Paul Beame

University of Washington

PCMI 2000 Thurs July 27

Review proof system definition

- A proof system for a language L is a polynomial time algorithm V s.t.

 - think of P as a proof that x is in L and V as a proof verifier

Complexity of proof systems

Defn: The complexity a proof system V is a function $f:N \rightarrow N$ defined by $f(n) = \max_{x \in L, |x|=n} \min_{P: V \text{ accepts } (x, P)} |P|$

- i.e. how large P has to be as a function of |x|
 V is polynomially-bounded iff its complexity is a polynomial function of n
- Definition says nothing about how costly it is to find short proofs!
 - Iower bounds are even stronger that way

Automatizability (sic)

- Defn: Given a proof system V for L and a function f:N^N® N we say that V is f(n,S)-automatizable iff there an algorithm A_V s.t.
 - given any input x with |x|=n, if xÎL, A outputs a proof P in V of this fact in time at most f(n,S) where S is the size of the shortest proof in V that x is in L
- We say that V is automatizable iff it is f(n,S)-automatizable for some f that is n^{O(1)}S^{O(1)}
 - I i.e., can find a proof in time polynomial in the size of the smallest one

Width & Automatizability

Theorem [BW]: Every Davis-Putnam (DLL)/treelike resolution proof of F of size S can be converted to one of width élog₂Sù + w(F)

Corollary [CEI][BP][BW]: Tree-like resolution is S^{O(logn)}-automatizable

Proof: There are only $2^{\log S} \binom{n}{\log S} = n^{O(\log S)}$ clauses of length at most logS. Run breadth-first resolution only deriving clauses of width log S. Can keep space requirements down by making it a recursive search.

Width, Resolution, and PCR

Theorem [BW] Every resolution proof of F of size S can be converted to one of width $O(\sqrt{n \log S}) + w(F)$

- Corollary: General resolution is $2^{O(\sqrt{n \log S} \log n)}$ -automatizable
- Theorem: Tree-PCR and PCR are $S^{O(\log n)}$ -automatizable and $2^{O(\sqrt{n \log S \log n})}$ -automatizable respectively
 - There are roughly n^d monomials of degree at most d & Groebner-basis like algorithm does linear algebra in that basis

Interpolation

Given formulas
 A(x,z) in variables x and z
 B(y,z) in variables y and z

- Defn: If A(x,z)ÚB(y,z) is a tautology then an interpolant C is a function s.t.
 - **i** for any truth assignment **z** to **z**
 - C(z)=0 implies A(x,z) is a tautology
 - C(z)=1 implies B(y,z) is a tautology

Also dual form if A(x,z)UB(y,z) is unsatisfiable

Interpolation - origin of the name

Given formulas

- A(x,z) in free variables x and z
- **B(y,z)** in free variables **y** and **z**
- Theorem: [Craig] If A(x,z) ® B(y,z) is a tautology then there is an interpolant C with only free variables z such that A(x,z) ® C(z) and C(z) ® B(y,z).
 - i.e. given $\mathcal{O}A(x,z)\dot{U}B(y,z)$: C(z) $\mathbb{O}B(y,z)$, $\mathcal{O}C(z) \mathbb{O}\mathcal{O}A(x,z)$

Feasible Interpolation

Defn: Given a propositional proof system V and a function f:N® N we say that V has f-interpolation iff given an unsatisfiable formula of the form A(x,z)UB(y,z) with proof size S in V there is a circuit of size at most f(S) computing an interpolant C for A(x,z)UB(y,z); i.e. that says which of A(x,z) or B(y,z) is false

- **V** has feasible interpolation iff f is polynomial
- V has monotone f-interpolation iff whenever the variables z occur only negatively in B and only positively in A, the circuit C is a monotone circuit.

- Lemma: [Impagliazzo, BPR] If V is automatizable then V has feasible interpolation
- Proof: Let f be the polynomial function such that V is f-automatizable and A_V be the associated algorithm.
 Given unsatisfiable A(x,z)UB(y,z) and an assignment z to z:

- Lemma: [Impagliazzo, BPR] If V is automatizable then V has feasible interpolation
- Proof: Let f be the polynomial function such that V is f-automatizable and A_V be the associated algorithm.
 Given unsatisfiable A(x,z)UB(y,z) and an assignment z
 - to z:

Run A_V on input $A(x,z)\hat{U}B(y,z)$ to a proof P of size S'f(S) where S is the size of its optimal proof in V

- Lemma: [Impagliazzo, BPR] If V is automatizable then V has feasible interpolation
- Proof: Let f be the polynomial function such that V is f-automatizable and A_V be the associated algorithm.
 Given unsatisfiable A(x,z)UB(y,z) and an assignment z to z:
 - Run A_v on input $A(x,z)\dot{U}B(y,z)$ to a proof P of size S'f(S) where S is the size of its optimal proof in V
 - Run A_V on input A(x,z) for f(S') steps
 - if it finds a proof output 0
 - else output 1

- Lemma: [Impagliazzo, BPR] If V is automatizable then V has feasible interpolation
- Proof: Let f be the polynomial function such that V is f-automatizable and A_V be the associated algorithm.
 Given unsatisfiable A(x,z)UB(y,z) and an assignment z
 - to z:
 - Run A_V on input $A(x,z)\dot{U}B(y,z)$ to a proof P of size S'f(S) where S is the size of its optimal proof in V
 - Run A_V on input A(x,z) for f(S') steps
 - if it finds a proof output 0
 - else output 1
 - Note that if B(y,z) has satisfying assignment s then plugging s,z into the proof P yields a proof of size S' of unsatisfiability of $A(x,z)\dot{U}B(s,z)$ which is $A(x,z)\dot{U}1$

Interpolation and Resolution

Theorem: [Krajicek] Resolution has feasible (monotone) interpolation.

Proof idea: structure of proof allows one to decide easily which clauses cause unsatisfiability

Interpolation for Resolution A(x,z) B(y, 1) $X_1 U X_2 U Z$ Øx₁ $\int \mathbf{y}_1 \mathbf{\hat{U}} \mathbf{y}_2$ $\mathbf{\emptyset}\mathbf{X}_{2}$ $\emptyset y_2$ **Ø**y₁ $\mathbf{x}_1 \mathbf{\hat{U}} \mathbf{x}_2 \mathbf{\hat{U}} \mathbf{y}_1 \mathbf{\hat{U}} \mathbf{y}_2$ z¬ 1 $\mathbf{x}_1 \mathbf{\hat{U}} \mathbf{y}_1 \mathbf{\hat{U}} \mathbf{y}_2$ $y_1 \hat{U} y_2$ **y**₂ L

Interpolation for Resolution A(x,1) B(y, 1) Øx₁ $y_1 U y_2$ $\emptyset y_2$ $\emptyset X_2$ **Ø**y₁ 1 $y_1 \hat{U} y_2$ z¬ 1 $\mathbf{x}_1 \mathbf{U} \mathbf{y}_1 \mathbf{U} \mathbf{y}_2$ $y_1 \hat{U} y_2$ **y**₂ L

Interpolation and Lower Bounds

General proof strategy:

- Given
 - a class of circuits for which one has lower bounds
 - a proof system whose interpolants are in the class
- Build
 - a formula whose interpolant will be a circuit for a hard problem in the circuit class

Interpolation and Lower Bounds

Theorem: If proof system V has feasible interpolation and NPE P/poly then V is not polynomially bounded

Theorem: [BPR] Any proof system V that has monotone feasible interpolation is not polynomially bounded

Interpolation & NP vs P/poly

- Proof sketch: Suppose that V has feasible interpolation and is polynomially bounded with bound p
- Consider formula A(x,z)UB(y,z) where
 - **z** represents a CNF formula
 - A(x,z) says that assignment x satisfies z
 - B(y,z) says that y of length p(|x|) is a proof in V that z is unsatisfiable
- Feasible interpolation for this formula will give a polysize circuit for deciding satisfiability

Clique-coloring formulas

Formula A(x,z)ÙB(y,z) where

z are the n(n-1)/2 variables representing an n
node graph G(z)

• A(x,z) is the statement that G(z) has a k-clique • (V,x,) ($\emptyset x_{iv} \hat{U} \theta x_{iv} \hat{U} z_{iv}$)

$$(\emptyset \mathbf{X}_{iv} \ \mathbf{U} \emptyset \ \mathbf{X}_{jv}) \ (\emptyset \mathbf{X}_{iu} \ \mathbf{U} \emptyset \ \mathbf{X}_{iv})$$

B(y,z) is the statement that **G(z)** is (k-1)-colorable

 $(\bigvee_{i} y_{vi}) \quad (\emptyset z_{uv} \acute{U} \ \emptyset y_{ui} \acute{U} \ \emptyset y_{vi})$ $(\emptyset y_{vi} \ \acute{U} \ \emptyset \ y_{vj})$

Interpolation examples

- **Theorem:** [Krajicek] Resolution has feasible (monotone) interpolation.
- **Theorem:** [Pudlak 95] Cutting Planes has feasible (monotone) interpolation where the interpolants are circuits over the real numbers
 - Also extended monotone lower bounds for clique to real circuits
- **Corollary:** Any Cutting Planes proofs of cliquecoloring formulas are exponential
- **Theorem:** Polynomial calculus has feasible interpolation

Limitations of Interpolation

- **Theorem:** [KP] If one-way functions exist then Frege systems do not have feasible interpolation.
- Theorem: [BPR, Bonet et al] If factoring Blum integers is hard then any proof system that can polynomially simulate TC^o-Frege, or even AC^o-Frege does not have feasible interpolation

Proof idea

- Suppose one has a method of key agreement
 - Given two people, one with x and another with y
 - via exchanging messages, they agree on a secret key key(x,y) so that even listening to their conversation without knowing x or y it is hard to figure out what even a bit of key(x,y) is
- The common variables z will represent the transcript of their conversation
 - A(x,z) will say that the player with x correctly computed its side of the conversation and the last bit of key(x,y) is 0
 - B(y,z) will say that the player with y correctly computed its side of the conversation and the last bit of key(x,y) is 1

Connections with proof systems

- Must encode the computation of each player in such a way that the proof system can prove given x and z what the value of the bit is
- Can extend x by helper extension variables to make the task easier
 - The actual proof uses Diffie-Hellman secret key exchange which is as hard as factoring
 - That requires powering which is not in TC⁰ but the extension variables make it easy enough to prove

