln(2i/β)/2 ≤ g(S) ≤ ε
√
n ln(2i+1/β)/2

}
11



and let B0
.
= {S | g(S) ≤ ε

√
n ln(2/β)/2}.

By inequality (8) we have that for i ≥ 1, P[g(S) ≥ ε
√
n ln(2i/β)/2] ≤ β/2i. Therefore, for all

i ≥ 0,
P[S ∈ Bi ∩R(y)] ≤ β/2i,

where the case of i = 0 follows from the assumptions of the lemma.

By Bayes’ rule, for every S ∈ Bi,

P[S = S | Y = y]

P[S = S]
=

P[Y = y | S = S]

P[Y = y]
= exp(g(S)) ≤ exp

(
ε
√
n ln(2i+1/β)/2

)
.

Therefore,

P[S ∈ Bi ∩R(y) | Y = y] =
∑

S∈Bi∩R(y)

P[S = S | Y = y]

≤ exp

(
ε
√
n ln(2i+1/β)/2

)
·

∑
S∈Bi∩R(y)

P[S = S]

= exp

(
ε
√
n ln(2i+1/β)/2

)
· P[S ∈ Bi ∩R(y)]

≤ exp

(
ε
√
n ln(2i+1/β)/2− ln(2i/β)

)
. (9)

The condition ε ≤
√

ln(1/β)
2n implies that

ε

√
n ln(2i+1/β)

2
− ln(2i/β) ≤

√
ln(1/β) ln(2i+1/β)

4
− ln(2i/β)

≤ ln(2(i+1)/2/β)

2
− ln(2i/β) = − ln

(
2(3i−1)/4√

β

)

Substituting this into inequality (9), we get

P[S ∈ Bi ∩R(y) | Y = y] ≤
√
β

2(3i−1)/4
.

Clearly, ∪i≥0Bi = X [n]. Therefore

P[S ∈ R(y) | Y = y] =
∑
i≥0

P[S ∈ Bi ∩R(y) | Y = y] ≤
∑
i≥0

√
β

2(3i−1)/4
=
√
β · 21/4

1− 2−3/4
≤ 3
√
β.

Finally, let Y denote the distribution of Y . Then,

P[S ∈ R(Y )] = E
y∼Y

[P[S ∈ R(y) | Y = y]] ≤ 3
√
β.

12



Our theorem gives a result for statistical queries that achieves the same bound as our earlier
result in Theorem 6 up to constant factors in the parameters.

Corollary 9. Let A be an ε-differentially private algorithm that outputs a function from X to [0, 1].
For a distribution P over X , let S be a random variable distributed according to Pn and let φ = A(S).
Then for any τ > 0, setting ε ≤

√
τ2 − ln(2)/2n ensures P [|P[φ]− ES [φ]| > τ ] ≤ 3

√
2e−τ

2n.

Proof. By the Chernoff bound, for any fixed query function ψ : X → [0, 1],

P[|P[ψ]− ES [ψ]| ≥ τ ] ≤ 2e−2τ
2n.

Now, by Theorem 8 for R(ψ) = {S ∈ X n | |P[ψ]− ES [ψ]| > τ}, β = 2e−2τ
2n and any ε ≤√

τ2 − ln(2)/2n,

P [|P[φ]− ES [φ]| > τ ] ≤ 3
√

2e−τ
2n.

5 Applications

We now spell out the corollaries of our connection to differential privacy (Theorems 6 and 7) formally.

5.1 Laplacian Noise Addition

Theorem 10 (Laplace). Let τ, β, ε > 0 and define

n0(τ, β, ε, k) =
k log(1/β)

ετ
.

There is an (ε, 0)-differentially private algorithm called Laplace which on input of a data set S of
size n accepts any sequence of k adaptively chosen hypotheses φ1, . . . , φk and returns estimates
a1, . . . , ak such that for all i ∈ [k] we have P [|ES [φi]− ai| > τ ] ≤ β provided that n ≥ Cn0(τ, β, ε, k)
for sufficiently large constant C.

Corollary 11. Let τ, β > 0 and define

n0(τ, β, k) =
k log(1/β)

τ2
.

There is an algorithm which on input of a data set S of size n sampled from Pn accepts any sequence
of k adaptively chosen hypotheses φ1, . . . , φk and returns estimates a1, . . . , ak such that for all i ∈ [k]
we have P [|P[φi]− ai| > τ ] ≤ β provided that n ≥ Cn0(τ, β, k) for sufficiently large constant C.

Proof. We apply Theorem 6 with ε = τ/2 and plug this choice of ε into the definition of n0 in
Theorem 14. We note that the stated lower bound on n implies the lower bound required by
Theorem 6.
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Theorem 12 (Laplace). Let τ, β, ε, δ > 0 and define

n0(τ, β, ε, δ, k) =

√
k log(1/δ) log(1/β)

ετ
.

There is an (ε, δ)-differentially private algorithm called Laplace which on input of a data set S of size
n accepts any sequence of k adaptively chosen hypotheses φ1, . . . , φk and returns estimates a1, . . . , ak
such that for all i ∈ [k] we have P [|ES [φi]− ai| > τ ] ≤ β provided that n ≥ Cn0(τ, β, ε, δ, k) for
sufficiently large constant C.

Corollary 13. Let τ, β > 0 and define

n0(τ, β, k) =

√
k log1.5(1/β)

τ2.5
.

There is an algorithm which on input of a data set S of size n sampled from Pn accepts any sequence
of k adaptively chosen hypotheses φ1, . . . , φk and returns estimates a1, . . . , ak such that for all i ∈ [k]
we have P [|P[φi]− ai| > τ ] ≤ β provided that n ≥ Cn0(τ, β, k) for sufficiently large constant C.

Proof. We apply Theorem 7 with ε = τ/2 and δ = exp(−4 ln(8/β)/τ). Plugging thse parameters
into the the definition of n0 in Theorem 16 gives the stated lower bound on n. We note that the
stated lower bound on n implies the lower bound required by Theorem 7.

5.2 Multiplicative Weights Technique

Theorem 14 (Private Multiplicative Weights). Let τ, β, ε > 0 and define

n0(τ, β, ε) =
log(|X |) log(n log(|X |)/β)

ετ3
.

There is an (ε, 0)-differentially private algorithm called PMW which on input of a data set S of
size n accepts any sequence of k adaptively chosen hypotheses φ1, . . . , φk and returns estimates
a1, . . . , ak such that for all i ∈ [k] we have P [|ES [φi]− ai| > τ ] ≤ β provided that n ≥ Cn0(τ, β, ε)
for sufficiently large constant C.

Corollary 15. Let τ, β > 0 and define

n0(τ, β) =
log(|X |) log(n log(|X |)/β)

τ4
.

There is an algorithm which on input of a data set S of size n sampled from Pn accepts any sequence
of k adaptively chosen hypotheses φ1, . . . , φk and returns estimates a1, . . . , ak such that for all i ∈ [k]
we have P [|P[φi]− ai| > τ ] ≤ β provided that n ≥ Cn0(τ, β) for sufficiently large constant C.

Proof. We apply Theorem 6 with ε = τ/2 and plug this choice of ε into the definition of n0 in
Theorem 14. We note that the stated lower bound on n implies the lower bound required by
Theorem 6.

PMW also satisfies (ε, δ)-differential privacy with the following quantitative bound.

14



Theorem 16 (Private Multiplicative Weights). Let τ, β, ε, δ > 0 and define

n0(τ, β, ε, δ) =

√
log(|X |) log(1/δ) log(n/β)

ετ2
.

There is an (ε, δ)-differentially private algorithm called PMW which on input of a data set S of
size n accepts any sequence of k adaptively chosen hypotheses φ1, . . . , φk and returns estimates
a1, . . . , ak such that for all i ∈ [k] we have P [|ES [φi]− ai| > τ ] ≤ β, provided that n ≥ Cn0(τ, β, ε, δ)
for sufficiently large constant C.

The previous guarantee gives the following corollary that improves the dependence on τ and
log |X | in Corollary 15 at the expense of a slightly worse dependence on β.

Corollary 17. Let τ, β > 0 and define

n0(τ, β) =

√
log(|X |) log(1/β) log(n/β)

τ3.5
.

There is an algorithm which on input of a data set S of size n sampled from Pn accepts any sequence
of k adaptively chosen hypotheses φ1, . . . , φk and returns estimates a1, . . . , ak such that for all i ∈ [k]
we have P [|P[φi]− ai| > τ ] ≤ β provided that n ≥ Cn0(τ, β) for sufficiently large constant C.

Proof. We apply Theorem 7 with ε = τ/2 and δ = exp(−4 ln(8/β)/τ). Plugging thse parameters
into the the definition of n0 in Theorem 16 gives the stated lower bound on n. We note that the
stated lower bound on n implies the lower bound required by Theorem 7.
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A Adaptivity in fitting a linear model

The data analyst has n samples D = {x1, . . . , xn} over d real-valued attributes sampled from an
unknown distribution D. The analyst’s goal is to find a linear model ` that maximizes the average
correlation with the unknown distribution. Formally, the goal is to find a unit vector that maximizes
the function

f(u) = E
x∼D
〈u, x〉 .

Not knowing the distribution the analyst decides to solve the corresponding optimization problem
on her finite sample:

f̃D(u) =
1

n

∑
x∈D
〈u, x〉 .

The analyst attempts to solve the problem using the following simple but adaptive strategy:

1. For i = 1, . . . , d, determine si = sign
(∑

x∈D xi

)
.

2. Let ũ = 1√
d
(s1, . . . , sd).

Intuitively, this natural approach first determines for each attribute whether it is positively or
negatively correlated. It then aggregates this information across all d attributes into a single linear
model.

The next lemma shows that this adaptive strategy has a terrible generalization performance (if d
is large). Specifically, we show that even if there is no linear structure whatsoever in the underlying
distribution (namely it is normally distributed), the analyst’s strategy falsely discovers a linear
model with large objecive value.

Lemma 18. Suppose D = N(0, 1)d. Then, every unit vector u ∈ Rd satisfies f(u) = 0. However,
ED f̃D(ũ) =

√
2/π ·

√
d/n.

Proof. The first claim follows because 〈u, x〉 for x ∼ N(0, 1)d is distributed like a Gaussian random
variable N(0, 1). Let us now analyze the objective value of ũ.

f̃D(ũ) =
1

n

∑
x∈D

si√
d

d∑
i=1

xi =
1√
d

d∑
i=1

∣∣∣∣∣ 1n∑
x∈D

xi

∣∣∣∣∣
Hence,

E
D
f̃D(ũ) =

d∑
i=1

1√
d
E
D

∣∣∣∣∣ 1n∑
x∈D

xi

∣∣∣∣∣ .
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Now, (1/n)
∑

x∈D xi is distributed like a gaussian random variable g ∼ N(0, 1/n), since each xi is a
standard gaussian. It follows that

E
D
f̃D(ũ) =

√
2d

πn
.

B Background on Differential Privacy

When applying (ε, δ)-differential privacy, we are typically interested in values of δ that are very
small compared to n. In particular, values of δ on the order of 1/n yield no meaningful definition
of privacy as they permit the publication of the complete records of a small number of data set
participants—a violation of any reasonable notion of privacy.

Theorem 19. Any (ε, δ)-differentially private mechanism A satisfies for all pairs of data sets S, S′

differing in at most k elements, and all O ⊆ Range(A):

P[A(S) ∈ O] ≤ exp(kε)P[A(S′) ∈ O] + eε(k−1)δ,

where the probability space is over the coin flips of the mechanism A.

Differential privacy also degrades gracefully under composition. It is easy to see that the
independent use of an (ε1, 0)-differentially private algorithm and an (ε2, 0)-differentially private
algorithm, when taken together, is (ε1 + ε2, 0)-differentially private. More generally, we have

Theorem 20. Let Ai : X n → Ri be an (εi, δi)-differentially private algorithm for i ∈ [k]. Then if
A[k] : X n →

∏k
i=1Ri is defined to be A[k](S) = (A1(S), . . . ,Ak(S)), then A[k] is (

∑k
i=1 εi,

∑k
i=1 δi)-

differentially private.

A more sophisticated argument yields significant improvement when ε < 1:

Theorem 21. For all ε, δ, δ′ ≥ 0, the composition of k arbitrary (ε, δ)-differentially private mecha-
nisms is (ε′, kδ + δ′)-differentially private, where

ε′ =
√

2k ln(1/δ′)ε+ kε(eε − 1),

even when the mechanisms are chosen adaptively.

Theorems 20 and 21 are very general. For example, they apply to queries posed to overlapping,
but not identical, data sets. Nonetheless, data utility will eventually be consumed: the Fundamental
Law of Information Recovery states that overly accurate answers to too many questions will
destroy privacy in a spectacular way (see [DN03a] et sequelae). The goal of algorithmic research
on differential privacy is to stretch a given privacy “budget” of, say, ε0, to provide as much utility
as possible, for example, to provide useful answers to a great many counting queries. The bounds
afforded by the composition theorems are the first, not the last, word on utility.
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C Concentration and moment bounds

C.1 Concentration inequalities

We will use the following statement of the multiplicative Chernoff bound:

Lemma 22 (Chernoff’s bound). Let Y1, Y2, . . . , Yn be i.i.d. Bernoulli random variables with
expectation p > 0. Then for every γ > 0,

P

∑
i∈[n]

Yi ≥ (1 + γ)np

 ≤ exp (−np((1 + γ) ln(1 + γ)− γ)) .

Lemma 23 (McDiarmid’s inequality). Let X1, X2, . . . , Xn be independent random variables taking
values in the set X . Further let f : X n → R be a function that satisfies, for all i ∈ [n] and
x1, x2, . . . , xn, x

′
i ∈ X ,

f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn) ≤ c.

Then for all α > 0, and µ = E [f(X1, . . . , Xn)],

P [f(X1, . . . , Xn)− µ ≥ α] ≤ exp

(
−2α2

n · c2

)
.

C.2 Moment Bounds

Lemma 24. Let Y1, Y2, . . . , Yn be i.i.d. Bernoulli random variables with expectation p. We denote

by Mk[B(n, p)]
.
= E

[(
1
n

∑
i∈[n] Yi

)k]
. Let X1, X2, . . . , Xn be i.i.d. random variables with values in

[0, 1] and expectation p. Then for every k > 0,

E


 1

n

∑
i∈[n]

Xi

k
 ≤Mk[B(n, p)].

Proof. We use I to denote a k-tuple of indices (i1, . . . , ik) ∈ [n]k (not necessarily distinct). For I
like that we denote by {`1, . . . , `k′} the set of distinct indices in I and let k1, . . . , kk′ denote their
multiplicities. Note that

∑
j∈[k′] kj = k. We first observe that

E


 1

n

∑
i∈[n]

Xi

k
 = E

I∼[n]k

E
∏
j∈[k]

Xij

 = E
I∼[n]k

E
 ∏
j∈[k′]

X
kj
`j

 = E
I∼[n]k

 ∏
j∈[k′]

E
[
X
kj
`j

] ,
(10)

where the last equality follows from independence of Xi’s. For every j, the range of X`j is [0, 1] and
thus

E
[
X
kj
`j

]
≤ E

[
X`j

]
= p.
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Moreover the value p is achieved when X`j is Bernoulli with expectation p. That is

E
[
X
kj
`j

]
≤ E

[
Y
kj
`j

]
,

and by using this in equality (10) we obtain that

E


 1

n

∑
i∈[n]

Xi

k
 ≤ E


 1

n

∑
i∈[n]

Yi

k
 =Mk[B(n, p)].

Lemma 25. For all integers n ≥ k ≥ 1 and p ∈ [0, 1],

Mk[B(n, p)] ≤ pk + (k lnn+ 1) ·
(
k

n

)k
.

Proof. Let U denote 1
n

∑
i∈[n]Xi, where Xi’s are i.i.d. Bernoulli random variables with expectation

p > 0 (the claim is obviously true if p = 0). Then

E[Uk] ≤ pk +

∫ 1

pk
P[Uk ≥ t]dt. (11)

We substitute t = (1 + γ)kpk and observe that Lemma 22 gives:

P[Uk ≥ t] = P[Uk ≥ ((1 + γ)p)k] = P[U ≥ (1 + γ)p] ≤ exp (−np((1 + γ) ln(1 + γ)− γ)) .

Using this substitution in eq.(11) together with dt
dγ = k(1 + γ)k−1 · pk we obtain

E[Uk] ≤ pk +

∫ 1/p−1

0
exp (−np((1 + γ) ln(1 + γ)− γ)) · k(1 + γ)k−1dγ

= pk + pkk

∫ 1/p−1

0

1

1 + γ
· exp (k ln(1 + γ)− np((1 + γ) ln(1 + γ)− γ)) dγ

≤ pk + pkk max
γ∈[0,1/p−1]

{exp (k ln(1 + γ)− np((1 + γ) ln(1 + γ)− γ))} ·
∫ 1/p−1

0

1

1 + γ
dγ

= pk + pkk ln(1/p) · max
γ∈[0,1/p−1]

{exp (k ln(1 + γ)− np((1 + γ) ln(1 + γ)− γ))} . (12)

We now find the maximum of g(γ)
.
= k ln(1 + γ) − np((1 + γ) ln(1 + γ) − γ). Differentiating the

expression we get k
1+γ − np ln(1 + γ) and therefore the function attains its maximum at the (single)

point γ0 which satisfies: (1 + γ0) ln(1 + γ0) = k
np . This implies that ln(1 + γ0) ≤ ln

(
k
np

)
. Now we

observe that (1+γ) ln(1+γ)−γ is always non-negative and therefore g(γ0) ≤ k ln
(
k
np

)
. Substituting

this into eq.(12) we conclude that

E[Uk] ≤ pk + pkk ln(1/p) · exp

(
k ln

(
k

np

))
= pk + k ln(1/p) ·

(
k

n

)k
.
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Finally, we observe that if p ≥ 1/n then clearly ln(1/p) ≤ lnn and the claim holds. For any p < 1/n
we use monotonicity ofMk[B(n, p)] in p and upper bound the probability by the bound for p = 1/n
that equals (

1

n

)k
+ (k lnn) ·

(
k

n

)k
≤ (k lnn+ 1) ·

(
k

n

)k
.

Lemma 26. Let n > k > 0, ε > 0, p > 0, δ ≥ 0 and let V be a non-negative random variable that
satisfies E[V k] ≤ eεkMk[B(n, p)] + δ. Then for any τ ∈ [0, 1/3], β ∈ (0, 2/3] if

• ε ≤ τ/2,

• k ≥ max{4p ln(2/β)/τ, 2 log log n},

• n ≥ 3k/τ then

P[V ≥ p+ τ ] ≤ β + δ/(p+ τ)k.

Proof. Observe that by Markov’s inequality:

P[V ≥ p+ τ ] = P[V k ≥ (p+ τ)k] ≤ E[V k]

(p+ τ)k
≤ eεkMk[B(n, p)]

pk(1 + τ/p)k
+

δ

(p+ τ)k
.

Using Lemma 25 we obtain that

P[V ≥ p+ τ ] ≤
pk + (k lnn+ 1) ·

(
k
n

)k
e−εkpk(1 + τ/p)k

+
δ

(p+ τ)k
=

1 + (k lnn+ 1) ·
(
k
pn

)k
(e−ε(1 + τ/p))k

+
δ

(p+ τ)k
. (13)

Using the condition ε ≤ τ/2 and τ ≤ 1/3 we first observe that

e−ε(1 + τ/p) ≥ (1− ε)(1 + τ/p) = 1 + τ/p− ε− ετ/p ≥ 1 + τ/(3p).

Hence, with the condition that k ≥ 4p ln(2/β)/τ we get

(e−ε(1 + τ/p))k ≥ (1 + τ/(3p))k ≥ ekτ/(4p) ≥ 2

β
. (14)

Using the condition n ≥ 3k/τ .

e−ετ/p ≥ 3e−εk/(np) > 2k/(np).

Together with the condition k ≥ max{4 ln(2/β)/τ, 2 log log n}, we have

log(2/β) + log(k lnn+ 1) ≤ log(2/β) + log(k + 1) + log log n ≤ k

since k/2 ≥ log log n holds by assumption and for k ≥ 12 ln(2/β), k/6 ≥ log(2/β) and k/3 ≥ log(k+1)
(whenever β < 2/3). Therefore we get
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(e−ε(1 + τ/p))k ≥ (e−ετ/p)k ≥ 2k ·
(
k

pn

)k
≥ 2

β
· (k lnn+ 1) ·

(
k

pn

)k
. (15)

Combining eq.(14) and (15) we obtain that

1 + (k lnn+ 1) ·
(
k
pn

)k
(e−ε(1 + τ/p))k

≤ β/2 + β/2 = β.

Substituting this into eq.(13) we obtain the claim.
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