
An Introduction to Proof
Complexity

Paul Beame

University of Washington

2

Separating P and NP

z NP is characterized by a simple property -
having short proofs of membership

z To prove NP ≠ coNP show that coNP doesn’t
have this property [Cook 70’s]

y would separate P from NP so probably
quite hard

y Lots of nice, very useful smaller steps
towards answering this question

3

Proving language membership
z Proof of satisfiability

y Satisfying truth assignment

y Always short, SAT∈NP

z Proof of unsatisfiability
y ?????
y transcript of failed search for satisfying truth

assignment
y Truth tables, Frege-Hilbert proofs, resolution
y Can they always be short? If so then NP=co-NP.

4

Proof systems

z A proof system for a language L is a
polynomial time algorithm V s.t.

y for all inputs x
x x∈L iff there exists a string P s.t.

V accepts input (x,P)
x

y think of P as a proof that x is in L and
V as a proof verifier

5

Complexity of proof systems

z Defn: The complexity a proof system V is a
function f:N→N defined by

y i.e. how large P has to be as a function of |x|
y V is polynomially-bounded iff its complexity is a

polynomial function of n

z NP = {L: L has a polynomially-bounded proof
system}

||
accepts:

Pf(n)
P)(x,VPn|x|L,x

minmax
=∈

=

6

Propositional proof systems

z A propositional proof system is a proof
system for the set TAUT of propositional
logic tautologies
y i.e. polynomial time algorithm V s.t.

for all formulas F
x F is a tautology

⇔ there exists a string P s.t.
V accepts input (P,F)

x Note:
• ⇐ direction is usually called soundness
• ⇒ direction is usually called completeness

7

Propositional proof systems

z A propositional proof system is a proof
system for the set UNSAT of unsatisfiable
propositional logic formulas
y i.e. polynomial time algorithm V s.t.

for all formulas F
x F is a unsatisfiable

⇔ there exists a string P s.t.
V accepts input (P,F)

8

Polynomially-bounded proofs

z Thm: There is a polynomially-bounded
propositional proof system iff NP=coNP

z Proof:
y SAT is NP-complete
y F∈TAUT iff ¬F∈UNSAT iff ¬F∉SAT

x so TAUT, UNSAT are coNP-complete
x so TAUT, UNSAT∈NP iff NP=coNP

y ∃p-bounded proof system for L iff L∈NP

9

Sample propositional proof systems
z Truth tables

y proof is a fully filled out truth table
x easy to verify that it is filled out correctly and all truth

assignments yield T

z Axiom/Inference systems
y inference rules: e.g. modus ponens A, (A → B) | B
y axioms: e.g. excluded middle | (A ∨ ¬A)
y axioms & inference rules are schemas

x can make consistent substitution of arbitrary formulas
for variables in schema

x e.g. excluded middle yields ((x∧¬y) ∨ ¬(x∧¬y))
y more precisely...

10

Frege Systems

z Finite, implicationally complete set R of
axioms/inference rules

z Refutation version:
y Proof of unsatisfiability of F - sequence F1,…,Fr

of formulas (called lines) s.t.
x F1 = F
x each Fj follows from an axiom in R or follows

from previous ones via an inference rule in R
x Fr = Λ trivial falsehood, e.g. (x ∧¬x)

z Positive version:
y Start with nothing, end with tautology F

11

Sample Frege Refutation
Subset of rules
a. A, (A → B) | B
b. (A ∧ B) | A
c. (A ∧ B) | B
d. A, B | (A ∧ B) 1. ((x∧(x→ y))∧((x ∧ y)→¬x)) Given

2. (x ∧(x → y)) From 1 by b
3. ((x ∧ y) → ¬x) From 1 by c
4. x From 2 by b
5. (x → y) From 2 by c
6. y From 4,5 by a
7. (x ∧ y) From 4,6 by d
8. ¬x From 6,3 by a
9. (x ∧ ¬x) = Λ From 4,8 by d

12

The graph of a proof Axioms/inputs
are sources

F1

F11

F3

F4

F8

F9 F12

F2 F7

F10

F5
F6

F13

Inference rule
associated with
each node

Sink labelled by tautology
(or Λ for refutation)

13

p-simulation
z Defn: Proof system U polynomially simulates proof

system V iff
y they prove the same language L

∃P. V accepts (x,P) ⇔ ∃P’. U accepts (x,P’)

y proofs in V can be efficiently converted into
proofs in U

x i.e. there is a polynomial-time computable
function f such that

V accepts (x,P) ⇔ U accepts (x,f(P))

z Defn: U and V are polynomially equivalent iff they
polynomially simulate each other

14

All Frege systems are p-equivalent
z Two Frege systems given by axiom/inference rule

sets R1, R2
y The general form of an axiom/inference rule is

G1, G2,..., Gk | H
i.e. given G1,...,Gk conclude H (if k=0 then rule is an axiom)

y since R1 is complete and R2 is sound & finite,
x for every schema σ in R2 as above there is a constant sized

proof in R1 of the tautology (G1 ∧ G2 ∧ ... ∧ Gk) → H
y For every deduction of F from F1,...,Fk in R2 using σ

(i.e. Fi=Gi[x:y], F=H[x:y] for some substitution [x:y])
x derive (F1 ∧ F2 ∧ ... ∧ Fk) which has a constant size proof

from F1,...,Fk in R1
x copy the R1 proof of σ but use the substitution [x:y] at the

start to prove (F1 ∧ F2 ∧ ... ∧ Fk) → F
x derive F from (F1 ∧ F2 ∧ ... ∧ Fk) and (F1 ∧ F2 ∧ ... ∧ Fk)→F

again constant size

15

Gentzen/Sequent Calculus
z Statements of the form F1,…,Fk →G1,…,Gl

y meaning is (F1 ∧…∧ Fk)→(G1∨ … ∨ Gl)
y axioms F →F
y derive →F to prove it
y derive F→ to refute it

z two rules for each connective, one for each side

z cut rule

Γ,F→∆ Γ, G→ ∆
Γ,(F∨G) → ∆

Γ→∆ ,F
Γ → ∆ ,(F∨G)

Γ→∆ ,F
Γ ,¬F → ∆

Γ,F→∆
Γ → ∆ ,¬F

Γ→∆ ,F Π, F→ Σ
Γ,Π → ∆, Σ

16

Sequent Calculus & Frege

z Sequent calculus is p-equivalent to Frege
y is still a proof system without the cut rule but is

much weaker without it

z Can parametrize Sequent Calculus cleanly based on
what kinds of formulas F used in the cut rule so it is
often used in proof complexity but proofs are often
cumbersome to write down so we don’t use it here

17

Proof systems using CNF input
z By the same trick [Tseitin 68] that reduces SAT to

CNFSAT, we can assume w.l.o.g. that propositional
proof systems are for the languages CNF-UNSAT or
DNF-TAUT
y Add an extra variable yG corresponding to each

sub-formula G of propositional formula F
y CF includes clauses (or terms in the DNF case)

expressing the fact that yG takes on the value G
determined by the inputs to the formula

y Add clause yF to express the truth value of F

y CLAIM: ∃β s.t.(α,β) satisfies CF iff α satisfies F

18

Clauses
z if G = H ∨ J include clauses

y (¬yH ∨ yG)
y (¬yJ ∨ yG)
y (¬yG ∨ yH ∨ yJ)

z if G = H ∧ J include clauses
y (¬yG ∨ yH)
y (¬yG ∨ yJ)
y (¬yH ∨ ¬yJ ∨ yG)

z if G = ¬H include clauses
y (¬yG ∨ ¬yH)
y (yG ∨ yH)

19

Resolution

z Frege-like system using CNF clauses only
z Start with original input clauses of CNF F
z Resolution rule

y (A ∨ x), (B ∨ ¬x) | (A ∨ B)
z Goal: derive empty clause Λ

y equivalent to sequent calculus with cuts on
literals

z Most-popular systems for practical theorem-
proving

20

C-Frege proof systems

z Many circuit complexity classes C are defined as
follows:
y C={f: f is computed by polynomial-size circuits

with structural property PC}
y e.g. non-uniform classes NC1, AC0, AC0[p], ACC,

TC0, P/poly

z Define C-Frege to be the p-equivalence class of
Frege-style proof systems s.t.
y each line has structural property PC

y finite number of axioms/inference rules
y complete for circuits with property PC

21

Circuit Complexity

z P/poly - polysize circuits
z NC1 - polysize formulas = O(log n) depth fan-in 2
z CNF - polysize CNF formulas
z AC0 - constant-depth unbounded fan-in polysize

circuits using and/or/not gates

z AC0[m] - also = 0 mod m tests

z TC0 - threshold instead

22

What we know in circuit complexity

z CNF ⊂ AC0 ⊂ AC0[p] ⊂ TC0 for p prime

z TC0 ⊆ NC1 ⊆ P/poly ⊆ NP/poly

z AC0[m] ⊂ # P

23

Examples

z Frege = NC1-Frege
y NC1 (logarithmic depth fan-in 2) circuits can be

expanded into trees (formulas) of polynomial size
y Formulas can always be re-balanced so they have

logarithmic depth with only polynomial size
increase

z Resolution is a special case of ‘CNF-Frege’
y CNF is not strong enough to express the

p-simulation among Frege systems
y Semantic Tableau arbitrary sound CNF

inferences of constant size

24

Extended Frege Proofs

z Like Frege proofs plus extra extension steps
y that define new propositional variables to stand

for arbitrary formulas on current set of variables
(like the variables yG in the conversion to CNF but
for more than just the input formula)

y after extension may write formulas more
succinctly using newly-defined variables

z Each extension variable describes a circuit in
the input variables
y Extended-Frege = P/poly-Frege

25

Davis-Putnam (DLL) Procedure

z Both
y a proof system
y a collection of algorithms for finding

proofs
z As a proof system

y a special case of resolution where the
proof graph forms a tree.

z The most widely used family of
complete algorithms for satisfiability

26

Simple Davis-Putnam Algorithm

z Refute(F)
y While (F contains a clause of size 1)

x set variable to make that clause true
x simplify all clauses using this assignment

y If F has no clauses then
x output “F is satisfiable” and HALT

y If F does not contain an empty clause then
x Choose smallest-numbered unset variable x
x Run Refute(Fx←0)
x Run Refute(Fx←1) splitting rule

27

DLL Refutation

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬d∨ b

a

b b

c d3 3

21 4 5

0 1

0

0

0

0

1

1

1

1

28

DLL Refutation

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬d∨ b

a

b b

c d3 3

21 4 5

0 1

0

0

01

1

1

a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

0 1

29

Tree Resolution

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬d∨ b

a

b b

c d3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

30

Tree Resolution

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬d∨ b

a

b b

c d3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

31

Tree Resolution

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬a∨ b

a

b b

d:¬a∨ b3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

c: a∨ b

32

Tree Resolution

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬a∨ b

a

b b

d:¬a∨ b3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

c: a∨ b

33

Tree Resolution

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬a∨ b

a

b: a b: ¬a

d:¬a∨ b3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

c: a∨ b

34

Tree Resolution

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬a∨ b

a

b: a b: ¬a

d:¬a∨ b3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

c: a∨ b

35

Tree Resolution Proof

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬a∨ b

a:Λ

b: a b: ¬a

d:¬a∨ b3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

c: a∨ b

36

Hilbert’s Nullstellensatz

z System of polynomials
Q1(x1,…,xn)=0,…,Qm(x1,…,xn)=0

over field K has no solution in any extension
field of K
⇔
there exist polynomials
P1(x1,…,xn),…,Pm(x1,…,xn) in K[x1,…,xn] s.t.

1≡∑
=

QP ii

m

1i

37

Nullstellensatz proof system

z Clause (x1∨ ¬x2 ∨ x3)
becomes equation (1-x1)x2(1-x3)=0

z Add equations xi
2-xi =0 for each variable

y Guarantees only 0-1 solutions

z A proof is polynomials P1,…, Pm+n proving
unsatisfiability: i.e. such that

1≡−+ +
==
∑∑ x)(xPQP 2

im

n

1i
Cj

m

1j
j

C

QC

38

Polynomial Calculus
z Similar to Nullstellensatz except:

y Begin with Q1,…,Qm+n as before
y Given polynomials R and S can infer

x a•R + b•S for any a, b in K
x xi•R

y Derive constant polynomial 1
y Degree = maximum degree of polynomial appearing

in the proof
y Can find proof of degree d in time nO(d) using

Groebner basis-like algorithm (linear algebra)

z Special case of AC0[p]-Frege if K=GF(p) (depth 1)

39

Exercise

z Show that every unsatisfiable formula has a
proof of degree at most n+1 for
Nullstellensatz/Polynomial Calculus

40

Cutting Planes

z Introduced to relate integer and linear programming
[Gomory 59, Chvatal 73]:
y Objects are linear integer inequalities
y Clause (x1∨ ¬x2 ∨ x3) becomes inequality

x1+(1-x2)+x3 ≥ 1
y Add inequalities xi ≥ 0 and 1-xi ≥ 0

z Goal: derive 0 ≥ 1

z Special case of TC0-Frege (depth 1)

41

Cutting Planes rules

z addition:

z multiplication by positive integer:

z Division by positive integer:

a1x1 + ... + anxn ≥ A
b1x1 + ... + bnxn ≥ B

(a1+b1)x1+...+(an+bn)xn ≥ A+B

a1x1 + ... + anxn ≥ A

ca1x1 + ... + canxn ≥ cA

ca1x + ... + canxn ≥ B

a1x1 + ... + anxn ≥ B/c

42

Why is it called cutting planes?

-x-y ≥ -2
-x+y ≥ -1

43

Why is it called cutting planes?

-x-y ≥ -2
-x+y ≥ -1

-2x ≥ -3

44

Why is it called cutting planes?

-x-y ≥ -2
-x+y ≥ -1

-2x ≥ -3

-x ≥ -1

45

Cutting Planes p-simulates Resolution

(a∨b∨c∨¬d) (¬a∨b∨c∨¬f)
(b∨c∨¬d∨¬f)

a + b + c + (1-d) ≥ 1
(1-a) + b + c + (1-f) ≥ 1

(1-d) ≥ 0
(1-f) ≥ 0

2b + 2c + 2(1-d) + 2(1-f) ≥ 1

b + c + (1-d) + (1-f) ≥ 1

Resolution

Cutting
Planes

Addition

Division

46

Some Proof System Relationships

Truth Tables

Davis-Putnam Nullstellensatz

Polynomial CalculusResolution

Cutting Planes

Frege

AC0-Frege

ZFC

P/poly-Frege

PCR

47

How high is the hierarchy?

z Defn: Proof system U p-dominates proof system V
iff there is polynomial f:N→N s.t.
∃P.V accepts (x,P) ⇔ ∃P’.|P’|≤f(|P|). U accepts (x,P’)

z Defn: U is super iff U p-dominates all other
propositional proof systems, U is super-duper iff it
p-simulates all such systems.

z Thm: [Krajicek-Pudlak 89]
y EXP=NEXPimplies super-duper proof systems exist
y NEXP=coNEXP implies super proof systems exist

48

Why all these proof systems?

z Proof systems formalize different types of
reasoning

z Why even include the weaker systems within a
given type of reasoning?
y many weaker proof systems have better

associated proof search strategies, e.g.
Davis-Putnam, Nullstellensatz, Polynomial Calculus.

z Natural correspondence with circuit complexity
classes
y analyze systems working upwards in proof strength

to gain insight for techniques

49

Sources

z [Cook, Reckhow 79]
z [Urquhart 95]
z [Beame, Impagliazzo, Krajicek, Pitassi, Pudlak 94]
z [Clegg, Edmonds, Impagliazzo 96]
z [Krajicek, Pudlak 89]

50

Homework

z Show that every unsatisfiable formula has a proof of
degree at most n+1 for Nullstellensatz/Polynomial
Calculus

z Show that resolution may be simulated by sequent
calculus where we start with one sequent per clause
and all cuts are on literals

z Show that every formula may be rebalanced to an
equivalent one of logarithmic depth
y First find a node in the formula that has constant fraction

of the nodes in its subtree

51

Tableaux/Model Elimination systems

y search through sub-formulas of input formula that
might be true simultaneously

y e.g. if ¬(A → B) is true A must be true and B must
be false

y build a tree of possible models based on
subformulas

y equivalent to sequent calculus without the cut rule

y In worst case is worse than truth tables (n!)

