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In the previous le
ture, we explored a lower bound on the length of Resolution proofs for random

formulas and dis
ussed some open problems related to Resolution lower bounds. We ended with a

brief introdu
tion to automatizability and proof sear
h for Resolution.

In this le
ture, we will introdu
e a broader notion of automatizability that allows us to derive

weaker forms of automatizability for resolution. We will also introdu
e the notion of an interpolant.

Finally, we will show how interpolants 
an be used to exploit known lower bounds for 
ir
uit 
lasses

in order to bound the 
omplexity of proof systems.

1 f(n; s)-Automatizability and Resolution

Re
all the de�nition of automatizable from the previous le
ture:

De�nition A proof system P is automatizable if there is a polynomial-time algorithm that ap-

proximates MLP

P

(Minimum Length Proof) to within a polynomial fa
tor.

What follows is a generalization of this notion of automatizability.

De�nition Let f : N � N �! N be a fun
tion. A propositional proof system, V , is f(n; S)-

automatizable if and only if there is an algorithm A

v

su
h that given any unsatis�able formula

x, with jxj = n, A

v

outputs a proof P (in V ) in time at most f(n; S) where S is the size of the

shortest V -proof for x.

Note that our original de�nition of automatizable 
an be framed in this light by requiring that

f be n

O(1)

S

O(1)

(i.e. f is polynomial). Using this new notion of f(n; S)-automatizability, we now

derive a 
ouple of weak forms of automatizability for Resolution.

Theorem 1 For kCNF formulas, Tree Resolution is S

O(log n)

-automatizable.

Proof (sket
h) Re
all Theorem 3 from le
ture #4 that states that every tree-like resolution proof of

F of size S 
an be 
onverted to one of width dlog

2

Se+width(F ). There are only 2

log S

 

n

log S

!

=

n

O(log S)

= S

O(log n)


lauses of size at most log S. By Theorem 3 from le
ture #4, we 
an 
onvert

these 
lauses into a tree proof. If we do not 
are about spa
e, then we 
an run a breadth-�rst

resolution only deriving 
lauses of width at most logS. Alternatively, spa
e requirements 
an be

redu
ed to polynomial by making the sear
h re
ursive.
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Theorem 2 For kCNF formulas, Resolution is 2

O(

p

n log S�log n)

automatizable.

Proof The proof is similar to that of the previous theorem however it uses Theorem 5 from

le
ture #4 whi
h states that every resolution proof of F of size S 
an be 
onverted to one of width

p

2n � lnS + width(F ).

The fa
t that the above theorems hold for kCNF formulas is not mu
h of a restri
tion sin
e any

formula 
an be 
onverted into an equivalent 3CNF formula, by Cook's theorem. There are similar

results for Polynomial Cal
ulus with Resolution to those derived above for Resolution. Moreover,

very weak systems su
h as truth tables are trivially automatizable. We 
on
lude this se
tion by

noting, however, that there are few other known positive results on automatizability.

2 Interpolation

Although we present the following results in the 
ontext of propositional logi
, the 
on
ept of

interpolation was originally de�ned for First Order Logi
. Let A(p;q) denote a formula over the

ve
tors of variables p and q. Similarly, let B(p; r) denote a formula over the ve
tors of variables p

and r. Finally, let q \ r = �.

De�nition If A(p;q) �! B(p; r) is a tautology, then a Craig interpolant is any fun
tion C su
h

that for any truth assignment � to p,

1. C(�) = 0 implies that :A(p;q) is a tautolgy, and

2. C(�) = 1 implies that B(p; r) is a tautolgy.

The origin of the term interpolant is obviated when one noti
es that A(p;q) �! C(p) and

C(p) �! B(p; r). There is also a dual de�nition of an interpolant for unsatis�able CNF formulas,

A(p;q) ^B(p; r), that says whi
h one of A(p;q) and B(p; r) is unsatis�able.

De�nition If A(p;q) ^ B(p; r) is an unsatis�able CNF formula, then a Craig interpolant is any

fun
tion C su
h that for any truth assignment � to p,

1. C(�) = 0 implies that A(p;q) is unsatis�able, and

2. C(�) = 1 implies that B(p; r) is unsatis�able.

Theorem 3 If for every unsatis�able formula A(p; q) ^ B(p; r) there exists a polynomial time


omputable interpolant, then NP \ CoNP � P=poly.

Proof (sket
h) Fix some language L 2 NP \CoNP . For ea
h �xed length n, let A(p;q) 
ode "q

is a witness that p is in L," where p has length n, And let B(p; r) 
ode "r is a witness that p is not

in L". Su
h formulas A and B exist sin
e L is in NP \CoNP . Now if there is a polynomial-time

interpolant for A(p;q)^B(p; r), then by de�nition, there is a polynomial-size 
ir
uit C that takes

as input �, and determines whether or not A(�;q) is satis�able. But A(�;q) is satis�able if and

only if � is in L, and thus this 
ir
uit 
ir
uit de
ides L on inputs of length n, and therefore L is in

P=poly.
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The above theorem implies that we 
annot, in general, expe
t that an interpolant for a formula

A(p;q) ^ B(p; r) is going to be small. If however, A(p;q) ^ B(p; r) is unsatis�able and has a

short resolution proof, then we 
an 
ome up with a polynomial size 
ir
uit for 
omputing a Craig

interpolant.

2.1 Interpolation and Lower Bounds for Cir
uit Classes

Restri
ting various 
hara
teristi
s of the 
ir
uits that 
ompute interpolants, su
h as size and mono-

toni
ity, allows us to re�ne the notion of interpolation in order to exploit the lower bounds that

have been proven for various 
ir
uit 
lasses. That is, if we have a proof system whose interpolants

are in su
h a 
ir
uit 
lass, then we 
an try to build a formula whose interpolant will be a 
ir
uit

for a hard problem in the 
ir
uit 
lass.

De�nition Let V be a propositional proof system and let f : N �! N be any fun
tion. Then V

has f -interpolation if and only if given an unsatis�able formula A(p;q) ^ B(p; r) with minimum

proof size S in V , there exists a 
ir
uit of size at most f(S) 
omputing an interpolant C for

A(p;q) ^B(p; r).

We say that V has feasible interpolation whenever f is polynomial. V has monotone f-

interpolation if and only if whenever the variables p o

ur only positively in A (or only negatively

in B) the 
ir
uit 
omputing an interpolant is monotone. (Note that a monotone boolean fun
tion

is a boolean fun
tion in whi
h, if you 
ip any of the inputs in p from 0 to 1, the value of the

fun
tion will not 
ip from 1 to 0. A monotone 
ir
uit on n boolean inputs is a 
ir
uit with AND

and OR gates only, and no negations. Families of monotone 
ir
uits, one for ea
h input length n,


ompute exa
tly the monotone boolean fun
tions.)

Theorem 4 If proof system V has feasible interpolation and NP 6� P=poly then V is not polyno-

mially bounded.

Proof (sket
h) Suppose, for the sake of 
ontradi
tion, that V has feasible interpolation and is

polynomially bounded (i.e. poly(jxj)) with bound p. Consider a formula A(p;q)^B(p; r) where p


odes a CNF formula, A(p;q) says that assignment q satis�es p, and B(p; r) says that r of length

p(jxj) 
odes a V -proof of the unsatis�ability of p.

A Feasible interpolant for this formula gives a polynomial size 
ir
uit that, for ea
h CNF formula

(en
oded by p), tells whi
h of A(p;q) and B(p; r) is unsatis�able. That is, we have a polynomial

size 
ir
uit for de
iding satis�ability. This implies that NP � P=poly. Note that the inequality is

stri
t be
ause P/poly is known to 
ontain unde
idable languages that are not in NP.

In the 
ase that the proof system has monotone feasible interpolation, we 
an do better than

the above theorem by using 
liques and 
o-
liques.

Theorem 5 If V has monotone feasible interpolation, then V is not polynomially bounded.

Proof

In what follows, we will derive a 
ontradi
tion to the Razborov/Alon-Boppana Boolean 
ir
uit

lower bounds for the k-
lique problem:
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Theorem 6 (Razborov, Alon-Boppana) There exists an " su
h that for suÆ
iently large n,

and m =

n

10

, any monotone 
ir
uit whi
h outputs a 1 on all m-
liques, and a 0 on all (m� 1)
o-


liques requires size 2

n

"

.

Consider the formula A(p;q)^B(p; r) where p en
odes an undire
ted graph G over n verti
es,

A(p;q) says that G 
ontains a 
lique of size m, and B(p; r) says that G is a 
o-
lique of size (m-1).

Re
all that an m-
lique is a set of m fully 
onne
ted verti
es. Re
all also that an (m-1) 
o-
lique

is a graph whose verti
es are partitioned into m-1 groups. An edge in the (m-1) 
o-
lique 
onne
ts

any pair of verti
es if and only if the two verti
es are 
ontained in di�erent groups of the partition.

Below, we give the spe
i�
s of su
h an en
oding.

� p is used to en
ode the undire
ted graph G over n verti
es. For 1 � i < j � n, variable p

i;j

is 1 i� (i; j) is an edge in G.

� q is used to des
ribe a 
lique of size m in G. For 1 � i � m and 1 � j � n, variable q

i;j

states

that vertex j is the i

th

vertex in the 
lique. The following 
lauses are ne
essary to state that

G 
ontains an m-
lique.

1. q

i;1

_ : : : ;_q

i;n

for 1 � i � m. These 
lauses state that some vertex is the i

th

vertex in

the 
lique.

2. q

i;j

_ q

i

0

;j

for i 6= i

0

and 1 � j � n. These 
lauses ensure that we do not pla
e any vertex

in the 
lique twi
e.

3. p

i;j

_ q

i;j

_ q

i

0

;j

0

for i 6= i

0

and 1 � j < j

0

� n. These 
lauses ensure that any two verti
es

in the 
lique are a
tually 
onne
ted by an edge in G.

� r is used to state that G is an (m-1) 
o-
lique. For 1 � i � n and 1 � j � m � 1, variable

r

i;j

is 1 i� vertex i is in the j

th

group of the partition. The following 
lauses are ne
essary to

state that G is an (m� 1) 
o-
lique.

1. r

i;1

_ : : :_ r

i;m�1

for 1 � i � n. These 
lauses ensure that every vertex gets pla
ed in at

least one group of the partition.

2. r

i;j

_ r

i

0

;j

_ p

i;i

0

for 1 � i < i

0

� n and 1 � j � m � 1. These 
lauses ensure that any

two verti
es in the same group are not 
onne
ted by an edge in G.

Assume, for the sake of 
ontradi
tion, that V has monotone feasible interpolation and V is

polynomially bounded. Now 
onsider the family of formulas A(p;q) ^ B(p; r)

n

, for n = 1 : : :1

with m =

n

10

. Sin
e V is polynomially bounded, this family of formulas has polynomial size V -

proofs. Moreover, sin
e the variables p

i;j

appear only positively in A (and only negatively in B)

and V has a monotone feasible interpolant, we have that for all n, there is a monotone 
ir
uit


omputing an interpolant for A(p;q) ^ B(p; r)

n

. This monotone 
ir
uit in parti
ular outputs 0

on all (m-1) 
o-
liques, and 1 on all m-
liques, thus 
ontradi
ting the Razborov/Alon-Boppana

theorem.
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