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The main result we’ll cover in this lecture and the next is:
Theorem 1 (Mulmuley [Mul99]). In the parallel RAM model without bit operations, “P # NC.”

This is really what I consider the masthead result of [Mul99], but in the same paper Mulmuley
also showed that P % RNC in the PRAM model without bit operations, and that the NC* and
RNC? hierarchies are strict in this model, and furthermore that all of these results holds not just
for the decision problems but even for the corresponding additive approximation problems. As
the proof for these other results follows the same outline as the proof for Theorem 1, we focus
only on that result.

The parallel RAM without bit operations is not the same as the purely algebraic model
considered in the first half of this lecture (and in most of algebraic complexity), but is rather
somewhere between a purely algebraic model and the usual boolean models of computation.
Although this may sound somewhat exotic, it’s not; we’ll say this more slowly in the next section,
but for now: it’s a nonuniform algebraic parallel RAM over Z—so addition and multiplication
of integers can be done at unit cost, regardless of their bit-size—in which the program and
the number of processors may depend not only on the number of inputs, but also on their
total bitsize. The model is useful, natural, and strong enough to express many algorithms in
computational geometry.

To our knowledge this model has not been considered per se beyond this lower bound, so for
concreteness and completeness we begin by explaining the model in full detail. We then discuss
the strength and significance of this result, especially in light of what we now know fifteen years
later. We then give a more-or-less complete overview of the proof of Theorem 1. Finally, we
discuss how this result naturally inspired the current incarnation of the Geometric Complexity
Theory (GCT) Program.

1 The model of computation

For those familiar with the algebraic RAM, or equivalently with the Blum—Shub—Smale model,
the PRAM model without bit operations is almost exactly what you would expect of the phrase
“non-uniform algebraic PRAM.” The one difference is that the number of processors and the
running time may be a function not only of the number of integer input values, but may also
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depend on the total bitlength of the input. It is in this sense that the model is somewhere
between the usual algebraic and boolean models.

For those familiar with the algebraic computation tree model (as in [BCS97, Section 4.4]),
the PRAM model without bit operations is almost exactly what you’d expect of the phrase
“parallel algebraic computation tree,” except that the computation tree may depend not only
on the number n of input integers, but also on the total bitlength of the input.

In the rest of this section we give the details of this model for those not familiar with the
above two models, or for those readers just wanting to make sure that they got the right idea
from the above two paragraphs.

As in many problems on weighted graphs, inputs in this model have two parts: one part con-
sisting of integer parameters, and another part consisting of boolean parameters, with boolean
values encoded as the integers 0,1 € Z. For a weighted graph problem, the structure of the graph
would be encoded in the boolean parameters and the weights would be the integer parameters.

An algebraic random access machine (RAM) program over the integers is a machine consist-
ing of one processor and infinitely many memory locations. Each memory location can store an
arbitrary integer, and is marked either as an input, output, or work location. Each instruction
in the program has a unique label identifying it, and is one of the following forms:

e w = uov where o is one of +, —, X, w is a memory location, and u, v are either memory
locations or constants from Z. For this lower bound, each arithmetic operation is assumed
to have wnit cost, regardless of the bit-size of the operands (this only makes the lower
bound stronger);

e Go to instruction ¢, where £ is an instruction label;

e If u : 0 then go to instruction £ otherwise go to instruction ¢, where : is one of <, <,=, u
is a memory location, and /, ¢’ are instruction labels. The value stored in memory location
is compared against zero, and the program branches accordingly;

e Copy u to v, where v and v are memory locations;

e Indirect (pointer) reference, that is, take the value in memory location v, treat it as a
memory location, then take the value in that location and store it in u. We add the
technical, but useful, condition that indirect reference is only allowed when the value in
memory location v does not depend on any of the integer inputs, though it may depend
on the boolean ones. Here “depend” means syntactically: there should be no chain of
instructions linking operands to value that starts at some integer input and ends at v;

e Stop.

The value of the machine on an input consisting of n integers is the contents of the output
locations when the program evaluated at that input (in the usual manner of non-uniform com-
putations). Loops are not needed in the instruction set—one can think of all loops as being
unrolled.

A nonuniform RAM without bit operations is then a sequence A of algebraic RAM programs
Ap N for n, N € N. The value of A on an input consisting of n integers of total bitlength at
most N is then the output of A, x evaluated on that input.

An algebraic parallel RAM (PRAM) program consists of many processors and infinitely many
memory locations. Each memory location is designated either to belong to a particular processor,
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or to be public, and this designation cannot be changed during the course of execution; the input
and output locations are all public. Memory locations designated as belonging to processor m
can only be written to or read from by w. The processors execute their instructions in lock-
step, simultaneously, and a valid program is one in which any time two processors write to the
same (necessarily public) memory location, they write the same value. Issues of contention and
locking do not arise here; this is thus a very unrealistic model from the point of view of parallel
algorithms, but proving a lower bound in this general model proves the lower bound for any of
the more realistic models in which parallel algorithms are developed.

A nonuniform PRAM without bit operations A is then a family {4, v : n,N € N} of
algebraic PRAM programs, one for each number of inputs n and each bitlength N. The value
of A on an input consisting of n integers of total bitlength at most IV is then the value of A, x
evaluated at that input.

In the exposition of the proof, following the original paper [Mul99], we will also consider linear
PRAMSs without bit operations, which are the same as above, except the only multiplications
allowed are those in which one of the factors is a constant that’s independent of the input.

2 Significance

Despite the fact that the program and the number of processors is allowed to vary with the
number of inputs and their total bit-length, the lower bound is stated in terms of the number of
inputs only. However, unlike essentially all algebraic lower bounds, this lower bound also holds
when the total bit-size of the inputs is small compared to the number of inputs, for example,
N < O(n) for the maximum flow problem on n-node graphs. This makes the lower bound
significantly stronger, and is technical evidence that this lower bound is truly more than a
purely algebraic lower bound.

Still today, nearly 20 years after the first publication [Mul94] that included the essential ideas
of this result, this is the only known lower bound in complexity that has all of the following
desirable properties:

e It is a formal implication and algebraic analog of a major open complexity class separation
question, in this case P versus NC;

e It applies to a realistic model' of computation that includes a wide class of algorithms
for a wide class of problems, including cuts and flows [Kar93, KM97, SV82, GT88], other

'Here we anticipate and rebut some possible counterexamples. Monotone or bounded depth circuits, for which
super-polynomial lower bounds are known [GK98, Raz85, GKKS12], can hardly be argued to be realistic models
of computation. Bounded-depth circuits, even depth-3 circuits, are a realistic model of bilinear computation,
e.g., for matrix multiplication, but the strongest possible lower bounds on bilinear functions are quadratic in
the input size (for matrix multiplication the input size is 2n2, so even an Q(n3) lower bound, which we know
to be false [Str69], would have only been Q(N®/2) where N is the input size). Time-space trade-offs for SAT
(e.g., [For00, FLvMV05, DvMW11, Wil08, Wil06, BW12]) work with general models of computation, but the
current lower bounds there have not yet reached Q(n2). There are exponential lower bounds on resolution in proof
complexity, which realistically capture the famous and widely-used DPLL algorithm, but this is really just a model
of a particular kind of backtracking search rather than a general purpose computational model. The cell probe
model is a realistic and important model of data structures (see [Mil99] for a survey), but lower bounds in the
cell probe model are in terms of query complexity, so a linear lower bound in that model is optimal. There have
also been interesting lower bounds on models of greedy, backtracking, and dynamic-programming algorithms, the
most general of which we are aware of is [ABBO™ 11], but by their nature these models are designed to capture a
realistic but limited class of algorithms.
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combinatorial optimization problems such as shortest paths and spanning trees [Lei92],
linear programming [Kar84] and many other problems in computational geometry [Rei93],
solving linear systems exactly over Q [Csa76] or numerically over R [PR85] and finding
their rank [IMR80], and approximating complex roots of polynomials [Nef90, BOFKTS8S].

e It applies to a realistic model of computation that is strong enough to compute the de-
terminant efficiently. Although we already mentioned this in the preceding long list, this
particular problem is significant enough to warrant its own point. Proving lower bounds
in models that are strong enough to compute the determinant efficiently is a long-standing
“barrier” to lower bounds in complexity. Indeed, even the recent excitement over new
lower bounds for the permanent [GKKS12] also give essentially the same lower bounds for
the determinant.

As this is the only known result of this strength, the fact that it crucially uses algebraic geometry
gives yet another argument for the utility and potential necessity of algebraic geometry for
complexity lower bounds.

Although the key geometric results used in the proof of Theorem 1 have been used previously
in complexity, Theorem 1 is significantly stronger than the previous lower bounds in the algebraic
computation tree model (e.g., [BO83, SY82, Yao91]). The key geometric results used in the
proof are the Milnor-Thom estimate on the number of connected components defined by some
polynomials over R [Mil64, Tho65]—the same key geometric result used for classic lower bounds
in the algebraic comparison tree model [BO83, SY82, Yao91]—and cylindrical decomposition in
real semi-algebraic geometry [Col75]—the key geometric result used to give the first quantifier
elimination algorithm over R of optimal (in this case, doubly-exponential) complexity.

Theorem 1 is a lower bound on universal problems such as linear programming, and represents
a fundamental separation close to P # NC, whereas the lower bounds from the 1980s (such as
[BO83, SY82, Yao91]) in the algebraic computation tree model were essentially lower bounds
on the comparatively easy problem of sorting. Furthermore, those lower bounds were purely
algebraic, in the sense that they required their inputs to have large bit-size relative to the
number of input parameters, whereas Theorem 1 works even when the bit-size is small, say
O(n), compared to the number of parameters n.

The reliance of Theorem 1 on these results from real geometry separates it from the modern
GCT program, which attempts to use more purely algebraic techniques that have a better chance
of extending to the case of positive characteristic, and hence to the boolean case. Nonetheless,
because the PRAM model without bit operations is somewhere between an algebraic and boolean
model, this result is much closer to boolean P # NC than an algebraic result of the form VNC! #
VP. However, the techniques of this result are still quite far from, for example, separating the
permanent from determinant; the underlying reason for this distance is what eventually led to
the GCT program, as we’ll discuss in the next lecture.

3 Outline of the proof

There are several key ideas in the proof of Theorem 1. These ideas are exhibited by various
intermediate results along the way, and we follow the outline of the original paper [Mul99].
The basic technique is the indistinguishability technique, as exemplified but more general
than in results on algebraic computation trees [BO83, SY82, Yao91] and many results in dis-
tributed computation; of course, the heart of Theorem 1 is those ideas that allow us to apply
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the indistinguishability technique.
The main ideas of the proof are then:

1. To reduce dimension—even to a single input from Q!-—without losing complexity by ap-
plying ideas from parametric complezity (as distinct from parametrized complexity);

2. To apply ideas on arrangements of hyperplanes in d = O(1) dimensions, by considering a
rational input as a pair of integer inputs. This transforms the graph of the optimum-value
function from a subset of Q¢ x Q to (Z?)% x Z C Q%*1. In particular, even when there
is only one rational parameter, we have d = 1 but may still apply ideas from polyhedral
geometry in Q3;

3. To apply the Milnor-Thom estimate on the number of connected components defined
by real polynomials [Mil64, Tho65], the Collins cylindrical decomposition [Col75], and
arbitrary small perturbations (to achieve “general position”) [GGT73] to extend the pre-
ceding ideas from arrangements of hyperplanes to arrangements of hypersurfaces defined
by higher-degree polynomials.

We cover each of these ideas, beginning with the basic indistinguishability technique, in each of
the next subsections.

3.1 The indistinguishability technique

The basic idea of the indistinguishability technique is as follows: if the output of a program is
from a discrete set (say, {0,1}, or a permutation, rather than the evaluation of a function like
22 4 7), then the output is determined by the various choices made by the branch instructions.
If two inputs induce the same answers to every branch question, then the corresponding outputs
must be the same. Two such inputs are called indistinguishable; indistinguishability is readily
seen to be an equivalence relation that partitions the space of inputs. In the simplest form
of the indistinguishability argument, one shows that a small (short, etc.) program has few
indistinguishability classes; as the number of indistinguishability classes must at least be the
number of outputs, if many distinct outputs are possible then the program cannot be too short.
More sophisticated applications of the indistinguishability argument may take advantage of the
structure or geometry of the indistinguishability classes, as we do here.

To give an example of the indistinguishability technique as a warm-up to Theorem 1, we
briefly review the fact that extracting bits in the PRAM model without bit operations is indeed
difficult. Of course, it’s not difficult to extract the high-order bits: one can find the highest-
order bit by repeatedly squaring 2 and comparing 2¥ to a number. One can then subtract
the appropriate 2¥ and recurse. However, to extract, say, the \/n-th high-order bit of an n-bit
number would seem to require sequential time /n by this method, which would be fine in the
algebraic RAM model without bit operations, but is quite large in terms of parallel complexity.
The following result shows that one essentially can’t do better than this naive approach to
extracting bits.

Proposition 2 (Proposition 2.1 of Mulmuley mulmuleyPRAM). The lowest-order bit of an
n-bit integer can’t be computed in the PRAM model without bit operations in time \/n/c using
V< processors, for sufficiently large c.

In fact, this proof and all of the results discussed in this section can be extended to the
PRAM model with limited bit operations [Mul99], in which the operations of parity and |[u/2]
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are allowed. These operations make it easy to extract the low-order bits of a number easily.
However, one can show that even in this stronger model extracting the middle bits is still hard.
If this were not the case, the model would become equivalent to the usual boolean NC. Thus,
the inability to access middle bits—which at first blush might seem like a somewhat minor
restriction—is in fact quite a major restriction, as it can be viewed as the current obstacle to
separating P from NC.

Proof idea. Each branch instruction is essentially of the form f(x) : 0 (where : is one of >, >, =)
for some polynomial f of the input—mnote that the input here is a single integer . The maximum
degree of any polynomial computed in time ¢ is 2¢, and such polynomial has at most 2¢ real roots.
The total number of branch instructions executed at time t or earlier is at most the number of
processors times t. Thus, in time t(n) = \/n/c and with p(n) = 21" = 2V"/¢ processors, the
total number of roots of all polynomials considered at all branch instructions is thus at most
p(n)t(n)2t™ < \/m2t® /e < \/n27/<* Je. All of the numbers in between two consecutive roots
must be indistinguishable, so there are at most \/132"/ c? /c indistinguishability classes, each of
which is a union of connected sub-intervals of [0, 2™ — 1] (the n-bit nonnegative numbers). For ¢
sufficiently large, \/772”/ ¢ /e < 2™/2; so there must be some indistinguishability class containing
a connected interval of length at least 2. Any such interval contains two integer inputs that
differ by one, and hence whose lowest-order bits differ.

There are a couple issues with the above reasoning, but it’s essentially right.

First, what happens if an integer point lands exactly on one of the roots? We neglected
this in our counting of indistinguishability classes, but one can still upper bound the number of
indistinguishability classes by 6™/ 82, and the above argument will then go through. Alternatively,
one could alter the constant terms of the branch polynomials by a constant to ensure that equality
never occurs, change = to >, and possibly have to double the number of branches in order to
check both > ¢ and < —e. This constant € may be chosen small enough that, on integer inputs,
none of the outputs change. We will see this same technique in the proof of Theorem 1 in
Section ?77.

A subtler problem is that there isn’t actually a fixed polynomial at each branch instruction.
Rather, the value computed at a branch at time ¢ can depend on the outcomes of the branches
at times preceding t. To remedy this, one uses an inductive argument: all of the values used
at the first branches encountered are indeed fixed polynomials of the input, and the results of
these branches partition the inputs into equivalence classes defined as certain unions of intervals
between the roots. If we pretend that the input is in one of these equivalence classes, then all
of the values computed at the second branches encountered become fixed polynomials. These
branches may subdivide the equivalence classes further, again by the roots of the corresponding
polynomials. And so on. The resulting counting argument produces the 6"/ * bound mentioned
above, and the above proof then goes through with all details taken care of. O

In the next lecture, we’ll see that one of the key ingredients in the analog of Theorem 1
for linear PRAMs without bit operations (no multiplication allowed except by constants) is
the extension of the idea of the preceding proof from 1 to (any) d > 3 dimensions. However,
that lower bound will be on much more complicated combinatorial optimization problems, so
we won’t be able to use an argument like “If an indistinguishability class contains an interval
of length 2...” Instead, we’ll use further structure of the problem, in the form of parametric
complexity. It turns out that the parametric complexity of a problem is a good measure of its
(parallel) computational complexity.
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